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Cutaneous abscess infections are difficult to treat with current therapies and alternatives to conventional antibi-
otics are needed. Understanding the regulatory mechanisms that govern abscess pathology should reveal thera-
peutic interventions for these recalcitrant infections. Here we demonstrated that the stringent stress response
employed by bacteria to cope and adapt to environmental stressors was essential for the formation of lesions,
but not bacterial growth, in a methicillin resistant Staphylococcus aureus (MRSA) cutaneous abscess mouse
model. To pharmacologically confirm the role of the stringent response in abscess formation, a cationic peptide
that causes rapid degradation of the stringent response mediator, guanosine tetraphosphate (ppGpp), was
employed. The therapeutic application of this peptide strongly inhibited lesion formation in mice infected with
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ppGpp Gram-positive MRSA and Gram-negative Pseudomonas aeruginosa. Overall, we provide insights into the mecha-

Cationic peptide nisms governing abscess formation and a paradigm for treating multidrug resistant cutaneous abscesses.

DJK-5 © 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction antibiotics (Stearne et al., 2001). Thus antibiotics work poorly against

Abscesses are very common. For example, in the United States alone,
3.2 million people were treated in hospital emergency departments for
an abscess infection in 2005 (Taira et al., 2009). Cutaneous abscesses,
triggered by local bacterial infections, are characterized by an accumula-
tion of fluid/pus within the dermis, which is often associated with se-
vere inflammation and induration and frequently lead to a skin lesion
that may present as an open sore (Singer and Talan, 2014). Severe ab-
scesses that display signs of septic infection are not only surgically
drained, but also treated with antibiotics to prevent dissemination, al-
though recurrence can occur (Singer and Talan, 2014). An example of
a bacterium that often causes abscesses is Methicillin-resistant Staphy-
lococcus aureus (MRSA). In addition to its role as an important nosoco-
mial human pathogen, MRSA infections are now emerging in the
community as an important cause of skin and soft-tissue infections,
many of which are cutaneous abscesses (Moran et al., 2006). Common
antibiotic therapies for MRSA abscesses include trimethoprim-sulfa-
methoxazole, clindamycin and tetracyclines (Singer and Talan, 2014;
Talan et al., 2011). However, conditions within the abscess such as
low pH, excessive debris and high bacterial loads, as well as low redox
potential, have been shown to limit the penetration and efficacy of
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abscess infections and the substantial consumption of antibiotics over
the past decades has resulted in strains that are resistant to virtually
all of the utilized antibiotic treatments (Moran et al., 2006; Singer and
Talan, 2014; Talan et al., 2011). Cutaneous abscesses can also be caused
by a variety of other Gram-negative (Carpenter, 1990) and Gram-posi-
tive bacteria (Maliyil et al., 2011) making broad spectrum treatments
more desirable.

Here we hypothesized that abscesses represent a distinct stress-
triggered growth state that make them both resistant to treatment
and able to cause pathology. In particular, we have considered the in-
volvement of the universal stringent stress response. The stringent re-
sponse is a conserved stress response employed by various bacteria to
respond to and cope with conditions of amino-acid starvation, carbon-
source, fatty acid, oxygen or iron limitation, heat shock, antimicrobial
challenge, and/or other environmental stressors (Crosse et al., 2000;
Potrykus and Cashel, 2008). In most bacteria, the stringent response is
signaled by the secondary-messenger guanosine tetraphosphate
(ppGpp), which serves as a pleiotropic transcriptional regulator by
binding to RNA polymerase (Dalebroux and Swanson, 2012). This
leads to the repression of resource-consuming processes (translation,
lipid, and cell wall biosynthesis, and to some extent replication and
transcription) and diverts resources toward biosynthesis (amino acid
biosynthesis and transport, glycolysis) and diverse stress genes to pro-
mote survival (Potrykus and Cashel, 2008; Srivatsan and Wang, 2008;
Wolz et al,, 2010).
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Cationic amphipathic peptides are an evolutionarily conserved, mul-
tifunctional component of the innate immune system. They are known
to have immunomodulatory, direct antimicrobial, and/or anti-biofilm
activity (Hancock and Sahl, 2006). Importantly, a distinct subset of cat-
ionic peptides have demonstrated broad-spectrum efficacy in targeting
recalcitrant biofilm infections by targeting the stringent stress response
(dela Fuente-Nafiez et al.,, 2014; de la Fuente-Nfiez et al., 2015; Pletzer
and Hancock, 2016). Biofilms are a distinct growth state of bacteria on
surfaces whereby the bacteria form structured aggregates that are adap-
tively multi-antibiotic resistant (de la Fuente-Ntfiez et al., 2014; de la
Fuente-Niiez et al., 2015; Overhage et al., 2008). The stringent re-
sponse and biofilm formation are tightly interconnected processes
since ppGpp is required for biofilm initiation and maintenance, such
that bacterial mutants defective in the stringent response do not form
biofilms (Aberg et al., 2006; de la Fuente-Nafiez et al., 2014; He et al.,
2012). In S. aureus, upon amino acid starvation, ppGpp (and its precur-
sor pppGpp) production is mediated by the bi-functional synthase/hy-
drolase enzyme RSH (a RelA/SpoT homolog) (Geiger et al., 2012).

The ppGpp regulon is very complex (Vercruysse et al., 2011). For ex-
ample, in Escherichia coli, ppGpp mediates the induction of other stress
regulators within the universal stress protein (USP) family (Kvint et al.,
2003). Likewise, in S. aureus, a homolog, the universal stress protein
(designated Usp2) was recently identified and shown to be necessary
for persistence under amino acid starvation (Attia et al., 2013) and is
positively regulated by ppGpp (Geiger et al., 2012). Despite these find-
ings, the importance of these stringent response regulators in S. aureus
pathogenesis remains an understudied topic.

Here we have demonstrated a contribution of the stringent response
to S. aureus cutaneous abscess formation (as judged by lesion formation
and other altered pathology findings), but not local bacterial growth,
and demonstrated that it can be targeted pharmacologically with a pep-
tide. Furthermore, the same pharmacological targeting worked with P.
aeruginosa infections in a cutaneous abscess model.

2. Materials and Methods
2.1. Strains

S. aureus wild-type HG0O1, RSH synthase mutant (rshsy,) and
complemented RSH synthase strain were kindly provided by Christiane
Wolz (University of Tiibingen, Tiibingen). S. aureus Newman and Ausp2
were provided by Eric Skaar (Vanderbilt University Medical Center,
Nashville, TN). Flow cell analysis was conducted on biofilm forming
MRSA strain SAP0017 (clinical isolate kindly provided by Dr. Tony
Chow, Vancouver General Hospital). For in vivo peptide studies, biolu-
minescent S. aureus USA300 was used and kindly provided by Scott
Stibitz (Food and Drug Administration, Silver Spring, MD) and P.
aeruginosa LESB58 (Liverpool epidemic strain) was from Winstanley
et al. (Winstanley et al., 2009). All strains in Table S1 were kindly pro-
vided by Michael Otto (National Institute of Health, Bethesda, MD).

2.2. Peptide Synthesis

DJK-5 (VQWRAIRVRVIR-NH,; all D amino acids) was synthesized by
CPC Scientific and control peptide IDR-2013 (WQRVRRVKVIRK-NH,)
was synthesized by Genscript using solid-phase 9-flurenylmethoxy car-
bonyl (Fmoc) chemistry and purified to >95% purity using reverse-
phase high-performance liquid chromatography (HPLC). The lyophi-
lized peptide was initially resuspended in endotoxin-free water and
used in vitro, or further resuspended in saline and used in vivo.

2.3. Drug Susceptibility Test
The broth microdilution method with minor modifications for cat-

ionic peptides (Wiegand et al., 2008) was used for measuring the MIC
of peptide DJK-5.

2.4. Flow Cell Analysis

A flow cell system was initially assembled and sterilized as previous-
ly described (de la Fuente-Nufiez et al., 2014). BM2 biofilm-adjusted
medium [62 mM potassium phosphate buffer (pH 7), 7 mM
(NH4),S04, 2 mM MgSO,, 10 uM FeSO,, 0.4% (wt/vol) glucose]| was
allowed to pump through the flow cell apparatus for 1 h before the
chambers were injected with 1/20 dilutions of overnight culture and
bacteria allowed to adhere to the plastic surface of the flow cells for
3 h. To assess the activity of the peptide on pre-formed biofilms, peptide
was added to the system two days after the initial bacterial injection and
pumped through the system for a subsequent 24 h. Three days follow-
ing the injection, the flow cells were injected with SYTO-9 and
propidium iodide stain [LIVE/DEAD BacLight Bacterial Viability kit (Mo-
lecular Probes, Eugene, OR)] to image total and dead cells respectively.
Remaining biomass was assessed using a confocal laser scanning micro-
scope (Olympus, Fluoview FV1000) and three-dimensional reconstruc-
tions were generated using the Imaris software package (Bitplane AG).

2.5. Mouse Skin Infection Model

Female CD-1 mice (6 weeks old) were purchased from Charles River
Laboratories (Wilmington, MA) and were used for the abscess model.
Mice were housed together (maximum five/cage) and bedding (shred-
ded paper) and nestlets were provided in each cage. All animal experi-
ments were performed in accordance with The Canadian Council on
Animal Care (CCAC) guidelines and were approved by the University
of British Columbia Animal Care Committee. The fur on the backs of
the mice was removed through shaving and depilatory cream. All S. au-
reus strains were grown to an optical density at 600 nm (ODggp) of 1 in
tryptic soy broth (TSB), while P. aeruginosa LESB58 was grown in double
yeast tryptone (dYT) medium to an ODggg of 1; subsequently cells were
washed twice with sterile PBS, and resuspended to a final concentration
of 5 x 107 CFU / 50 L. For mutant studies, bacteria were injected into
the right flank of the back. For peptide intraperitoneal (IP) administra-
tion studies, mice were initially given either saline or 6 mg/kg DJK-5
(for MRSA studies) or 4 mg/kg DJK-5 (for P. aeruginosa studies) in saline
via IP injection immediately before applying 50 L of bacteria subcuta-
neously to the right flank of the back. For intra-abscess studies, mice re-
ceived 50 pL of bacteria and 1 h later, 3 mg/kg of peptide via intra-
abscess injection. Abscess lesion sizes were measured using a caliper
every 24 h for a maximum of 5 days. Visible dermonecrosis or white le-
sions (filled with pus) were considered as part of the abscess lesion.
Swelling/inflammation was however disregarded in the measurements.
Mice were monitored once daily and no adverse outcomes were report-
ed. To assess the levels of luminescent bacteria in the abscess every 24 h,
the in vivo imaging System (IVIS) (Perkin Elmer, Waltham MA) was uti-
lized. Skin abscesses were excised either two, three or five days post-in-
fection, homogenized using a rotor stator for 5 min and serially diluted
for CFU quantification. Furthermore, skin explants were fixed in 10%
neutral buffered formalin and processed for hematoxylin and eosin
and Gram staining using a Wax it kit (University of British Columbia).

2.6. Evaluation of Histological Slides

Histological and Gram stained slides were independently evaluated
blindly by veterinarian Dr. lan Welch at the Centre for Comparative
Medicine (Vancouver, Canada) and pathologist Dr. Hamid Masoudi at
Vancouver Coastal Health (Vancouver, Canada). All slides used for this
independent evaluation are available from the authors upon request
with one being presented in Results.

2.7. Measurement of Phenol Soluble Modulins (PSM)

For luminescent reporter studies, the USA300 PSMa luminescence
reporter strain (Dastgheyb et al., 2015) was grown in TSB in the
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presence of 2.5 or 5 ug/mL DJK-5 or water as a control. Luminescence ac-
tivity was read for up to 8 h using a VICTORX3 Multilabel Plate reader.
Alternatively, USA300 was grown in TSB medium for 8 h at 37 °C at
200 rpm in the presence of sub-lethal concentrations of DJK-5 (1 pg/
mL) or water as a control. PSM production in culture filtrates was
assessed using HPLC/MS as previously described (Joo and Otto, 2014).

2.8. Statistical Evaluation

For bacterial mutant studies, two independent experiments were
conducted and data was statistically analyzed using one-way ANOVA
or t-test. For peptide studies, three independent experiments were con-
ducted and t-tests were used for statistical evaluation. For all animal ex-
periments, the number of biological replicates is indicated in the figure
legend. All other experiments were conducted using three biological
replicates and evaluated using t-test.

3. Results

3.1. The stringent response was crucial for cutaneous abscess lesion forma-
tion in mice

We first hypothesized that bacteria found within a cutaneous ab-
scess are under significant stress due to limited nutrients and oxygen
as well as phagocyte-generated oxidative stress. Therefore, we exam-
ined the importance of the bacterial stringent response in a murine cu-
taneous abscess infection model. To study this, we compared in vivo the
lesion-forming ability of S. aureus HGOO1 with that of a mutant defective
in RSH synthase (rshgy,) and thus ppGpp production. The RSH-hydro-
lase domain is essential for preventing toxic accumulation of ppGpp,
such that only RSH mutants defective in the synthase domain are viable

221

(Geiger et al., 2010). Our data showed that the rshgy,, mutant was se-
verely deficient in abscess lesion formation (13.2 fold smaller lesions
compared to the wild type) and genetic complementation of rshsy, re-
stored the ability to form abscess lesions (Fig. 1a). Interestingly, similar
viable bacterial counts were recovered from all infected groups (Fig.
1b), indicating that the stringent response was required for the forma-
tion of lesions but not local bacterial growth. Moreover, mice injected
with the rsh-deficient mutant lost 3.3 fold less weight when compared
to the wildtype (Fig. 1c). Mice infected with P. aeruginosa stringent re-
sponse mutants also formed significantly smaller lesions as compared
to wildtype controls (data not shown). Overall, our data indicates that
the protective stringent response is critical for cutaneous abscess
pathology.

3.2. The universal stress protein (Usp2) was involved in cutaneous lesion
and biofilm formation

Based on the interaction of ppGpp with other stress response regu-
lators, we investigated whether Usp2 was also important for cutaneous
abscess infections. Mice infected subcutaneously with a usp2 mutant
(Ausp2) demonstrated approximately 2.5 fold smaller abscess lesions
compared to those infected with wild-type S. aureus Newman (Fig.
1d); a trend that was not attributed to a growth defect (Fig. 1e).

Due to the role of ppGpp in stress adaptation and biofilm formation,
we investigated the biofilm-forming capacity of Ausp2, which had not
been studied to date. Using a flow cell apparatus, imaged by confocal
microscopy for live and dead biofilm mass after 3 days of growth, it
was determined that Ausp2 was severely deficient in biofilm formation
(Fig. 1f). These data collectively provided evidence that both tissue inju-
ry and biofilm formation involve induction of the universal stress pro-
tein Usp2.

*
a 2507 hdalelal b 1ot C 054
Egn
N . 00teelacacaa : ...... P
£ 2004 A 105 *Segee™® mEkm  Aeps 5 O . .
E . 2 @ o5 E A
‘m 150- * . & 400 §08 : . p—
5 M 5 -(-‘g £-10] —e— = A,
2100{ ®ge S 104 E b A
3 A &5 5 -1.51 .
é 50- » A 1024 200 o
i -2,
n .l
0 r ananl T 100 T T r 25 T v :
@ & & @ > @ & X
. b&.\Q \é{\ai\ <@ . &,\Q é{\c;f\ 6\@"«‘ _.:,\‘\Q ﬁ:’(\oj\ é&
§ N9 N A N & A @
4 N ? N ¥ &
& & &
d 2s0- - e f
— 1084 * o n
“g 200+ .o e TR
E = @ 1054 L] L]
@ 1501 . 8 <
E ?% 1044
& 100+ . am =
3 L1 .- L(S
2 J — - 102
2%
0 . - 100 . .
& 5@' i < wildtype Ausp2
q&& _ Q@ =

Fig. 1. The stringent response was critical for S. aureus abscess lesion and biofilm formation. (a) Mice were infected subcutaneously with S. aureus HGO01 wildtype, rshsy, and rshgy,
complement strains. Lesions were measured 24 h post-infection using a caliper, n = 8-10/group. Statistical significance was determined using one-way ANOVA (****, p < 0.0001) (b)
Bacteria were recovered 48 h post-infection from mouse abscesses infected with S. aureus HG0O01, Arshgy,, and complemented-rshsy, and then plated for enumeration, n = 9-10/
group. (c) Weight loss/gain of infected mice was assessed by measuring the mouse weights pre-infection and 48 h post-infection, n = 9-10/group (*, p < 0.05). (d) Mice were infected
subcutaneously with S. aureus Newman parent strain and its Ausp2 mutant. Lesion formation was measured 24 h post-infection using a caliper, n = 7-9/group. Statistical significance
was determined using unpaired t-tests (**, p < 0.01). (e) Bacteria were recovered from Newman- and Ausp2- infected mice abscesses after 48 h and plated for enumeration, n = 7-9/
group. (f) Newman and Ausp2 biofilms were grown in flow cells. After 72 h, bacteria were stained with Syto-9 (live bacteria stain) and propidium iodide (dead bacteria stain) prior to
confocal imaging. The scale bar represents 30 um in length and each image shows the xy, yz and xz dimensions. Two independent experiments were conducted for both animal

studies and flow cell experiment.
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3.3. A Stringent-Response Targeted Peptide, DJK-5, Strongly Reduced S. au-
reus Lesion Formation

Synthetic peptides derived from naturally-occurring antimicrobial
peptides target the stringent response alarmone ppGpp as the basis
for their antibiofilm activity (de la Fuente-Ndfiez et al., 2014; de la
Fuente-Nufiez et al., 2015). In particular, p-enantiomeric peptide, DJK-
5, a peptide whose sequence was conceptually based on innate defense
regulator (IDR)-1018, impairs bacterial biofilm formation and eradi-
cates preformed biofilms by directly interacting with ppGpp and trig-
gering its degradation (de la Fuente-Ndfiez et al.,, 2015). It is worth
noting that biofilm and abscess infections are generally considered to
be quite distinct, although the above data indicated mechanistic
overlap.

DJK-5 exhibited very modest antimicrobial activity toward S. aureus
under planktonic growth conditions, with minimal inhibitory concen-
trations (MICs) against a variety of strains ranging from 16 to 64 pg/
mL (Table S1). In contrast, DJK-5 displayed potent antibiofilm activity,
eradicating pre-formed MRSA biofilms at only 2.5 pg/mL (Fig. S1).

Given the activity of DJK-5 against the stringent response and the
observed mechanistic overlap between abscess and biofilm formation,
we predicted that pharmacological targeting of the stringent response
would impact on lesion formation in vivo. When administered via intra-
peritoneal (IP) injection, DJK-5 dramatically reduced the severity of ab-
scesses formed by the CA-MRSA strain, USA300, by visibly reducing
tissue injury and dermonecrosis (Fig. 2a) as well as significantly reduc-
ing lesion size by >4.4-fold compared to controls (Fig. 2b).

Using bioluminescent bacteria in this model allowed for the daily
monitoring of bacteria in vivo. After 3 days post-infection, a drop in pho-
ton flux was observed in the DJK-5-treated mice when compared to the
untreated, infected controls (Fig. 2¢). In previous peptide tracking stud-
ies, 2 mg/kg of *H-radiolabelled peptide injected intraperitoneally
reached steady-state concentrations of 2-6 yg of peptide per gram of tis-
sue (equivalent to 2-3 pg/mL in the blood) (Bolouri et al., 2014). Based
on this biodistribution data, we predicted that the dose used in this ex-
periment would not reach MIC levels (32 pg/mL) in the tissues or blood.
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Consistent with this, despite a 10.2-fold reduction in viable bacteria re-
covered from the infected site in the DJK-5-treated vs. untreated mice
(Fig. 2d), there was still a significant bacterial load recovered from
DJK-5-treated wounds.

These results motivated us to apply the peptide more directly via
intra-abscess injection, since direct application into the abscess reflects
a potentially more clinically relevant approach. In mice given DJK-5,
there was a substantially lower (4.6-fold smaller) lesion size (Fig. 3a)
and 8.4-fold fewer bacteria were recovered from the abscess site (Fig.
3b). In addition, mice receiving saline lost weight (average 0.3 g weight
loss) while mice receiving DJK-5 gained weight (Fig. 3¢), indicating that
DJK-5 improved the overall welfare of the mice. We did not observe an
improvement in abscess severity or a reduction in abscess size in mice
treated with control peptide IDR-2013, a peptide with no anti-biofilm
activity against MRSA (Haney et al., 2015) (Fig. S2). Furthermore,
based on independent qualitative observations by two trained patholo-
gists, Gram staining conducted on abscess explants demonstrated that
mice treated with DJK-5 exhibited decreased bacterial burden and dis-
semination within the dermis compared to their saline-treated counter-
parts (Fig. 3d). Furthermore, Hematoxylin and Eosin (H&E) staining of
abscess explants demonstrated greater tissue damage in saline-treated
mice (Table S2; cutaneous ulceration and granulation thickness of
0.9 + 0.3 cm), as compared to peptide-treated mice (0.2 £ 0.07 cm),
with damage extending to the deep fascia of skeletal muscle in saline
control animals (Fig. 3e and Table S2; pathological findings of
panniculus carnosus damage and deep skeletal muscle damage were
not observed in peptide treated mice).

3.4. DJK-5 Impaired Abscess Lesion Formation by a Gram-Negative
Pathogen

The above results prompted us to ask whether DJK-5 could exert
broad-spectrum anti-abscess activity since its target ppGpp, is con-
served among Gram-negative and Gram-positive bacteria (de la
Fuente-Ntiiez et al., 2015; Potrykus and Cashel, 2008; Wolz et al.,
2010). Therefore, we established a Gram-negative bacterial abscess
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Fig. 2. Intraperitoneal application of DJK-5 impaired MRSA cutaneous lesion formation. (a) Mice were injected with 6 mg/kg of DJK-5 or saline as control via intraperitoneal injection prior
to receiving subcutaneous injection with bioluminescent MRSA USA300. Representative images capturing dermonecrotic abscess lesions were taken 72 h post-infection. (b) Lesion sizes
were measured three days post-infection using a caliper, n = 24 saline, n = 17 DJK-5. (¢) Bioluminescent bacteria were imaged using In Vivo Imaging System (IVIS) and quantified using
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n = 10 DJK-5. Three independent experiments were conducted and all comparisons were made using unpaired t tests; **, p < 0.01; ***, p < 0.001.
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model in mice infected subcutaneously with the Liverpool epidemic
strain of P. aeruginosa LESB58 (Winstanley et al., 2009) and adminis-
tered 4 mg/kg of DJK-5 or saline as a control via IP injection. Consistent

with the results for S. aureus, mice treated with DJK-5 formed signifi-
cantly (p < 0.05) smaller (2.2-fold) abscess lesions when compared to
saline controls (Fig. 4a). There was no significant effect however on
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Fig. 4. DJK-5 suppressed Gram-negative abscess lesion formation. (a) Mice were injected with 4 mg/kg of DJK-5 or saline (control) via intraperitoneal injection prior to subcutaneous
infection with P. aeruginosa LESB58. Abscess lesion sizes were measured using a caliper after 72 h, n = 11/group. (b) Bacteria were recovered from saline and DJK-5 IP-treated animals
and plated for enumeration three days post-infection, n = 11/group. (c) Mice were infected subcutaneously with P. aeruginosa LESB58 and then treated 2 h later with 4 mg/kg of DJK-
5 via intra-abscess injection. Lesions were measured 72 h post-infection with a caliper, n = 10/group. (d) Bacteria were recovered from saline or DJK-5 intra-abscess treated animals
and plated for enumeration, n = 10/group. All comparisons were made using unpaired t tests; *, p < 0.05; **, p < 0.01; ***, p < 0.001. All experiments were performed in triplicate.
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recovered viable bacterial counts with peptide treatment (Fig. 4b).
When DJK-5 was administered via intra-abscess application, it was ob-
served that lesions formed on mice treated with DJK-5 were significant-
ly smaller by 2.7-fold (Fig. 4c) with 5.7-fold fewer bacteria recovered
from DJK-5 treated animals (Fig. 4d). Taken together, these results
show the potential for DJK-5 to reduce abscess pathology from both a
Gram-positive and a Gram-negative pathogen.

3.5. DJK-5 Suppressed Major Stringently Regulated Cutaneous Phenol Solu-
ble Modulin Toxins in S. aureus

Strikingly, mice treated with DJK-5 exhibited a significant reduction
in tissue damage as well as a 10-fold reduction in bacterial burden with-
in the abscess tissue. Despite the possibility that reduced CFUs could ac-
count to some extent for the reduced lesion sizes, since significant
bacterial loads remained in DJK5-treated wounds, we hypothesized
that the peptide could be suppressing abscess pathology by decreasing
the expression of a cutaneous toxin.

The stringently regulated S. aureus phenol soluble modulin (PSM)
toxins have been shown to be the major virulence factors contributing
to abscess lesion formation and deletion of the psm locus results in the
attenuation of virulence in several disease models (Berube et al.,
2014). Therefore, using a S. aureus USA300 luminescent reporter strain,
we measured the expression of the psma operon when subjected to
DJK-5. In order to ensure bacterial growth was not affecting PSM pro-
duction, sub-lethal concentrations of DJK-5 were employed (Fig. S3).
An increasing reduction in psmo expression was observed with increas-
ing concentrations of DJK-5 (Fig. 5a). We further analyzed PSM produc-
tion by assessing the culture filtrates of peptide-treated USA300. Using a
HPLC/MS-based approach (Joo and Otto, 2014) it was found that the
production of PSMa peptides was generally reduced by DJK-5, with
values for PSMa 1 and 2 reaching statistical significance (Fig. 5b).
These results indicate that by targeting the stress response, DJK-5 can
suppress phenol soluble modulins, which are known to be implicated
in SSTI virulence.

4. Discussion

Bacteria are highly adaptive, dynamic organisms that use a variety of
sensor systems to monitor and adapt to environmental conditions
(Potrykus and Cashel, 2008). Here we showed that stringent stress
adaption is a critical determinant of S. aureus cutaneous abscess lesion
formation. The stringent response has been shown to mediate tolerance
of S. aureus to cell wall-active antibiotics (Geiger et al., 2014) and we
propose that this adaptation is in part responsible for the limited success
of conventional antibiotics against bacteria in abscesses. Specifically, our
data showed that mutants deficient in either of the two important strin-
gent response mediators (RSH or Usp2), were impaired in lesion forma-
tion. Previous studies were somewhat ambiguous since although an
rshsy» mutant formed fewer kidney abscesses in a murine renal abscess
model (Geiger et al., 2010), this observation was proposed to reflect the
lower viability (recovery of bacteria) of the rshsy, mutant compared to
the wild type in the kidneys. In contrast, in the cutaneous abscess
model, the very substantial attenuation of abscess lesion formation by
the rshgy, mutant occurred despite similar levels of bacteria as the
wild type, demonstrating a direct contribution of the stringent response.
Consistent with this observation, by targeting the stringent response,
DJK-5 was able to suppress tissue injury. Despite the major physiologi-
cal differences in bacterial abscess and biofilm formation, our studies
have revealed a strong mechanistic connection that can be exploited
with antibiofilm peptides.

In accordance with these observations, we demonstrated the impor-
tance of a newly-identified stress response regulator, Usp2, both in
Staphylococcal abscess lesion formation, albeit to a lesser extent than
for the rshgy,, mutant, and in biofilm formation. This correlates with re-
cent studies that demonstrated the importance of Usp2 in responding to
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Fig. 5. DJK-5 targeted PSM production. (a) MRSA USA300 PSMa: luminescence reporter
strain was grown in the presence of 2.5 ug/mlL, 5 pg/mL DJK-5 or water as a control.
Luminescence activity was read using a VICTORX3 Multilabel Plate reader. (b) PSM
production in culture filtrates of S. aureus MRSA USA300 treated with 1 pg/mL of DJK-5
or water as a control. All experiments were done in triplicate and all comparisons were
done using unpaired t tests; *, p < 0.05.

amino acid starvation (Attia et al., 2013). Biofilm formation is a survival
strategy for bacteria to adapt to hostile environments and although bac-
teria in abscesses are largely considered to be loosely associated in pus,
recent evidence suggests that bacteria isolated from deep tissue ab-
scesses are embedded in biofilm-like matrices (May et al., 2014). Of
great importance, recurring abscesses and biofilms are similarly recalci-
trant to antibiotic therapy (Davies, 2003; Stearne et al., 2001). As such,
cationic peptides that display antibiofilm activity, can target multidrug
resistant bacteria and are synergistic with conventional antibiotics (de
la Fuente-Ntiiez et al., 2014; de la Fuente-Nfifiez et al., 2015), represent
excellent candidates for the adjunctive treatment of recalcitrant cutane-
ous abscesses.

Our previous studies indicated that DJK-5, a small cationic peptide
comprising of D-amino acids, possessed potent antibiofilm activity
against a variety of multi-drug resistant Gram-negative species (de la
Fuente-Ndfiez et al., 2015). Furthermore, DJK-5 targets the stress re-
sponse alarmone ppGpp and enhances survival in two invertebrate P.
aeruginosa biofilm infection models (de la Fuente-Ntfiez et al., 2015).
Here we demonstrated that DJK-5 could suppress S. aureus and P.
aeruginosa cutaneous injury in mice, despite the very different physio-
logical states of biofilm and abscess infections. Also, the bacterial load
recovered after use of the peptide employed at 3 mg/kg IP, was similar
to that for the commonly used antibiotic clindamycin at 75 mg/kg
(data not shown), highlighting its potential as an improved anti-abscess
strategy.

The stringent response triggers a complex cascade of transcriptional
events to counteract environmental stresses. Given that high bacterial
loads were still recovered from DJK-5-treated mice (Fig. 2d and 3b),
we considered that the peptide might be suppressing a toxin and indeed
demonstrated here that it suppressed the production of the major cuta-
neous PSM toxins of S. aureus. PSMs are positively regulated by the
stringent response (Geiger et al., 2012) and consistent with this, our
studies indicated that DJK-5 suppressed PSMa production, likely
through stringent response impairment.
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PSMs recruit, activate and subsequently lyse neutrophils, the key ef-
fectors and first responders against bacterial infections (Berube et al.,
2014). Previous studies have shown that upon uptake of S. aureus in
neutrophils, the stringent response is elicited resulting in increased
PSM synthesis, which contributes to survival after phagocytosis by me-
diating neutrophil lysis (Geiger et al., 2012). Thus by suppressing PSM
production, DJK-5 could potentially reduce local tissue damage as well
as impede a major immune evasion method employed by S. aureus.
Given the 10-fold effect on bacterial load, we also considered the poten-
tial importance of effects on quorum sensing. Phenol soluble modulins
are under the control of the accessory gene regulator (agr) quorum
sensing pathway as well as the stringent response. However, studies
have shown that production of phenol soluble modulins (especially
the virulent a-type which are dysregulated by DJK-5), can be produced
in an agr-independent manner (Wang et al., 2007). In fact, during the
stringent response, RSH-independent induction of phenol soluble
modulins, is not mediated by increased agr expression (Geiger et al.,
2012), confirming a limited correlation between quorum sensing and
phenol soluble modulin production under stringent conditions.

In conclusion, we have uncovered mechanisms driving bacterial ab-
scess lesion formation and provide a therapeutic approach to minimize
the severity of skin infections by both Methicillin-resistant Staphylococ-
cus aureus (MRSA) and Pseudomonas aeruginosa.
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