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Abstract

In this paper, we present an automated method for taxonomy learning, focusing on concept 

formation and hierarchical relation learning. To infer such relations, we partition the extracted 

concepts and group them into closely-related clusters using Hierarchical Agglomerative 

Clustering, informed by syntactic matching and semantic relatedness functions. We introduce a 

novel, unsupervised method for cluster detection based on automated dendrogram pruning, which 

is dynamic to each partition. We evaluate our approach with two different types of textual corpora, 

clinical trials descriptions and MEDLINE publication abstracts. The results of several experiments 

indicate that our method is superior to existing dynamic pruning and the state-of-art taxonomy 

learning methods. It yields higher concept coverage (95.75%) and higher accuracy of learned 

taxonomic relations (up to 0.71 average precision and 0.96 average recall).
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1. Introduction

Ontologies are formal representations of knowledge resources that describe and share a 

common understanding of a particular domain. They are foundational for knowledge-based 

systems or intelligent systems and serve a wide range of applications such as Natural 

Language Processing [1], Information Retrieval [2], text clustering and classification, to 

name a few. Machine reading [3, 4], which aims to extract structured knowledge from text 

with little human effort, has been a major goal of Artificial Intelligence since its early days 

and an important application area for ontologies. However, ontology development is a time 

and cost consuming task, requiring the knowledge of specialists from multiple disciplines 

who may have difficulties reaching consensus [5]. Current works in the field of automatic or 

semi-automatic ontology acquisition largely aim at overcoming this barrier.
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Within this line of works, we present Ontofier, a novel framework to unsupervised ontology 

learning from text. In this work, we focus on the tasks of extracting domain concepts and 

their taxonomic relations. Concept hierarchies based on the taxonomic relations enable 

structuring information into categories, hence fostering efficient search, reuse, and 

formulation of relations.

In the wide spectrum of approaches to ontology classifications, as introduced in Uschold et 

al. [6], at one end are the formal, heavyweight ontologies that make intensive use of axioms 

for specification, and at the other end are ontologies that use little or no axioms, referred to 

as lightweight ontologies. Taxonomies reside somewhere in the middle of this spectrum. Our 

contribution is a novel, fully-automated method for taxonomic relation learning from text. 

We present an extensive evaluation of our approach involving several medical experts, 

focusing on text from the biomedical domain, which is particularly challenging and lagging 

behind in ontology learning techniques. We used clinical trial eligibility criteria to illustrate 

our methodology, which promises to generalize beyond eligibility criteria text.

Potential applications of our approach include enrichment of current ontologies with new 

concepts and parent-child relations, improving text understandability for machines to allow 

better knowledge inference and search capabilities, and automated grouping of domain 

concepts for better engineering of classification features (e.g. Yu et al. [7] utilize a semi-

automated approach for grouping of drug concepts to improve the classification features on 

drugs in phenotyping algorithms).

2. Related Work

Ontology learning from text is the process of identifying terms, concepts, relations, and 

optionally axioms (for formal ontologies), from textual information and using them to 

construct and maintain an ontology [8]. For our review, we consulted numerous surveys on 

ontology learning methods [8, 9, 10, 11, 12]. The learning techniques are generally 

categorized as symbolic, statistical, and hybrid. Symbolic methods rely on static linguistic 

patterns (rules) that can provide high accuracy, but require extensive domain expertise and 

are hard to generalize to other domains. Whereas statistical methods usually exploit corpora 

to learn structured knowledge, requiring minimal prior knowledge but providing better 

generalizability.

Our focus is on unsupervised statistical methods that do not require large amounts of labeled 

data. The most relevant works are based on clustering, which is useful for two purposes. 

First, similarity measures can provide information about the hierarchical relations of 

concepts. Second, the discovery of distinct clusters of similar terms can help to identify 

concepts and their synonyms. The works of [13, 14, 15] propose methods for unsupervised 

concept formation, whereas [16, 17, 18, 19] introduce relation extraction techniques. These 

methods mainly make use of static, rare background knowledge.

In view of the shortcomings of conventional techniques, an interesting line of works is 

emerging. They explore the rich, heterogeneous resources of structured Web data for 

ontology learning. The intertwining of the Web with ontology learning enables us to harvest 
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consensus (hence shared conceptualization) and access to large quantities of information. 

Among the few works [20, 21, 22, 23, 24] that explore structured Web data for relation 

extraction, Liu et al. [22] make use of Wikipedias categorical system to deduce relations 

between concepts. They apply sentence parsers and syntactic rules to extract the explicit 

properties and values from the category names. Wong et al. [24] use Wikipedia and search 

engine page count to acquire coarse-grained relations between ambiguous concepts, using 

lexical simplification, and association inference. Mintz et al. [23] use Freebase as lookup 

dictionary to provide distant supervision for extracting relations between entity pairs. Fan 

and Friedman [25] introduced a distributional similarity approach for the semantic 

classification of concepts in the Unified Medical Language System (UMLS), the biggest 

repository of biomedical vocabularies.

As such, we observe an increasing trend in exploring structured web data for relation 

extraction. Boosheri et al. [26] also proposed an approach for ontology enrichment by using 

DBpedia. In contrast to our work, their approach extracts the relations (predicates) that 

DBPedia offers, relying first on a pre-defined similarity threshold to prune the predicates 

and then on ontology engineers to refine the recommended relations. Our work lies in the 

intersection between this framework of methods that use semantic knowledge bases in the 

Web, i.e. semantic-based techniques, and unsupervised statistical methods. This hybrid 

approach is relatively new and has not been well tested.

The novelty of our work lies in its exploitation of external knowledge bases in a fully-

automated approach for concept formation and unsupervised taxonomical relation learning. 

In contrast to purely statistical methods, Ontofier employs not only text-based similarity 

measures but also concept semantic relatedness by using rich information of Web knowledge 

bases. Moreover, unlike symbolic methods, Ontofier does not rely on lexical patterns or 

rules manually crafted upon analysis of datasets/domain text at hand. Compared to existing 

clustering approaches, ours has unique advantages in dimensionality reduction and 

automatic clustering within each partition, not requiring pre-defined clustering parameters, 

which can be nontrivial and usually require costly fine-tuning procedures or prior expert 

knowledge. 4

3. Lightweight Ontology Learning

The commonality in various definitions is that an ontology is a representation of entities and 

their relations in a particular domain [9]. A key requirement is that each entity has one 
unique reference, an identifier, which is linked to one or more natural language terms to 

capture the synonymy inherent in human language. We adhere to this definition, using the 

following data structure for a domain concept.

Definition 1

A domain concept, extracted from a set  of natural language sentences of a particular 
domain, is defined as the tuple ci = (cid, cname, ), where cid is a unique concept identifier, 
cname is the concept name represented as a string, and  is the set of atoms composed of 
natural language phrases in the sentences  to which the concept is linked. Each atom is 
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defined as ai = (aphrase, sl), s.t. aphrase is the phrase (sentence fragment) linked to cid, and sl ∈ 
 the sentence where the phrase occurs.

Let us illustrate this definition with an example from real-life data on biomedical text in the 

domain of clinical trial patient recruitment1.

Example 1

The following text describes criteria of patients eligible in clinical trials for Alzheimer’s 

disease:

“Exclude patients with a current diagnosis of hepatic or renal disease. Exclude 

patients with severe liver disorder or kidney disease.”

We identify, among others, the domain concepts:

(c1, “liver disease”, {a1, a2}) with atoms:

a1=(“hepatic disease”, s1), a2=(“liver disorder”, s2);

(c2, ’kidney disease’, {a3, a4}) with atoms:

a3=(“renal disease”, s1), a4=(“kidney disease”, s2);

The atoms represent the natural language terms to which a new concept is linked, also 

capturing the inherent synonymy. For brevity, we also use the concept notation ci = (cid, 
cname), excluding atoms set.

An important piece of semantic information in an ontology is captured by the hierarchical 

relations among the concepts. According to formal, logic-based semantics, we are able to 

structure the ontology in the form of a hierarchy by determining subconcept/superconcept 

relations (also referred to as subsumption relations) between the concepts [27].

According to the principles of subsumption theory, “to subsume is to incorporate new 

material into one’s cognitive structures. When information is subsumed into the learner’s 

cognitive structure it is organized hierarchically” [28]. Adhering to this theory, our learning 

process makes use of the derivative subsumption, which allows one to completely derive 

new concepts (as superconcepts) from an existing cognitive structure of known concepts. We 

use the following notation of the subsumption relation:

A subsumption relation, denoted as ⊑(ci,cj), is a binary relation of generic hierarchical nature 

between concept ci ∈  and concept cj ∈ , where ci ⊑ cj states that the broader concept (or 

superconcept) cj subsumes the more specific concept (or subconcept) ci (i.e. ci ⊑ cj ). We can 

also state that ci is subsumed by cj.

Hence, the subsumption relation is used to create a hierarchy between general concepts and 

specific concepts. Referring to Example 1, by grouping the discovered concepts (c1, liver 
disease) and (c2, liver failure), we can derive a new concept (p1, DS liver disease) 

1Text is extracted from the public portal http://www.clinicaltrials.gov
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introducing the subsumption relations ⊑ (c1, p1) and ⊑ (c2, p1). Figure 1 illustrates an 

excerpt of an automatically learned taxonomy in the biomedical domain.

3.1. Ontofier Framework

The architecture of the proposed framework is illustrated in Figure 2. The components are 

explained below.

Term extraction—The first tasks consist of text preprocessing, e.g. extract and parse the 

text from clinical trial eligibility criteria, and sentence segmentation. For each sentence, we 

perform term extraction by looking up the longest phrases in the background knowledge 

base for biomedical text, the Unified Medical Language System (UMLS). [29]2. As a result, 

each term is mapped to one or more entities in UMLS.

For this task, we apply two existing tools: ELIXR [30] for clinical trial descriptions, 

andMedEx for annotation of drugs in publication abstracts [31]. The term lookup 

functionality in ELIXR identifies the longest single-word or multiple-word strings that 

match those in the MRCONSO table of the UMLS Metathesaurus, which contains a range of 

lexical variants [32]. A Metathesaurus concept unique identifier (CUI) is extracted for each 

word string. MedEx deploys a proprietary sequential, semantic tagger that looks up terms in 

RxNorm [33] as a predefined semantic lexicon for drugs that contains terms and their 

variants. Interested readers may refer to the previously published works for more details on 

these tools.

Partitioning—We assemble into one group the set of terms mapped to the same entity in 

UMLS. For example, terms “hepatic disease” and “liver disorder” are mapped to the same 

entity (concept) in UMLS. We then retrieve the categories to which the entities belong in the 

external KB. One partition is created for each category. In the case of UMLS, these are the 

semantic types. An example of such category is “DiseaseOrSyndrome” in Fig. 1. The terms 

are then assigned to the partitions corresponding with the categories to which they belong in 

the KB.

Partitioning is an important step that helps with the disambiguation of a concept based on its 

context. In a general example, if the term “jaguar” is mapped to an entity with two 

categories Cars and Animals, then we will form two concepts with distinct identifiers, one 

for each partition. For semantic type selection, we use the feature of EliXR that applies a set 

of semantic preference rules [32], which extend Johnson’s approach [34] to resolve the 

ambiguity in UMLS semantic type assignment by recommending the most likely semantic 

type in the context.

Concept Formation—In each partition, one concept is distinctively formed by one group 
of terms that map to the same KB entity, where as concept name the label of that entity is 

used. For example, the concept “liver disease” is created from the terms “hepatic disease” 
and “liver disorder” in Fig. 1.

2UMLS 2015AA Release
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Concept Similarity Estimation—In this step, we compute a similarity measure for each 

distinct pair of concepts within a partition. This measure is designed as a combination of 

syntactic-based similarity and semantic-based relatedness functions. Given a pair of 

concepts ci and cj, the final similarity value is the weighted, linearly normalized mean of a 

set of similarity function scores:

(1)

We introduce below the set of similarity functions ft used in our approach (n=5).

f1:syntactic-based similarity function between concept names is computed as the Jaccard 

index of the sets of string tokens T1 and T2 extracted from the concepts names of c1 and c2, 

respectively:

(2)

Two tokens are considered to match if their Levenshtein distance [35] is smaller than a 

predefined parameter α (typically set to 3).

f2, f3:syntactic-based similarity function between concept name and their atoms: for this 

measure, we use again the Jaccard index in equation 2, but here the sets T1 and T2 are 

composed of the tokens extracted from the name of concept c1 and text of atoms of concepts 

c2 (and vice-versa for function f3).

f4: besides syntactic matching, we apply semantic relatedness function using well-known 

knowledge bases. Since we are primarily focused on biomedical text, we use SNOMED CT, 

which is considered to be the most comprehensive, multilingual clinical healthcare 

terminology in the world3. Together with many other BioMedical ontologies, SNOMED CT 

is transformed into RDF triples from the original formats, asserted into triple store as an 

RDF graph, and made accessible via BioPortal SPARQL4 query service5.

We match each concept ci to SNOMED CT using dictionary matching approach. For those 

concepts that can be found in SNOMED CT, we map each of them to one or more 

SNOMED CT IDs. Using SPARQL service, we extract for each of the IDs si its SNOMED 

CT subgraph gi consisting of all its ancestor nodes up to the root by performing arbitrary 

depth graph traversal. For two concepts ci and cj, if they share one or more common 

ancestors in the respective extracted graphs gi and gj, their semantic similarity f4 is 

computed as the normalized, closest distance to the common ancestor node. Otherwise, f4 = 

3http://www.ihtsdo.org/snomed-ct
4http://sparql.bioontology.org
5SNOMED CT 2014AA Release
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0. Figure 3 illustrates an example of of the term tA with label “French language” and the 

XML representation of its ancestors extracted from SNOMED CT via the SPARQL 

Endpoint. Whereas, part b) of Figure 3 illustrates the graph representation of the respective 

ancestors  and  of this term and another term tB. The semantic similarity is computed 

as the normalized, closest distance to their shared ancestor node P3 using arbitrary depth 

graph traversal.

f5: this is another semantic-based function based on DBpedia knowledge base6, which is 

structured knowledge extracted from gigantic source of information in Wikipedia. We 

implemented a method to perform DBpedia URIs look up by related keywords, which 

consists of tokens in the concept names. Upon resolving for each concept ci one or more 

URIs of DBpedia instances, we retrieve the set ui of categories (comprising URIs of 

instances) it belongs. The f5 value for any two concepts ci and cj is the Jaccard index of the 

two sets ui and uj of categories extracted from DBpedia.

Given the set of concepts Cp in each partition, the final output of the concept similarity 

estimation method is a |Cp| × |Cp| similarity matrix Mp for each partition. We apply these 

matrices to detect taxonomies of closely-related concepts.

Taxonomic Relation Learning—In order to identify informative taxonomical structures 

in a given set of concepts, we apply hierarchical agglomerative clustering (HAC) technique 

[36]. HAC organizes objects into a hierarchical cluster tree (dendrogram) whose branches 

represent the desired groups of closely-related concepts.

For each partition p, we apply the calculated similarity matrix Mp to generate one respective 

dendrogram. Hierarchical clustering methods differ primarily in the similarity measures they 

employ. In this work, we concentrate on complete-linkage clustering because it considers 

non-local criterion of cluster merging, i.e. the entire structure of the clustering can influence 

merge decisions.

However, the dendrogram generated by HAC is 1) often composed of many branches, 

especially for the case of large partitions of objects, and 2) needs to be used to detect disjoint 

groups (clusters) of concepts for our domain ontology. Hence, we need a method to extract 

optimal branches for cluster detection. The process of identifying individual branches is 

variously referred to as branch or tree cutting, or dendrogram pruning. We apply a novel 

method for unsupervised dendrogram pruning, adaptive to each partition.

We derive from each cluster in every partition one new parent concept cp and infer 

the subsumption relation ⊑ (cl, cp) between cp and each concept cl in that cluster.

For example, when we group with HAC under the same cluster the concepts “jak activity” 
and “kinase activity” illustrated in Fig. 1, and then create a parent concept “MF activity” (or 

likewise, “jew follower of religion” and “ashkenazi jew” under another cluster with parent 

“PG jew”), we are inferring a subsumption relation that is used to create a hierarchy between 

general concepts and specific concepts. This is where the taxonomic organization of 

6http://dbpedia.org/about
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concepts is performed, involving precisely the two steps HAC Clustering and Taxonomic 
Relation Learning illustrated in the architecture of Figure 2. The name of cp, e.g. “MF 
activity”, is inferred using cluster labeling methods [2], whose details are outside the scope 

of this paper.

3.2. Dynamic Dendrogram Pruning Method

The most widely used tree-cut method is the fixed height h branch cut, where each 

contiguous branch of objects below h is considered a separate cluster. However, this method 

has a major limitation for our setting. The generated dendrograms exhibit distinct branches 

corresponding to the data in each partition, so no single absolute fixed height can identify 

them correctly.

We developed a method that dynamically estimates the cut height in an unsupervised way, 

adapting to each partition’s individual dendrogram shape and not on an absolute global 

height. To find the cut height hp for dendrogram Dp of partition p, we construct the graph of 

function f : X → Y, where values x ∈ [0, 1] reflect the range of possible height values, and 

y values are the respective number of clusters generated for each value of x. This results in a 

concave curve, which we illustrate in Figure 4 for the dendrogram of partition “Population 
Group”.

An optimal value of the final cut height would be one that does not generate the maximal 

number of clusters, but does not return a low number of clusters either. In function f, the 

number of clusters increases for decreasing values of x (i.e. cut height), and below a 

particular value of x it remains constants. This reflects a knee point of the curve which we 

need detect first. Furthermore, we need to avoid a very low cluster number yielded by high 

cutoff values.

We introduce the following approach to estimate the final cut height for dendrogram 

pruning. In the first step, we compute the approximation of the knee point with a method 

that, based on our knowledge, has not been used previously for purposes of cluster detection. 

We can find an approximation of knee point by applying the Extremum Distance Estimator 
(EDE) method, as is defined in [37]. EDE method identifies the inflection point of any given 

concave or convex curve based on the definition and its geometrical properties. The relevant 

EDE approximations can theoretically be computed using Lemma 1.4 of [37] as points close 

to knee points. We present the modified lemma 7 and definition of estimated knee point for a 

strictly concave function:

Lemma 1—Let a function f : [a, b] → ℛ, f ∈ C(n), n ≥ 2 which is concave for x ∈ [a, b]. 
Given an arbitrary x ∈ [a, b], the knee point of f is estimated as

7The original lemma contains definition for two knee points covering both convex/concave curve. We have strictly concave curve, 
hence we use only point XF1 (reusing notation), proof remaining as the original.
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(3)

with δ taken small enough for  to be unique unconstrained extreme in the corresponding 
interval8.

A visual interpretation of  point is that it represents a slant extremum, i.e. local minimum, 

relative to the (slant) total chord, which connects initial and ending points of the curve. We 

illustrate the knee point estimation  for our projection in Figure 4.

In the second step, we find the minimum number of clusters generated for x < 1. The 

rationale of this step is to avoid a height that produces only one cluster. In the graph of 

Figure 4, this is the point (xm, f(xm)) where xm=0.99.

In the third step, we compute final cut height hfinal as:

(4)

We use the average number of clusters θ estimated for the height values between the knee 

point cutoff xk and minimal xm to find the closest value maximal yf of a point in the curve of 

function f, i.e. the closest, highest value of θ in Y (performed by function findclosest : ℛ → 
Y ). The xf value of that point is our final height cut, which is also illustrated in Fig. 4.

4. Evaluation in Targeted Application Domains

4.1. Experimental Setting

4.1.1. Evaluation cases and datasets—We performed a series of experiments in order 

to evaluate our approach, using two diverse evaluation cases:

Case 1: Real-world text collections of clinical trial eligibility criteria descriptions:

• D1: dataset of trials on Cardiovascular Disease from ClinicalTrials.gov. 

We processed 313,273 sentences and extracted 8579 concepts distributed 

in 67 partitions. We evaluated 3 partitions with 484 concepts.

• D2: clinical trial protocols on Alzheimers disease provided by a medical 

institute. We processed 281 sentences and extracted 436 concepts 

distributed in 42 partitions. We evaluated 12 partitions with 112 concepts.

• D3: protocols of clinical trial on Breast Cancer disease from 

ClinicalTrials.gov portal. We processed 142,219 sentences, and extracted 

8The differentiability class C(n) shows that the derivatives f′, f″, …,fk exist and are continuous.
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4456 concepts distributed in 69 partitions. We evaluated 3 partitions with 

526 concepts.

In this work, we have performed a careful manual evaluation, which is in itself a very 

challenging and time-consuming process. It involves several experts from different fields of 

expertise. Dataset D1 contains many partitions with a very large number of concepts, so we 

left it to the experts to select the partitions from an area in which they were more competent 

to evaluate (e.g. “Disease or Syndrome”, or “Diagnostic Procedure”), while still keeping a 

big number of evaluated concepts. The proportion of partitions evaluated in datasets D1, D2 

and D3 varies, but the number of concepts across the datasets remains comparable (i.e. 484, 

112, and 526 respectively).

Case 2: Semantically-annotated corpus of documents describing drug-drug interactions from 

the MEDLINE abstracts corpus of SemEval-2013 challenge, Task 9.1 (Recognition and 

classification of drug names)9. The corpus had been manually annotated with 

pharmacological substances (drugs) for the Sem-Eval-2013-Task9.1.

• D4: this dataset consists of 142 abstracts composed of 1301 sentences 

containing 246 drugs annotated by trained human experts.

4.2. Experimental Protocols

All the experiments of our evaluation run the approach end-to-end, but different parts/

metrics are evaluated in the first two. Table 1 gives an overview of the evaluation design, 

specifying the experiments performed, respective datasets used for each experiment, the gold 

standard and other methods used as reference for comparison, and the applied metrics.

This evaluation is focused on assessing the main contribution of this work, the relational 

learning task, in terms of the performance of the novel pruning method and the quality of the 

inferred relations. The evaluation does not cover the quality of the new parent concepts, 

since their naming is outside the scope of this work. However, we evaluate the quality of the 

grouping of the siblings concepts under each newly formed parent concept.

In the meantime, we have performed a comprehensive evaluation in all four datasets of the 

coverage of the concepts extracted from text (presented in the Supplementary Material). The 

experiments demonstrate very high coverage of concepts aided by the use of dictionary 

lookup tools in our Ontofier framework.

Below is a detailed explanation of the protocol for each experiment:

Experiment 1: Pruning Performance—In this experiment, we compare the 

performance of the dendrogram pruning method with two state-of-the-art dynamic tree cut 

techniques proposed in [38]: dynamic tree and dynamic hybrid. The shortcoming of these 

methods is that one has to pre-define a set of parameters. For these methods, we experiment 

with different variations of the parameters deepSplit, and minimum cluster size minCl.10

9https://www.cs.york.ac.uk/semeval-2013/task9.html
10We set the values of the minimum cluster size to 2 and 3 (instead of the default value 20) to avoid large number of clusters in the 
case of small partitions with few concepts.
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We focus on the case of clinical trial descriptions, using all datasets D1, D2, D3. We apply 

the Silhouette Coefficient (SC) [39] to the dendrogram in each partition to evaluate 

clustering results, reporting the averaged SC over all partitions. Silhouette Coefficient is a 

measure that helps to validate the consistency with clusters, as a mean of interpreting how 

well each object lies within its cluster. A larger SC value indicates better quality of 

clustering.

Experiment 2. Quality of taxons—The goal of this experiment is to evaluate the 

performance of the relation learning task in terms of different aspects of the quality of 

clusters from which we infer the subsumption relations. This analysis focuses on the quality 

of the groups of sibling concepts (taxons). For example, if we group the concept “asian 
american” and concept “chinese americans” as siblings in one cluster under the same 

concept parent, we aim now to evaluate how good this grouping (i.e. subsumption) is. We 

conduct this experiment for both cases: clinical trial descriptions and MEDLINE abstracts.

• Case 1: to evaluate the quality of the groups of sibling concepts, we 

randomly selected a number of concept clusters in the taxonomies 

generated from the datasets of clinical trial descriptions (datasets D2 and 

D3). To create a quasi-gold standard of taxonomies, we involved three 

medical experts, who were given the generated clusters and asked to assess 

the cohesiveness of concepts in each cluster. They were asked to change 

the assignment of concepts in clusters when needed. This way, we obtain 

expert-driven classes of concepts used as standard for comparison.

• Case 2: we assess the cohesiveness of clusters (containing more than 2 

concepts) in the taxonomies generated from MEDLINE corpus, focusing 

on the set of concepts that match MEDLINE manual annotations (dataset 

D4). To assess if any two concepts in one cluster are indeed siblings of the 

same parent class, we check if they share the common ancestor class in the 

hierarchy provided by the National Drug File - Reference Terminology 

(NDF-RT)11, used here as the gold standard. We developed our own 

proprietary Java tool for transitive querying, using the NDF-RT RESTful 

Web API 12, and results processing. From the set of common ancestors, 

we exclude the root and general classes such as “Chemical Ingredients”, 

“Drug Products by Generic Ingredient Combinations”, “Pharmaceutical 
Preparations”.

We compare our method to the following taxonomy learning methods:

• Ontolearn [40]: graph-based algorithm for learning a taxonomy from the 

ground up. After initial term extraction, textual definitions extracted from 

a corpus and the Web are used to automatically create a highly dense, 

potentially disconnected hypernym graph. An optimal branching algorithm 

is then used to induce a treelike taxonomy.

11https://rxnav.nlm.nih.gov/NdfrtAPIs.html
12https://rxnav.nlm.nih.gov/NdfrtAPIREST.html
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For our experiments, we use the taxonomy13 (and respective 

terminology14) extracted with this approach from the same MEDLINE 

corpus.

• ADTCT-HAC [41]: This is a hierarchical clustering approach to taxonomy 

learning, part of the ADTCT framework, which uses various text-based 

window and document scopes for concept co-occurrences. The terms are 

extracted from text documents using part-of-speech parser. For the 

experiments, we use an implementation provided by the authors with 

default parameter window = 6, and their corpus of publication abstracts in 

the economics domain [41] as contrastive set. This set, needed for their 

approach, should contain documents outside the domain of the target 

taxonomy.

• Subsumption method [42]: statistics-based approach for deriving a 

hierarchy of the concepts discovered in text using a type of co-occurrence 

(window-or document-based) known as subsumption. In this approach, a 

concept x subsumes y if the documents/windows which y occurs in are a 

subset of the documents which x occurs in. We used the implementation of 

this method in the ADTCT framework with default parameters (t – value = 

0:2, window = 10).

Regarding the evaluation metrics, for a given dataset D with a set of partitions P where each 

partition consists of C clusters, we apply the following measures of Purity, Precision, Recall, 
and F-measure [43] to assess the quality of the clusters in each partition:

Purity—Measures the extent to which a cluster contains concepts of a single class. Given nij 

the number of concepts of class i in cluster j, ni the number of data points in cluster i, and l 
the number of classes, the purity for a cluster i in partition p is given by

(5)

whereas purity Purp of partition p with k clusters is estimated as

(6)

where n is the total number of concepts in p.

13http://lcl.uniroma1.it/ontolearn_reloaded/files/DDI/DDI_TREE.tsv
14http://lcl.uniroma1.it/ontolearn_reloaded/files/DDI/DDI_terminology.txt
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Precision—Measures the fraction of a cluster that consists of concepts of a specified class. 

Using the previous notations and given the total number of classes l, the precision of cluster i 
with respect to class j and the overall precision of cluster i are given by

(7)

whereas precision Prep of partition p with k clusters is given by

(8)

Recall—Measures the extent to which a cluster contains all objects of a specified class. 

Using the previous notations, the recall of cluster i with respect to class j, and recall of 

cluster i are given by

(9)

whereas recall Recp of partition p with k clusters is given by

(10)

F-measure—Combines precision and recall to measure the extent to which cluster contains 

only concepts of a particular class and all concepts of that class. The F-measure Fp of 

partition p with k clusters is given by

(11)

For each of the given metricsM (i.e.Pur, Pre, Rec and F-measure), we compute its overall 

final value for the entire dataset as the weighted average of Mps in all partitions
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(12)

4.3. Results

4.3.1. Experiment 1. Pruning Performance—The results of the evaluation of 

dendrogram pruning performance and its comparison with two state-of-the-art dynamic tree 

cut techniques (dynamic tree and dynamic hybrid [38]) are shown in Table 2.

As stated above, Silhouette Coefficient (SC) is a mean for interpreting how well each object 

lies within its cluster, so that larger SC values indicates better quality of clustering. Results 

show that our approach clearly outperforms the other two methods, providing higher SC 

values in all datasets and for different variations of parameters deepSplit and minCl 
(minimum number of clusters). This is an important finding, considering furthermore the 

fact that, unlike other methods, our approach is automated and does not require parameter 

setting.

4.3.2. Experiment 2. Quality of taxonomic relations

Case 1: The results of this experiment for the case of clinical trial descriptions are presented 

in Table 3 for datasets D2. We observe for D2 high values of cluster quality for the majority 

of partitions. We also see lower values in a few partitions (p6, p12), where Ontofier had 

generated bigger clusters, while the experts separated them in smaller classes of concepts, 

leading to lower precision. The overall high purity in partitions shows that the generated 

clusters contain in most of the cases sibling concepts correctly belonging to a single class.

We also note that partitions p3 and p1 have perfect scores along all metrics. The clusters in 

these partitions were well-defined by our method, and the human expert did not change the 

automatically-performed assignment. Results for dataset D3 in Table 4 show high values of 

purity and recall. There are mixed values of precision, varying between 0.51 for p3 and 0.82 

for p1. Again, in p3 the bigger clusters where divided by the expert into smaller groups.

Medical experts evaluating different partitions reported difficulties distributing the concepts 

into clusters. There were uncertainties about the different levels of granularity, and 

sometimes there is uncertainty from which (medical) perspective to separate concepts into 

classes. Taxonomy construction is a nontrivial task, and is usually difficult to have consistent 

expert agreement. Providing an automated way to generate these taxonomies from text is a 

promising direction to facilitate knowledge acquisition.

Case 2: Results of the evaluation in the case of the MEDLINE corpus (dataset D4) are also 

illustrated in Table 5. We show the results for 7 partitions out of the total of 19 partitions 

generated with our approach (the rest did contain clusters with more than 2 concepts found 

in NDF-RT). The number of the concepts in different partitions varies from 156 concepts for 

the partition “Pharmacologic Substance” to 11 concepts for partition “Hormone”. For one 

partition (p5, semantic type: “125-Hormone”), we notice low values of cluster purity and 
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precision. On the other side, for the other partitions we observe higher values of the 

measured metrics, an average of 0.76 for purity and 0.72 for precision, even reaching 1.0 for 

partition p6 (semantic type: “118-Carbohydrates”). This partition is characterized of a small 

number of concepts (6 concepts). The method yields very promising average purity and 

precision for all the partitions (0.71 and 0.7, accordingly).

In Table 6, we illustrate some examples of good clusters that are cohesive, correctly 

containing sibling concepts that share same parent in NDF-RT as well. We also show 

examples of mixed clusters, e.g. cluster C11 in partition P1 “Organic Chemical” contains 

two concepts (“cerivastatin”, “simvastatin”) that are not siblings with the rest.

We compared our approach to existing taxonomy extraction methods (HAC, Subsumption, 

Ontolearn) described in the Experimental Protocols section. The results in terms of purity 

and precision metrics are shown in Table 7.

We observed that the subsumption method generates a more shallow taxonomy, whereas 

HAC-method a very deep, nested one where the concept labeled drugs is repetitively created 

as parent of other concepts. These tests show that our method is superior to the others both 

in concept coverage (reported in the Supplementary Material) and quality of relations (i.e. 

concepts under the same parent are correctly assigned as siblings when compared to the 

NDF-RT taxonomy taken as gold standard).

For ADTCT-HAC, from the 28 concepts correctly extracted as drugs (as in MEDLINE 

annotations), there are only 5 relations among them in the taxonomy that could be checked 

(the other terms stood alone without siblings under a parent concept). Yet, for the window-

based version none of these relation resulted to be correct, e.g. there are siblings such as 

“drugs”-“gentamicin”, “drugs”-“estradiol”, etc. Whereas the document-based version has a 

few correct relations, resulting in 0.29% purity and precision. For Sub-method, the results 

show 0.25% purity and 0.26% precision for both versions of the approach.

Regarding the method Ontolearn, from the 14 concepts that could match MEDLINE 

annotations, there were no pairs having a correct taxonomic or sibling relation. Table 8 

shows the list of relations of the taxonomy, containing as a child a concept that could be 

mapped to NDF-RT.

We observe that Ontolearn infers rather generic relations (e.g. “ethyl alcohol”-“agent”, or 

“lithium carbonate”-“compound”), yet there are no groupings of closely related concepts 

under a domain-specific parent concept (e.g. placing ‘ethyl alcohol” and ‘ethanol” under the 

same parent). The extracted relations are rather inferred from sentences of a definition form, 

resulting in highly generic taxonomic relations.

5. Discussion

The contribution of our approach lies in the formation of new concepts and induction of 

taxonomic relations that are not present in other KBs (UMLS, SNOMED CT). E.g. only a 

part (70%) of the initially extracted concepts are in SNOMED CT, let alone hierarchical 

relations. Using this approach as a basis for other semantic relations, also our future goal, we 
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discover richer relations not existing in such KBs. Let’s take the examples illustrated in the 

taxonomy of Figure 1. Using the clustering/grouping and subsumption, we create new 

concepts as parents of the siblings in the cluster, e.g. “PG jew”, “PG american”, “MR 
activity”. Furthermore, these parent concepts are not in UMLS, and no parent (PAR) or child 

(CHD) relation can even be found in UMLS for the sibling concepts (e.g. “jew follow of 
religion” and “ashkenazi jew”). Further examples, when learning the taxonomy from the text 

of Alzheimers protocols, we infer e.g. that “retinal-diseases” and “myopia” and “age-
related-macular-degeneration” are three siblings subsumed by the same new concepts and 

hence separated them from other diseases, e.g. brain diseases). This method can potentially 

improve the granularity of an existing ontology and enrich its taxonomic relations.

Secondly, this approach helps infer further synonymies: people express different 

formulations of terms in text, hence we can learn richer lexical variations of concepts (i.e. 

atoms). With respect to the exploitation of external knowledge bases, such as UMLS, they 

are used in our approach for term extraction and initial partitioning based on semantic types. 

To support disambiguation, we form distinct concepts for each partition (semantic type) 

(Section 3.1).

It is also important to note that the methodology is not specific to any domain. The approach 

is agnostic to the text collection and domain concepts it contains. It is necessary to note 

though that our method relies on the presence of external knowledge bases for initial term 

detection, which can be of general nature like WordNet and DBPedia, or domain-specific.

With respect to the methodology, hierarchical clustering is used in other previous works to 

organize sets of terms in a hierarchy, which can then be transformed into an ontology. While 

one class of taxonomy learning methods is based on extraction patterns [44, 45, 40] using 

explicit clues like Hearst-patterns [46], another class of approaches, similar to ours, are 

based on distributional similarity [47, 48, 49, 18]. Works such as [50, 51] combine both 

pattern-based and distributional approaches to cluster nouns based on distributional 

similarity, additionally using Hearst-patterns and WordNet as background knowledge for 

constructing a hypernyms hierarchy. Yang and Callan [52] also integrate lexico-syntactic 

patterns and concept clustering with contextual, co-occurrence features in a semi-supervised 

taxonomy induction framework.

Distributional methods generally apply syntactic approaches to find out the similarity 

regarding predicate-argument relations (i.e. verb-subject and verb-object relations). A set of 

syntactic approaches is incorporated in the MoK workbench [49], which provides a 

framework to define hierarchical term clustering methods based on similarity of contexts 

that are limited to particular syntactic constructions. In another work, Neshati et al. [53] 

propose a method for taxonomy learning that exploits the similarity of words in knowledge 

bases such as WordNet and Web pages. Their similarity measure is a combination of several 

statistics- and syntactic-based methods trained on a Neural Network with supervised 

knowledge.

In a work related to ours, Knijff et al. [41] propose the ADTCT framework to automatically 

construct taxonomies from text documents, where concepts are arranged hierarchically by 
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applying a statistics-based subsumption method [42] or hierarchical agglomerative 

clustering. The clustering algorithm applies two similarity measures based on the co-

occurrence frequency of words in text documents or in user-specified word windows. Our 

experiments showed the superiority of our approach to these methods.

There are three main aspects that distinguish our work from the existing approaches. First, 

our method does not rely on the design of pre-defined patterns or specific syntactic 

constructions. Second, we leverage syntactic similarity functions embedded in the distance 

measure used for clustering with additional semantic-based features. Last, we introduce a 

novel way to perform the hierarchy cut-off automatically based on the concept similarity 

distribution in the domain at hand, without requiring manually-defined parameters.

Limitations

This work has its own limitations that we need to point out. First, the approach applies 

partitioning of extracted terms by relying directly on the categories of the external 

knowledge base used (e.g. semantic types in the case of UMLS). One shortcoming is that we 

might carry along modeling errors that could exist in the original assignment of terms in 

those knowledge bases. Another issue is related to the depth of the generated taxonomies. 

The presented clustering method is restricted to the discovery of one level of parent-children 

relation. However, in several cases it is interesting to obtain a deeper taxonomy with more 

granularity in the hierarchical organization of concepts.

This work has a few limitations with respect to the experimental evaluation. In Experiment 

2, we evaluate the performance of the relation learning task in terms of different aspects of 

the quality of clusters from which we infer the subsumption relations. The evaluation in this 

experiment focuses on the quality of taxons (i.e., groups of siblings). The evaluation of the 

quality of the parent concept with regard to its naming and appropriateness is beyond the 

scope of this paper.

We also compare our method to two other taxonomy learning methods for which we have 

applied their default parameters. An extension of Experiment 2 with different variations of 

these parameters will be addressed in our future work.

Additionally, the use of the DBPedia knowledge base for the computation of the semantic 

similarity function (f5) is also a feature whose impact is not covered in the presented 

evaluation.

Finally, even though our evaluation involves two completely different types of data (clinical 

trial descriptions and MEDLINE publication abstracts), they are restricted to the biomedical 

domain. We need to test our approach with corpora from other domains and diverse 

knowledge bases (e.g. DBPedia) to assess its performance and generalizability. We will 

address these limitations in our future work.

6. Conclusions

We present an unsupervised approach to concept formation and taxonomic relation 

extraction from text. We exploit structured Web data and syntactic matching to measure 
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relatedness of concepts. They are grouped using a novel approach of dynamic dendrogram 

pruning for cluster detection, which is shown to outperform other methods. Clusters are used 

to infer subsumption relations between concepts. Several experiments demonstrate the 

superiority of our approach with respect to the high coverage of the domain concepts 

extracted from biomedical text, and the quality of taxonomic relation learning.

In our future work, we will investigate how to obtain more fine-granular clusters that provide 

deeper hierarchy levels. We will also advance this work for automated extraction of other 

types of semantic relations.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Sample lightweight ontology learned by Ontofier from plain biomedical text of clinical trials 

eligibility criteria description. Note: words in quotation marks define terms.
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Figure 2. 
Ontofier architecture
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Figure 3. 
Semantic relatedness function f4 of two terms computed based on graph traversal of 

ancestors in SNOMED CT. Part a) is the XML representation of the ancestors of the term ta 

with label “French Language” extracted from SNOMED CT using BioPortal SPARQL 

Endpoint. Part b) is the graph representation of ancestors for two terms tA and tB; semantic 

similarity is computed as the normalized, closest distance to the common ancestor node P3.
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Figure 4. 
Illustration of true knee point and final dendrogram height cut estimation
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Table 2

Dendrogram pruning performance using average Silhouette Coefficient (SC) and its standard deviation for 

different variations of the parameters deepSplit and minCl (minimum number of clusters).

D1 D2 D3

Dynamic Tree minCl=3, deepSplit=true 0.07 ± 0.04 0.001 ± 0.01 0.03 ± 0.001

minCl=3, deepSplit=false −0.01 ± 0.02 0.05 ± 0.02 0.01 ± 0.03

minCl=2, deepSplit=true 0.06 ± 0.02 0.09 ± 0.03 0.08 ± 0.06

minCl=2, deepSplit=false 0.06 ± 0.02 0.09 ± 0.03 0.08 ± 0.06

Dynamic Hybrid minCl=3, deepSplit=true 0.08 ± 0.06 −0.01 ± 0.02 0.01 ± 0.002

minCl=3, deepSplit=false −0.03 ± 0.03 0.03 ± 0.01 −0.01 ± 0.02

minCl=2, deepSplit=true 0.02 ± 0.04 0.07 ± 0.03 0.03 ± 0.01

minCl=2, deepSplit=false −0.03 ± 0.03 0.06 ± 0.02 0.02 ± 0.04

Our method 0.11 ± 0.04 0.13 ± 0.01 0.13 ± 0.02
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Table 5

Quality of the taxonomy learned by Ontofier for each partition in dataset D4

Partition No. concepts Purity Precision

p1-Organic Chemical 146 0.72 0.72

p2-Pharmacologic Substance 156 0.60 0.59

p3-Amino Acid, Peptide, or Protein 11 0.83 0.67

p4-Antibiotic 23 0.69 0.65

p5-Hormone 11 0.39 0.44

p6-Carbohydrate 6 1.0 1.0

p7-Steroid 11 0.70 0.68

Total: 364 Avg: 0.71 Avg: 0.70
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Table 8

List of parent-child relations of Ontolearn taxonomy in which the child concept can be mapped to MEDLINE 

annotations for evaluation purpose.

Child-parent relation Child-parent relation

sodium bicarbonate - salt valproic acid - compound

sodium thiosulfate - compound sildenafil citrate - virility drug

tannic acid various - complex phenolic substance ethanol - antagonis

castor oil - vegetable oil ethyl alcohol - agent

magnesium salt - salt chloral hydrate - sedative

lithium carbonate - compound ascorbic acid - water soluble
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