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In a retrospective multicenter study, 102 formalin-fixed paraffin-embedded (FFPE) tissue specimens with histopathology results
were tested. Two 4- to 5-pum FFPE tissue sections from each specimen were digested with proteinase K, followed by automated
nucleic acid extraction. Multiple real-time quantitative PCR (qQPCR) assays targeting the internal transcribed spacer 2 (ITS2)
region of ribosomal DNA, using fluorescently labeled primers, was performed to identify clinically important genera and species
of Aspergillus, Fusarium, Scedosporium, and the Mucormycetes. The molecular identification was correlated with results from
histological examination. One of the main findings of our study was the high sensitivity of the automated DNA extraction
method, which was estimated to be 94%. The qPCR procedure that was evaluated identified a range of fungal genera/species,
including Aspergillus fumigatus, Aspergillus flavus, Aspergillus terreus, Aspergillus niger, Fusarium oxysporum, Fusarium so-
lani, Scedosporium apiospermum, Rhizopus oryzae, Rhizopus microsporus, Mucor spp., and Syncephalastrum. Fusarium oxyspo-
rum and F. solani DNA was amplified from five specimens from patients initially diagnosed by histopathology as having asper-
gillosis. Aspergillus flavus, S. apiospermum, and Syncephalastrum were detected from histopathological mucormycosis samples.
In addition, examination of four samples from patients suspected of having concomitant aspergillosis and mucormycosis infec-
tions resulted in the identification of two A. flavus isolates, one Mucor isolate, and only one sample having both R. oryzae and A.

flavus. Our results indicate that histopathological features of molds may be easily confused in tissue sections. The qPCR assay
used in this study is a reliable tool for the rapid and accurate identification of fungal pathogens to the genus and species levels

directly from FFPE tissues.

he frequency of invasive fungal diseases (IFDs) has increased

significantly over the past 3 decades, and they are associated
with excessive morbidity and mortality in immunocompromised
hosts, patients hospitalized with severe underlying diseases (e.g.,
acute myelogenous leukemia), those requiring complex surgical
procedures (e.g., trauma patients), and individuals who require
support in intensive care units (1-5).

The most well-known cause of opportunistic filamentous my-
coses is Aspergillus fumigatus (6). However, the epidemiology of
IFDs due to filamentous fungi has been expanded well beyond A.
fumigatus, including non-fumigatus species of Aspergillus, the mu-
cormycetes, Fusarium and Scedosporium species, and a wide vari-
ety of melanized fungi (4, 7).

Given the complexity of the population of patients at risk and
the diverse and increasing arrays of fungal pathogens, which show
significantly different antifungal susceptibilities, (3) early and re-
liable detection of a causative fungal pathogen is crucial to guide
the appropriate and successful treatment of IFDs (8, 9).

Formalin-fixed paraffin-embedded (FFPE) tissues obtained
from patients with proven IFDs are frequently used to detect the
etiology of invasive mycoses (10-12). While histopathology can
prove invasive fungal infections by the demonstration of fungal
elements in tissue specimens, genus- or species-level identification
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due to morphological characteristics is limited. Apart from this,
despite detection of fungal elements in the specific stained histo-
logical samples, fungal cultures from tissue biopsy specimens of-
ten remain negative in a substantial number of cases (13, 14).
Despite a lack of standardization with respect to optimal sam-
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ple type, primer selection (panfungal, genus specific, or species
specific), and PCR formats (qualitative, quantitative, real-time)
(2,15-17), PCR-based techniques provide a promising alternative
for the species-level identification of fungal agents in FFPE tissues
(1,5, 18-22).

In the present study, we developed and evaluated a real-time
quantitative PCR (qPCR) assay targeting the multicopy internal tran-
scribed spacer (ITS) region of ribosomal DNA (rDNA) (23), to detect
and identify genus and species of Aspergillus, the Mucormycetes,
Fusarium, and Scedosporium directly from FFPE tissue specimens
obtained from patients with histologically proven IFDs.

(Part of this research was presented at the 26th European Con-
gress of Clinical Microbiology and Infectious Diseases, 9—12 April
2016, Amsterdam, The Netherlands, [24].)

MATERIALS AND METHODS

Samples. One hundred two tissue specimens (from 102 patients) col-
lected from 2008 to 2014 with positive histopathology results were used
for this study. In addition, six FFPE tissue specimens from patients with-
out IFDs were used as controls. The tissue blocks were archived in the
tissue registry at multiple university hospitals in Iran and had already been
processed per routine care. The Review Board of Mazandaran University
Medical Center in Iran approved the use of these blocks for this study.

Review of histopathology. The original histopathology results were
confirmed by two independent reviewers for a total of three interpretations.
Both secondary reviewers were blind to the initial diagnoses and had access to
various histochemical stains, including hematoxylin-eosin (H&E) and Go-
mori-methenamine-silver (GMS), to aid in the diagnostic process. If all his-
topathology results from all three independent reviewers were the same, they
were considered in agreement. If a consensus was not reached amongall three
histopathology reviewers, the result was considered discordant.

Tissue processing for DNA extraction. Prior to obtaining tissue sec-
tions for qQPCR testing, we produced a single slide (5 wm) stained with
H&E from the surface of the block to ascertain that adequate tissue and
fungal elements were present. The microtome blade was switched be-
tween blocks to prevent carryover of nucleic acid from one block to the
next. Two 4- to 5-pwm FFPE tissue sections from each specimen were used
for DNA extraction.

Nucleic acid extraction. Nucleic acid extraction was performed on
samples by use of an automated EZ1 extraction instrument (Qiagen,
Venlo, The Netherlands) and a DNA tissue kit, according to the manu-
facturer’s recommendations. Tissue sections of paraffin-embedded tis-
sues were digested with proteinase K, followed by automated nucleic acid
extraction. Briefly, each tissue specimen was transferred into a 1.5-ml
sample tube. A 190-pl volume of buffer G2 was added and incubated for
5 min at 75°C, with vigorous mixing (in a shaking thermomixer). The
temperature was then reduced, and samples were cooled to 56°C. Ten
microliters of proteinase K solution was added, and the tubes were mixed
gently. This mixture was incubated overnight at 56°C, with continuous
vigorous mixing.

To validate the presence of amplifiable DNA and the absence of
inhibitory substances, a PCR targeting the endogenous human beta-
globin gene fragment (nucleotides 70400 to 70667; accession number
NG_000007.3) was performed using the primer set G1 (5'-GAA GAG
CCA AGG ACA GGT AC-3') and G2 (5'-CAA CTT CAT CCA CGT
TCA CC-3"). Samples lacking amplifiable beta-globin DNA were con-
sidered to contain inadequate cellular material or inhibitors of the
PCR assay.

Primer and probe design for qPCR. Different real-time qPCR assays
were designed for the detection of Aspergillus, Fusarium, and Scedospo-
rium species and Mucorales (sub)genera, as described previously (23).
Briefly, species-specific forward primer-probe combinations were se-
lected within the ITS2 region of the rDNA gene. Primers and probes were
selected based on the alignment of at least five ITS2 sequences per species
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of Aspergillus, Scedosporium, or Fusarium. For the detection of Mucorales
(sub)genera, at least five ITS sequences per (sub)genus was used for the
selection of primers and probes. The input DNA sequences were obtained
from NCBI’s reference sequence (RefSeq) database and were aligned by
using the ClustalW program. In all assays, a single reverse primer corre-
sponding to the 3’ end of 28S rDNA was used. The primer and probe
sequences are shown in Table 1.

Aspergillus PCR. Primer and probe combinations were chosen to de-
tect the species Aspergillus fumigatus, Aspergillus terreus, Aspergillus niger,
Aspergillus flavus, and Aspergillus nidulans/A. versicolor. Additionally, a
pan-Aspergillus-detecting probe was constructed. Cross-reactivity was
determined for all primer and probe combinations. The pan-Aspergillus
assay detected all known Aspergillus species, including Aspergillus tubin-
gensis, Aspergillus clavatus, Aspergillus tatrazonus, Aspergillus candidus,
Aspergillus orchraceus, Aspergillus ustus, and Aspergillus glaucus.

Fusarium PCR. Primer and probe combinations were chosen to detect
the species Fusarium oxysporum, Fusarium subglutinans, Fusarium solani,
and Fusarium dimerum. Cross-reactivity was determined for all primer
and probe combinations.

Scedosporium PCR. Primer and probe combinations were chosen to
detect the species Scedosporium apiospermum, Scedosporium aurantiacum,
and Scedosporium prolificans. Additionally, a pan-Scedosporium-detecting
probe was constructed. Cross-reactivity was determined for all primer
and probe combinations.

Mucorales PCR. Primer and probe combinations were chosen to de-
tect the (sub)genera Rhizopus microsporus, Rhizopus oryzae, Mucor, Cun-
ninghamella bertholletiae, Lichtheimia, Syncephalastrum, and Rhizomucor.
Cross-reactivity was determined for all primer and probe combinations.

Real-time PCR. The real-time PCR was performed using a Roche
LightCycler 480 Instrument IT system. The PCR mixture formulation of a
350 nM concentration of either forward or reverse primer, a 250 nM
concentration of the TagMan probe, and 5 pl of sample DNA in the Roche
LightCycler 480 probe master mix was used according to the manufactur-
er’s protocol. The Aspergillus PCR was performed with two triplex assays.
Triplex 1 contained the probes for Aspergillus fumigatus, Aspergillus ter-
reus, and Aspergillus nidulans/A. versicolor. Triplex 2 contained the probes
for Aspergillus niger, Aspergillus flavus, and the pan-Aspergillus probe. The
Mucorales PCR was performed with one quadriplex assay and one triplex
assay. The quadriplex assay contained probes for Rhizopus microsporus,
Rhizopus oryzae, Mucor, and Cunninghamella bertholletiae. The Mucorales
triplex assay contained probes for the detection of Lichtheimia, Synceph-
alastrum, and Rhizomucor. Fusarium and Scedosporium PCR assays were
both performed in one quadriplex PCR.

Thermal cycling was performed with an initial decontamination pro-
gram for 10 min at 40°C, followed by hot-start activation and initial DNA
denaturation for 10 min at 94°C. Template DNA was amplified in a two-
step cycling program of 50 cycles consisting of denaturation for 10 s at
94°C and annealing and extension for 1 min at 60°C. The positive cutoff
value was determined at C;.values of <40.

Analytical specificity. For validation of the multiple qPCR assays, the
cross-reactivity and interference were investigated.

Statistical analysis. All data analyses were performed using GraphPad
Prism, version 5.3, for Windows (GraphPad Software, San Diego, CA).
Statistical significance was defined as a P value of <0.05 (two-tailed).

RESULTS

Overall, mold hyphae were detected histopathologically in 102 of the
tissue specimens from patients identified as having aspergillosis (59
specimens), mucormycosis (29 specimens), concomitant aspergillo-
sis and mucormycosis (4 specimens), or infections that could not be
further specified by histological analysis (10 specimens).

One of the main findings of our study was the high sensitivity
of the DNA extraction method, which was estimated to be 94%.
No fungal DNA was amplified from 6 control tissue specimens
obtained from patients without IFDs.
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TABLE 1 Primers and probes sequences used for qPCR assays

Assay target Primer or probe Sequence (5'-3")"

Panfungal Reverse primer” ATATGCTTAAGTTCAGCGGGT

Pan-Aspergillus Forward primer® GCGTCATTGCTGCCCTCAAGC

Aspergillus fumigatus Afum probe 6FAM-CAGCCGACACCCAACTTTATTTTT-BBQ
Aspergillus terreus Ater probe LC610-GCTTCGTCTTCCGCTCCGTAG-BBQ
Aspergillus nidulans Anid/Aver probe Cy5-AGCCG+GCGT+C+TCCAAC+C+TTATT-BBQ?
Aspergillus niger Anig probe 6FAM-ATGCTCTGTAGGATTGGCCGG-BBQ
Aspergillus flavus Afla probe LC610-TGATTTGCGTTCGGCAAGCGC-BBQ
Pan-Aspergillus pAsp probe Cy5-TCCTCGAGCGTATGGGGCTT-BBQ

Fusarium Forward primer TGAATCATCGAATCTTTGAACGC

F. oxysporum Foxy probe 6FAM-ACTCGCGTTAATTCGCGTTCCYC-BBQ

F. solani Fsol probe LC610-CATTACAACCCTCAGGCCCCCG-BBQ

F. oxysporum/F. subglutinans Foxy/subg probe 6HEX-TGATTGGCGGTCACGTCGAG-BBQ

F. solani/F. dimerum Fsol/dim probe Cy5-TACGCTCCGTCCCAGTGCG-BBQ

Scedosporium Forward primer GAGCGTCATTTCAACCCTCG

S. apiospermum Sapi probe 6FAM-TAAGTCTCTTTTGCAAGCTCGCATTGG-BBQ
S. aurantiacum Saur probe 6HEX-AAAAGTCTTCTTTTGCAAGCTTCGCATTGG-BBQ
S. prolificans Spro probe LC610-TTACAAGCCCAAGGATCGGTGTTGG-BBQ
Pan-Scedosporium panSce probe Cy5-TCGCATTGGGTCCCGGCGGA-BBQ

Mucorales quadriplex
Mucorales triplex

Forward primer 1
Forward primer 2

Rhizopus microsporus Rmic probe
Rhizopus oryzae Rory probe
Mucor Mucor probe
Cunninghamella bertholletiae Cber probe
Lichtheimia Licht probe
Syncephalastrum Sync probe
Rhizomucor Rhizom probe

TGAATCATCRARTCTTTGAACGCA®
GAATCATCGARTTCTYGAACGCA®
6FAM-ATTGYCTAAAATACAGCYTC+T+T+T+GT-BBQ®
Cy5-GGCTTGCTAGGCAGGAATATTACGCT-BBQ
6HEX-TGASYACGCCTGTTTCAGTATCARAA-BBQ*
LC610-ATTCCA+TAAGGTACG+TCTGTTTCAGTACC-BBQ
6FAM-TTGATGGCATTYAGTTGCTGTCATG-BBQ®
LC610-CTTGTCCTTKGGGTATGCTTGTTTCAG-BBQ*
Cy5-CTTTGGATTTGCGGTGCTGATGG-BBQ

“ Dyes used as 5’ fluorophores were as follows: 6FAM, 6-carboxyfluorescein; LC610, LightCycler Red 610 dye; Cy5, cyanine 5; 6HEX. The 3" quencher used was BlackBerry

quencher (BBQ).

b The panfungal reverse primer was used in all assays.

¢ The pan-Aspergillus forward primer was used in all Aspergillus assays. Triplex 1 contains the Afum, Ater, and Anid/Aver probes. Triplex 2 contains the Anig, Afla, and pAsp probes.

4 +N indicates an LNA residue.

¢ Degenerated bases are indicated as follows: R (purine), G or A; Y (pyrimidine), C or T; S (strong), G or C; or K (keto), G or T.

The qPCR procedure evaluated in this study showed an overall
sensitivity of 64% for the identification of fungi from FFPE.
Among 59 qPCR-positive specimens, the identification was in
agreement between PCR and histopathology in 47 specimens
(80%). As shown in Table 2, a range of fungal genera/species were
identified, including A. fumigatus, A. flavus, A. terreus, A. niger, F.
oxysporum, F. solani, Scedosporium apiospermum, Rhizopus oryzae,
R. microsporus, Mucor spp., and Syncephalastrum spp. (Table 2).
In total, 62% of the fungal species detected belonged to the Asper-

gillus genus, with A. flavus being the most frequently observed
species (24 of 35 specimens; 68%). The most frequently detected
fungi causing mucormycosis belonged to the species Rhizopus
oryzae, which represented 62% of the proven samples, followed by
isolates identified as the genus Mucor (31%).

Fusarium oxysporum and F. solani DNA were amplified from
three specimens from patients initially diagnosed as having asper-
gillosis by histopathology.

Aspergillus flavus, S. apiospermum, and Syncephalastrum were

TABLE 2 Results of histopathological analysis and real-time qPCR assay targeting the ITS region of rDNA in 102 biopsy specimens obtained from

patients with invasive fungal diseases

Species or genus detected by real-time qPCR assay ~ Sensitivity of gPCR assay [no. of specimens with

Diagnosis from histopathology (no. of specimens)  (no. of specimens)

identified species or genus/total no. (%)]

Aspergillosis (59) A. fumigatus (9), A. flavus (20), A. terreus (1), A. 37/59 (63)
niger (1), F. oxysporum (4), F. solani (1), R.
oryzae (1)

Mucormycosis (29) R. oryzae (7), Mucor (3), R. microsporus (1), A. 18/29 (62)

flavus + Mucor (2), A. flavus + R. oryzae (1),
A. flavus (2), Syncephalastrum (1),

Scedosporium (1)

Concomitant aspergillosis and mucormycosis (4) A. flavus (2), Mucor (1), R. oryzae + A. flavus (1) 4/4 (100)

Unknown (10)

Total 59

59/92 (64)
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detected from mucormycosis samples. In addition, examination
of four samples from patients suspected as having concomitant
aspergillosis and mucormycosis infections resulted in detection of
one R. oryzae and three A. flavus isolates.

The qPCR assay used, however, failed to detect fungal DNA in
9 samples, possibly as a result of the destruction of DNA before
paraffin wax embedding. For 5 of these specimens, DNA was ex-
tracted from tissue sections in which only scant fungal hyphae
were seen upon histopathological examination. All of these spec-
imens had histopathological characteristics of fungal elements in-
dicative of either Aspergillus spp. or mucormycetes. All 5 samples
were also PCR negative for human beta-globulin.

Moreover, all 10 samples that could not be specified by histo-
pathology were also negative by the qPCR assay, which suggests
that application of a panfungal assay might be beneficial.

No cross-reactivity was observed for non-Aspergillus fungal
species with the pan-Aspergillus probe except for Paecilomyces
variotii. The species-specific probes, however, showed cross-reac-
tivity with closely related (sub)species. For non-Fusarium fungal
species with the species-specific probes, no cross-reactivity was
observed. The pan-Scedosporium assay detected all known Sce-
dosporium species. No cross-reactivity was observed for non-Sce-
dosporium fungal species with the pan-Scedosporium probe. No
cross-reactivity was observed for non-Mucorales fungal genera.
The species-specific probes, however, showed cross-reactivity
with closely related (sub)species.

DISCUSSION

In the current study, a specific qPCR assay targeting the ITS region
of rDNA genes of Aspergillus, Fusarium, Scedosporium, and mu-
cormycetes proved to be a reliable tool for the rapid and accurate
identification of fungal species directly from FFPE tissues. Nota-
bly, among the regions of the ribosomal cistron, the ITS region has
been shown to have the highest probability of successful identifi-
cation for the broadest range of fungi (25, 26) in the presence of
human DNA (27).

Rapid and accurate identification of fungal pathogens to the
species level is critical to improve the management of IFDs (9, 28,
29). Several studies targeting various regions of rDNA genes re-
ported the validity and clinical applicability of molecular tech-
niques for identification of the fungal agents in FFPE tissues (1, 8,
13-14, 18-22, 30-32).

Similar to our finding, in a retrospective study by Buitrago et
al,, the ability of the real-time PCR procedures targeting ITS1-
ITS2 in the rDNA gene was evaluated to detect and identify the
fungal DNA at the species level (32). A total of 89 FFPE biopsy
samples from 84 patients with proven IFDs were tested. In 9 of the
84 patients, the PCR technique failed to amplify the DNA. Asper-
gillus fumigatus DNA was detected successfully in 43 of 50 patients
(86%), and Aspergillus flavus was detected successfully in 6 of 50
patients (12%). PCR was positive in 24 of 30 (80%) cases with a
negative culture. In another study, Lau et al. used a panfungal PCR
assay targeting the ITS1 region of the rDNA gene cluster to detect
fungal DNA in fresh and FFPE tissue specimens from patients
with culture-proven and/or histologically proven IFDs. The assay
used successfully detected and identified the fungal pathogen in
93.6% and 64.3% of culture-proven and solely histologically
proven cases of IFDs, respectively (18). Using an ITS panfungal
PCR assay, Babouee Flury et al. also found a total sensitivity of
53.8% in culture-positive specimens obtained from patients with
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proven IFDs, classified according to the EORTC criteria (21). The
ITS2 PCR targeting the shorter fragment, however, showed a
higher detection rate with a sensitivity of 53.8%, in comparison to
the PCR targeting the ITS1-ITS2 fragment (sensitivity, 38%).

Furthermore, it is worth pointing out that in other studies by
Bialek et al. (20) and Rickerts et al. (13, 14), PCR assays targeting
the mitochondrial aspergillosis DNA and the 18S rDNA of zygo-
mycetes were found to support the histopathological diagnosis
and to identify the infecting species. Landlinger et al. also evalu-
ated the clinical potential of separate real-time qPCRs targeted a
highly conserved region of the 28S rRNA multicopy gene, cover-
ing a wide spectrum of molds, yeasts, and the Mucormycetes (33).
The sensitivity of the assay was revealed to be 96% (95% confi-
dence interval, 82% to 99%).

Our results also showed that the Qiagen EZ1 extraction instru-
ment in combination with the DNA tissue kit is a reliable method
for the detection of intact double-stranded DNA, with signifi-
cantly higher sensitivity (94%) than that reported previously. Im-
portantly, DNA extraction from FFPE tissues is difficult and re-
quires special protocols in order to extract small amounts of DNA
suitable for amplification. Most described methods report an am-
plification success rate between 60 and 80% (11, 34). However,
one should consider that in addition to utilizing commercial kits
for DNA extraction, employing a bead beating step and/or auto-
matic homogenizer may lead to better results.

As a limitation, detection of fungal DNA from fFFPE tissue
might be challenging due to the degradation of DNA and the pres-
ence of PCR inhibitors in these samples (35). In addition, envi-
ronmental contamination of specimens and/or the PCR master
mixture by ubiquitous fungal spores is a possible cause of “false
positives” (36).

In conclusion, the qPCR assays targeting the ITS2 region
proved to be useful tools for the molecular identification of fungal
species and have been shown to amplify DNA from a broad range
of fungi in the presence of human DNA (12). By using this
method, the time to diagnosis can be greatly reduced. Our results
also indicate that histopathological features of molds may easily be
confused in tissue sections. The qPCR assay used in this study
therefore represents a highly sensitive and promising alternative/
adjunctive tool that can be easily incorporated into clinical mycol-
ogy laboratories.
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