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ARTICLE INFO ABSTRACT

The primary aim of this review is to summarize the current literature on the effects of acute exercise and regular
exercise on nuclear factor erythroid 2-related factor 2 (Nrf2) activity and downstream targets of Nrf2 signaling.
Nrf2 (encoded in humans by the NFE2L2 gene) is the master regulator of antioxidant defenses, a transcription
factor that regulates expression of more than 200 cytoprotective genes. Increasing evidence indicates that Nrf2
signaling plays a key role in how oxidative stress mediates the beneficial effects of exercise. Episodic increases in
oxidative stress induced through bouts of acute exercise stimulate Nrf2 activation and when applied repeatedly,
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NFE2L2
HO-1 as with regular exercise, leads to upregulation of endogenous antioxidant defenses and overall greater ability to
SOD counteract the damaging effects of oxidative stress. The evidence of Nrf2 activation in response to exercise

across variety of tissues may be an important mechanism of how exercise exerts its well-known systemic effects
that are not limited to skeletal muscle and myocardium. Additionally there are emerging data that results from

animal studies translate to humans.

1. Introduction

The understanding of cell signaling induced by acute exercise
resulting in physiological adaptations that accumulate after multiple
bouts, has been greatly enhanced with the advancement of molecular
biology and its application to exercise. Acute exercise activates primary
messengers such as adenosine monophosphate (AMP), calcium, and
mechanical stress and subsequent secondary messengers including
AMP-activated protein kinase (AMPK), calcium/calmodulin-dependent
protein kinase (CAMK), and p38 mitogen-activated protein kinases,
leading to acute changes in mRNA transcription [1]. Another impor-
tant primary messenger that is stimulated by acute exercise is the
temporary change in redox balance (or redox potential) towards a more
oxidized state through production of reactive oxygen species (ROS) [2].
While ROS were initially designated as damaging, there is now a
greater understanding of the important role of ROS in cell signaling,
regulation of immune function, gene transcription, and apoptosis [3—
6]. A prime example is the role of ROS in activation of the transcription
factor nuclear factor erythroid 2-related factor 2 (Nrf2), the master
regulator of antioxidant enzymes and cellular stress resistance [7-9].

Data from rodent studies illustrate the therapeutic potential of
targeting Nrf2 activity for lowering disease risk. Targeted Nrf2 knock-
out (Nrf2~/~) models exhibit substantially impaired resistance to toxic
and oxidative stressors in all tissues and as a result, Nrf2 ™/~ mice are
more susceptible to chronic diseases [10]. Pharmacologic and genetic
(negative regulator knockout) approaches targeting Nrf2 activation
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effectively ameliorate the damage from oxidative stressors and restore
resistance to chronic disease [11]. Increased pathology in the presence
of disrupted Nrf2 signaling, and subsequent reversal in the presence of
Nrf2 activators have been reviewed elsewhere [12].

Increasing evidence indicates that the Nrf2 pathway plays a key role
in how oxidative stress mediates the beneficial effects of exercise.
Episodic increases in oxidative stress induced through bouts of acute
exercise stimulate Nrf2 activation and when applied repeatedly, as with
regular exercise, this may lead to upregulation of endogenous anti-
oxidant defenses and overall greater ability to counteract the damaging
effects of oxidation to nucleic acids, proteins, and lipids.

The primary aim of this review is to summarize the current
literature on the effects of acute exercise and regular exercise or
exercise interventions on Nrf2 activity and downstream targets of
Nrf2 signaling. We also examine the evidence for or against using
antioxidant supplementation and phytonutrient Nrf2-activators in
conjunction with exercise. Because the effect of an intervention can
be more readily seen when the target is impaired, we will highlight
studies on aging throughout as a non-disease model of impaired cell
signaling, which often manifest coordinately with age related pathol-
ogies [13—15]. We begin with a brief overview of Nrf2 regulation.

2. Nrf2: the master regulator of cellular defense

The transcription factor Nrf2, (encoded in humans by the NFE2L2
gene) is the master regulator of antioxidant defenses, regulating more
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than 200 cytoprotective genes in response to oxidative stress [16]. Nrf2
is a member of the basic leucine zipper (bZIP) family of transcription
factors that is repressed through binding to the homodimeric protein
Kelch-like erythroid cell-derived protein with CNC homology asso-
ciated protein 1 (Keapl) in the cytosol under unstressed conditions
[17]. The interaction between Nrf2 and Keapl is highly conserved
across species, indicating its important regulatory role [18]. In this
state, Keap1l functions as an adapter for Cul3/Rbx1-mediated degrada-
tion of Nrf2 by promoting ubiquitination and subsequent degradation
of Nrf2 by the 26 s proteasome. The Keapl/Cul3/Rbx1 also exists in
the nucleus as an additional negative regulator [19].

In response to an oxidative or electrophilic stimulus, cysteine
residues are modified in a unique format, whereby structurally
dissimilar inducers react with differing combinations of cysteine
residues on Keapl resulting in the same biological response —
specifically the unhinging from Nrf2 and activation of the Nrf2-
antioxidant response element (ARE) response, or by stabilization of
the Keapl-Nrf2 complex slowing degradation at the proteasome [20—
23]. Once unhinged from Keap1, Nrf2 is translocated into the nucleus
where it has the capacity to heterodimerize with small MAF proteins
and bind to Cis-acting AREs, effectively activating transcription of
phase II detoxifying enzymes (see Fig. 1).

In terms of therapeutic potential, this cysteine code offers great
interest as multiple compounds and stimuli act as potent Nrf2 inducers
independent of each other [24-26]. For an example, exercise-induced
ROS activation of Nrf2 likely occurs through oxidation of these cysteine
residues. Similarly certain phytonutrients have been shown to activate
Nrf2 and this process may occur through modifications of cysteine
residues different from those targeted through exercise. If that is in fact
the case, there may be potential for synergistic effects between exercise
training and Nrf2 activating compounds. There are some recent data in
support of this and those are presented in section 6 of this review
[27,28]. For those interested in a more detailed background on
mechanisms of Nrf2 activation we refer readers to an excellent recent
review in this area [16].

It is worth noting that in certain conditions, such as cancer, Nrf2
activation and signaling may have detrimental effects. Under normal
conditions Nrf2 signaling protects from cancer as seen with the effects
of phytonutrients in cruciferous vegetables that stimulate Nrf2 activa-
tion [29-31]. However, in cancer cells Nrf2 activation may confer
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cellular stress resistance which can make the cells less susceptible to
chemotherapeutic treatment [32,33]. Nrf2 has been shown to be
upregulated in cancer tumors and using Nrf2 inhibitors during
chemotherapy may be necessary to increase the efficacy of treatment
[16,34].

3. Nrf2 signaling in response to acute exercise

Cell culture studies using C2C12 skeletal muscle cells provide
evidence that Nrf2 is activated by ROS and this activation is suppressed
when antioxidants, such as N-acetylcysteine, are applied to the culture
medium [35,36]. Horie et al. [35] used an electrical pulse stimulation
(EPS) to mimic acute exercise and demonstrated that Nrf2 expression
was associated with both intensity and duration of the stimulus. In
addition, EPS stimulated Nrf2-related antioxidant gene expression and
the response was blunted when siRNA transfection was used to knock
down Nrf2 in the cells [35]. Other studies have shown an increase in
Nrf2 protein expression after treating myotubes or rat cardiomyocytes
with Hy0, [36,37].

Translating these in vitro results to in vivo has primarily been done
in animal models with one recent study in humans. These studies are
listed in Table 1. It is worth noting that some of the earlier studies
targeted a non-specific band for Nrf2 (57 kDa) in their immunoblots.
Several groups have since identified the 90-110 kDa band as the
biologically relevant Nrf2 target, despite the predicted molecular
weight of Nrf2 being 57 kDa [38,39].

A single bout of acute exercise in wild-type mice has been shown to
increase Nrf2 gene expression [36,40] as well as Nrf2 protein abun-
dance in skeletal muscle [40] and Nrf2-dependent phase II enzymes
[36,41]. Two additional studies that measured the effects of exercise on
Nrf2 signaling in mouse myocardium are essentially in agreement with
the data from skeletal muscle [42,43]. However, these studies used an
“acute exercise stress” that was composed of 60-min treadmill exercise
on two consecutive days. While clearly not long enough to be classified
as exercise training, it is known that consecutive exercise bouts lead to
cumulative responses of mRNA expression and may be necessary to
observe measurable changes in protein abundance [44]. Nevertheless,
Muthusamy et al. [42] provided one of the most comprehensive
analyses of Nrf2-signaling in response to exercise and compared young
wild-type (WT) and Nrf2~/~ mice. Despite both groups experiencing
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Fig. 1. Nrf2 signaling. Nrf2 is activated by exercise-induced ROS or phytonutrient Nrf2 activators. Antioxidant supplementation inhibits the signaling of exercise-induced ROS and

thereby downstream Nrf2 signaling.
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Fig. 2. Exercise induces increased Nrf2 at the whole-cell level, but nuclear accumulation is attenuated in older adults. Nrf2 response to exercise in the whole cell [A] and nuclear fraction
[B] of PBMCs. Values are means + SEM. Representative blots of changes in Nrf2 and loading control in young (Y) and older (O) are provided above the corresponding graphs. There was
a significant main effect of time in fold change of whole-cell Nrf2 (P=0.003). Nuclear accumulation only increased significantly in the young, but not the older group (main effect of age,

P=0.031). Reprinted from [45] with permission from Elsevier.

similar increases in ROS, the exercise bouts elicited significant
increases in nuclear accumulation and Nrf2-ARE binding in the
myocardium of WT mice, while no change in Nrf2 activity was observed
in Nrf2/~ mice. Gene expression of nearly all measured phase II
enzymes was significantly increased in the WT; the only exception
being heme oxygenase-1 (HO-1). Changes in protein expression of
phase II antioxidants were less consistent, with changes only observed
in HO-1, glutamate-cysteine ligand modifier (GCLM), and glucose-6-
phosphate dehydrogenase (G6PD).

Data on exercise-induced Nrf2 signaling in humans are still very
limited but a recent study showed for the first time that acute exercise
increased Nrf2 protein abundance at the whole-cell level measured in
peripheral blood mononuclear cells (PBMCs) in young and older men
[45]. Furthermore, nuclear accumulation of Nrf2 was only observed in
the young group, demonstrating that aging is associated with impair-
ment in the nuclear import of Nrf2 (see Fig. 2). Not surprisingly, the
exercise bout stimulated increases in gene expression of HO-1 and
NAD(P)H quinone dehydrogenase 1 (NQO1) in the young but not the
older men [45]. Age-related decreases in cytosolic and nuclear Nrf2 as
well as Nrf2/ARE binding capacity were previously shown in mouse
myocardium [43] and rat liver [46] with concomitant attenuation of
Nrf2-dependent antioxidant gene expression in response to acute
exercise [43].

Two additional human studies, although not directly investigating
Nrf2 signaling, are relevant because they included measures of Nrf2
mRNA in response to acute exercise. Gene expression of Nrf2 and
target SOD2 were shown to increase significantly in skeletal muscle of
young fit males following an acute bout of cycling exercise lasting 90-
min in normoxic recovery conditions [47]. Interestingly, these re-
sponses were not seen when recovery was performed under hypoxic
conditions [47]. Similarly Nrf2 mRNA was significantly increased at 2-
h post 30-min of moderate treadmill exercise in middle-aged women
who were regular exercisers; however, sedentary women showed no
change in gene expression for Nrf2 or targets in response to the
exercise bout [48], suggesting that fitness may play a role in maintain-

194

ing the acute Nrf2 response with aging.

Similar to the cell culture studies, some of the animal studies have
demonstrated that the increases in Nrf2 signaling are dependent on the
duration of exercise. Treadmill exercise lasting less than one hour
elicited no change in Nrf2 mRNA, or protein expression [40,49,50]. As
duration was increased to 90-min or more, Nrf2 activation became
apparent in both skeletal muscle tissue and in brain homogenate with
significant increases in Nrf2 protein expression in skeletal muscle and
gene expression increasing in both tissues [40,49]. In an extreme
example of endurance exercise, Li and colleagues [50] demonstrated no
difference in Nrf2 activity in mice running for 1-h on the treadmill, but
robust increases in Nrf2 nuclear accumulation and Nrf2-ARE binding
following a 6-h session on the treadmill. In addition, gene expression of
several phase II enzymes was significantly increased over non-exercis-
ing controls and the 1-h group [50]. In contrast to these results, other
studies have reported increases in Nrf2 protein abundance after 1-h of
treadmill running [36] and 30-min of moderate intensity cycling [45].
The differences observed between these studies are likely a result of
differences in protocol intensities (summarized in Table 1).

None of the existing studies have investigated the effects of exercise
intensity on the Nrf2 signaling response. However, Wang et al. [40]
found a positive correlation between exercise-induced mitochondrial
H>0, content and Nrf2 gene expression and Nrf2 protein expression
(measured in response to exercise of different duration). However,
under the assumption that higher intensity induces greater oxidative
stress; these data along with the results from the electrical pulse
stimulation in myotubes suggest that intensity may affect Nrf2 signal-
ing. There may be an upper limit though to the stimulatory effects of
exercise (whether by duration or intensity) as rats who ran until
exhaustion did not exhibit increases in Nrf2 protein or phase II enzyme
protein levels or enzyme activity including glutathione reductase (GR),
NQO1, and glutathione-S-transferase (GST), unless they received a
previous treatment of sulforaphane, a potent Nrf2 activator [51].

A further mechanism to consider comes from recent work from Xue
et al. [52] who demonstrated that Nrf2 accumulation may not be as
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Table 2 (continued)

Nrf2 target

Gender, age, and fitness

Description of study Ex program Model, n, and
tissue

Description

expression

EX+Q10 Liver &

tissues

SMT

min, grade (NR)

exercise+Q10 (SYN)

SMT: HO1: t EX; 11
EX+Q10

mRNA: NR

mRNA: 1 EX Protein:

NR

Male young (8—10 weeks) untrained

Length: 6-weeks Treadmill; 5 Mice (C57BL/6)

days/wk, to exahustion,

Study compared role of exercise in
hemiparkinsonism model; only

Aguiar et al.

Protein:EX t HO1

8—10/grp brain

n=

incremental 16 m/min with

control sedentary (SED) and control

exercise (EX) reported here

2 m/min increase every 3 min

Length: 4-6 weeks

mRNA: TR 1 GSR,
GST, SOD1, SOD2,
CAT Protein: NR

Male young (15-30 weeks) untrained mRNA: 1t TR Protein:
NR

Mice (C57/Bl6;
WT and KO)

Wild-type and Nrf2 KO mice

Merry and

Endurance exercise on

randomized into groups for exercise

Ristow [36]

5-10/grp SMT

n=

treadmill; 4-5 days/wk, 30—

60 min/day, 10—15 m/min,

10% grade.

intervention: trained (TR) untrained

(UN)

NR not reported or not measured, SMT skeletal muscle tissue, PBMC peripheral blood mononuclear cells, NUC nuclear, WC whole cell.
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important in stimulating Phase II antioxidant expression as the
frequency of import/export of Nrf2 into and out of the nucleus. In
their model, the rate and amplitude of Nrf2 cycling determined the
intensity of downstream signaling — and while it is difficult to translate
these in vitro data, the concept is intriguing. Mode, intensity, and
duration of exercise could each impact the rate and amplitude of Nrf2
cycling in vivo. For example, maximal bouts of exercise even as short as
30-seconds in duration induce systemic changes in redox balance; and
as intensity and duration increase, the magnitude of the shift in redox
balance also increases [40,50,53]. Thus, delivering repeated shifts in
redox balance through high-intensity interval training may differen-
tially affect the frequency of import/export of Nrf2 as compared to
traditional aerobic exercise. Determining the optimal “dose” or delivery
of exercise for Nrf2 activation offers great opportunity for future
research.

4. Nrf2 signaling in response to regular exercise

The effect of regular exercise training on the Nrf2 response has been
studied more extensively than acute exercise. A comparison of these
studies is outlined in Table 2. Regardless of duration (4—24 weeks) or
training regimen (traditional moderate intensity or high-intensity
interval training), regular aerobic exercise in rodent models has
consistently been shown to activate Nrf2 signaling across multiple
tissues including skeletal muscle, kidney, brain, liver, testes, prostate,
and myocardium [27,42,43,54-63].

Taken together, the data from these animal studies demonstrate
that regular exercise upregulates Nrf2 protein abundance and phase II
enzyme amounts and/or enzyme activity. To date there have been no
exercise intervention studies conducted on Nrf2 signaling in humans.
However, a cross-sectional study comparing Nrf2 and Keapl protein
content from a single muscle biopsy in sedentary and active older
adults showed that the physically active individuals had significantly
greater Nrf2 protein content and higher Nrf2-to-Keapl ratio [64],
suggesting that regular exercise may attenuate age-related changes in
Nrf2 signaling. The question still remains whether an exercise inter-
vention can restore redox balance in individuals who already have
impairment in Nrf2 signaling. Exercise intervention data from older
animals support that there is a potential of restoring Nrf2 signaling in
older age [43]. Another interesting question is whether it matters when
an individual starts exercising during their life time. Two recent
studies, although not measuring Nrf2 signaling, demonstrated that
lifelong training in older individuals was associated with compensatory
adaptations to the age-related changes of a more oxidized redox
balance in skeletal muscle [65,66]. This question was more directly
investigated by Zhao et al. [62] in a mouse model of accelerated
senescence (SAMPS8). They had 3 groups of animals that were subjected
to swimming exercise, either lifelong or starting early versus late in the
life span. These groups were also compared to a non-exercising control
group. Overall, the late group still had some benefits over the sedentary
group supporting the old adage that it is never too late to start
exercising. However, the lifelong and the early group showed signifi-
cantly greater benefits over the late group suggesting that starting
earlier provides greater protection against age-related deficits in
exercise-induced signaling. Importantly, regular exercise has been
shown to increase the resilience to subsequent insults. For an example,
rats that had either undergone treadmill training or remained seden-
tary, received an intracerebral infusion of a drug to destroy dopamine
receptors to mimic Parkinson's disease [67]. The exercise training
protected the rats from neurodegeneration, oxidative stress, and low-
ering of Nrf2 in response to the drug. Furthermore, the protective
effects of exercise were not seen when Nrf2 was blocked, supporting the
role of Nrf2 in the exercise-mediated neuroprotection [67].

To our knowledge there have not been any studies conducted to
date investigating Nrf2 signaling in response to traditional resistance
training. Gomes et al. [68] used a jump protocol with weighted vests as
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a form of resistance training in Sprague-Dawley rats. No changes in
Nrf2 expression were observed in young animals, while older animals
exposed to the same training regimen showed a decrease in Nrf2 [68].
Baseline levels of Nrf2 expression were significantly higher in the aged
animals than in the young, which may explain in part the observed
decrease in Nrf2 in response to exercise training. It is possible that
older animals upregulated Nrf2 to counteract the increasingly pro-
oxidant environment. Exercise training could then improve the Nrf2-
inducible response, resulting in lower baseline values. Measuring the
response to acute exercise before and after the exercise intervention
may be needed to elucidate these observed differences in Nrf2
expression. A similar scenario has been observed in humans who were
subjected to bed rest, with or without concomitant resistance training
[69]. Bed rest controls (no exercise) displayed elevated levels of Nrf2
mRNA in skeletal muscle; however, bed rest coupled with resistance
training elicited no change in Nrf2 expression when compared to pre-
bed rest levels, suggesting maintenance of the redox balance with
resistance exercise. Both of these studies did not focus on Nrf2
signaling per se, and only included measures of changes in Nrf2 gene
expression. Further studies are needed to elucidate whether resistance
training can induce Nrf2 signaling.

5. Effects of antioxidant supplementation on Nrf2 signaling

While the evidence clearly support exercise as a viable method of
inducing endogenous antioxidant defenses through activation of Nrf2,
there is always interest in whether the same can be achieved through
exogenous supplementation or pharmaceuticals. Given the premise of
the role of oxidative stress in aging, exogenous antioxidant supple-
mentation should slow aging, or at minimum slow the rate of ROS
derived cellular damage and age-related pathology by reducing free
radicals prior to contact with cellular components and promoting a
more balanced cellular redox environment. This assumption has led to
a tremendous number of studies looking at the relationship between
exogenous supplementation and successful aging and/or lifespan
extension. In fact, a Pubmed search of “antioxidants and aging” yields
over 13,000 returns. Despite the overwhelming body of literature, no
consensus has been reached regarding any benefit of antioxidant
supplementation. Many studies have shown no impact, and some
studies have even shown negative impacts of antioxidant supplements
[70]. Currently over 40% of the adult population in the United States
consumes vitamin supplements equivalent at minimum to a daily
multi-vitamin, generating a $32 billion per year industry in the US
alone [71]. Two of the most common vitamins studied are Vitamins C
and E.

Vitamin C (ascorbic acid/ascorbate) is a potent hydrophilic anti-
oxidant capable of directly neutralizing ROS although at a very slow
rate constant [72]. Vitamin E (a-tocopherol) is the primary hydro-
phobic antioxidant in cell membranes and a powerful inhibitor of lipid
peroxidation in vivo. Because of its hydrophobic nature it is stored in
cell membranes where it can scavenge peroxyl radicals much faster
than they can react with the membrane itself. In addition, a-tocopherol
can directly scavenge ROS in the mitochondrial membrane. Given its
antioxidant properties, Vitamin E has been touted for its atherosclero-
sis preventing potential by inhibition of oxidative modification to
circulating lipoproteins [73]. Based on these reactions Vitamins C
and E should yield increased cell survival, however, a recent meta-
analysis demonstrated that supplementation with antioxidant vitamins
had no effect, and may even increase risk for morbidity [70]. The
interaction between exercise and antioxidant vitamin supplementation
further complicates the picture [74,75]. Exogenous antioxidants may
attenuate signal transduction by reducing ROS prior to the initiation of
cell-signaling (see Fig. 1).

As a result, many of the beneficial roles of ROS are disrupted, which
is in direct contrast to the controlled reduction of ROS by endogenous
antioxidant defenses mediated through Nrf2. In a double-blind,
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placebo controlled Vitamin C and E supplementation study, Morrison
et al. [76] clearly demonstrated no benefit of supplementation for
reducing oxidative stress as measured by F.-isoprostanes in response
to an acute exercise challenge. Additionally, they demonstrated atte-
nuated SOD1 and SOD2 protein expression following a 4-week exercise
intervention in supplemented adults, while the placebo group showed
significant increases in these proteins. The maladaptive response to
exercise with concurrent supplementation has also been shown at the
functional level, with supplementation attenuating improvements in
time to exhaustion tests, blood pressure control, and glucose tolerance
[74,75]. At the muscle level, antioxidant supplementation represses
several markers of mitochondrial adaptations to endurance training;
although it is unclear whether supplementation dampens endurance
exercise performance in humans [77].

6. Are there synergistic effects of exercise and phytonutrient
Nrf2 activators?

A thorough discussion of the effects of phytonutrients or phyto-
chemicals on Nrf2 signaling is beyond the scope of this review (see the
following references for review: [78,79]). Rather we will focus on recent
work that has demonstrated the potential synergistic effect of combin-
ing exercise with known Nrf2 activators to further improve redox
balance. Pala et al. [28] demonstrated a synergistic effect between
Coenzyme Q10 (CoQ10) supplementation and exercise training in male
Wistar rats. Independent of each other, exercise and CoQ10 supple-
mentation significantly increased Nrf2 expression in heart, liver, and
skeletal muscle, over sedentary controls. The combined effect of
supplementation and exercise was significantly greater in all tissues
for Nrf2 expression with similar patterns observed for inducible HO-1.
Sprague-Dawley rats supplemented with a known Nrf2 activator,
Cordyceps sinensis [80], during a 15-day swimming program increased
Nrf2 protein expression and phase II enzyme expression to levels
significantly higher than those measured with exercise alone [27]. This
area warrants further research. Fig. 3 shows data adapted from earlier
studies demonstrating how the effects of exercise are inhibited by
concomitant supplementation of antioxidants and enhanced by con-
comitant use of phytonutrient Nrf2 activator.

Another possible mechanism of activating Nrf2 and the phase II
response is through caloric restriction [81-83]. To our knowledge there
are no published randomized controlled studies on the effects of
combining caloric restriction and exercise on Nrf2 and downstream
signaling.

7. Conclusion and future directions

In conclusion, the data are convincing that exercise exerts many of
its benefits through redox activation of Nrf2 signaling. The evidence of
Nrf2 activation across variety of tissues including brain, kidney, and
testes may be an important mechanism of how exercise results its well-
known systemic effects that are not just limited to skeletal muscle and
myocardium. Additionally there are emerging data that these results do
in fact translate to humans. Clearly more studies are needed, in
particular randomized controlled trials of exercise intervention studies
in humans. Both the animal studies and the human studies have been
almost exclusively limited to male subjects. Results need to be extended
to females and possible gender differences need to be elucidated.

The use of Nrf2 knockout mice has been extremely valuable in
enhancing our understanding of the important role of this transcription
factor in health and disease. Nrf27/~ exhibit phenotypes that are
remarkably similar to aged mice suggesting disruption of Nrf2-Keapl
signaling as a contributor to biological aging [84] making Nrf2 a
promising target especially for treating biological aging in the pursuit
of prevention of age-related diseases.

One caveat of the animal studies is that there are often only two
time points available (pre/post acute exercise or pre/post exercise
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Fig. 3. Exercise training with antioxidant vitamin supplementation inhibits training adaptations while Nrf2 activators enhance training effects. Rodents trained with concomitant
vitamin C supplementation failed to improve their time to exhaustion relative to sedentary control mice [A]. In direct contrast, rats supplemented with an Nrf2 activating compound
during their training program performed significantly better in a time to exhaustion test relative to both sedentary controls and the non-supplemented exercise group suggesting a
potential synergistic effect [B]. Data adapted from Gomez-Cabrera et al. [77] and Kumar et al. [27].

intervention). Many of the Nrf2-regulated genes as well as proteins
may have different time course of response so that multiple time points
may be needed to capture the overall change. These need to be further
clarified in future studies.
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