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Thousands of microbial genomes shed light on
interconnected biogeochemical processes in an
aquifer system
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The subterranean world hosts up to one-fifth of all biomass, including microbial communities

that drive transformations central to Earth’s biogeochemical cycles. However, little is known

about how complex microbial communities in such environments are structured, and how

inter-organism interactions shape ecosystem function. Here we apply terabase-scale

cultivation-independent metagenomics to aquifer sediments and groundwater, and

reconstruct 2,540 draft-quality, near-complete and complete strain-resolved genomes that

represent the majority of known bacterial phyla as well as 47 newly discovered phylum-level

lineages. Metabolic analyses spanning this vast phylogenetic diversity and representing up to

36% of organisms detected in the system are used to document the distribution of pathways

in coexisting organisms. Consistent with prior findings indicating metabolic handoffs in

simple consortia, we find that few organisms within the community can conduct multiple

sequential redox transformations. As environmental conditions change, different assemblages

of organisms are selected for, altering linkages among the major biogeochemical cycles.
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T
he terrestrial subsurface is the largest reservoir of carbon
on earth, containing 14–135 Pg of carbon1 and 2–19% of
all biomass2. Microorganisms drive organic and inorganic

compound transformations in this environment and thereby
control biogeochemical cycles. Our current knowledge of the
microbial ecology of the subsurface is primarily based on 16S
ribosomal RNA (rRNA) gene sequences. Recent estimates show
that o8% of 16S rRNA sequences in public databases derive from
subsurface organisms3 and only a small fraction of those are
represented by genomes or isolates. Thus, there is remarkably
little reliable information about microbial metabolism in the
subsurface. Further, little is known about how organisms in
subsurface ecosystems are metabolically interconnected. Some
cultivation-based studies of syntrophic consortia4–6 and small-
scale metagenomic analyses of natural communities7–9 suggest
that organisms are linked via metabolic handoffs: the transfer of
redox reaction products of one organism to another. However,
no complex environments have been dissected completely enough
to resolve the metabolic interaction networks that underpin them.
This restricts the ability of biogeochemical models to capture
key aspects of the carbon and other nutrient cycles10. New
approaches such as genome-resolved metagenomics, an approach
that can yield a comprehensive set of draft and even complete
genomes for organisms without the requirement for laboratory
isolation7,11,12, have the potential to provide this critical level of
understanding of biogeochemical processes.

In this study, we use terabase-scale shotgun DNA sequencing
to extensively sample microbial genomes from an aquifer adjacent
to the Colorado River, located near Rifle, CO, USA. Previous
studies of this aquifer characterized specific lineages of micro-
organisms, primarily as part of an investigation into the potential
for addition of uranium into the subsurface to stimulate uranium
immobilization13–19. Here our goal is the extensive recovery
of near-complete and complete genomes to enable accurate
reconstruction of metabolism and ecological roles of the
microbial majority, including previously unstudied lineages.
To maximize recovery of genomes, we study 15 geochemically
distinct sediment and groundwater environments, some of which
were altered via in situ manipulation experiments. Our results
show that terabase-scale metagenomics can be used as a
high-throughput tool to recover thousands of high-quality
strain-resolved genomes from a complex subsurface ecosystem.
We use these genomes to track dynamics in community
composition and metabolic potential across the studied
spectrum of environment types, and detect organisms from the
‘rare biosphere’20, which may represent as little as o0.001% of a

community. Given identification of many new putative phylum-
level groups, our metabolic analyses span an unprecedented
level of phylogenetic diversity. Our genome-resolved studies
at the community-level support the idea that inter-organism
interactions are key to turning the globally relevant subsurface
biogeochemical cycles of carbon, nitrogen, sulfur and hydrogen.

Results
Sampling microorganisms from the terrestrial subsurface.
We used genome-resolved metagenomics to study sediment
and groundwater-associated bacteria and archaea from a shallow
sediment-hosted perennially suboxic/anoxic aquifer adjacent
to the Colorado River, near Rifle, CO, USA7,13,14,16,17,21,22.
Sediments were collected from a core from depths of 4, 5 and
6 m below ground surface in the saturated zone (Fig. 1;
Supplementary Data 1). In addition, groundwater from a depth
of 5 m was sequentially filtered onto 1.2, 0.2 and 0.1 mm filters.
Four sample sets were collected during an 18-week long
experiment in which oxygen-saturated water was injected into
the aquifer23 and six sample sets derived from an acetate injection
experiment conducted over a period of 14 weeks17. We also
sampled groundwater during naturally encountered low and high
oxygen conditions (Fig. 1; Supplementary Data 1).

In total, we sequenced 33 samples and generated 4.58 billion
paired-end Illumina sequencing reads, which were assembled into
B30 Gbp of scaffolds (Supplementary Data 2). Reconstruction of
individual genomes was performed by binning on the basis of
GC content, tetranucleotide signatures24, variance of abundance
patterns across individual samples25 and taxonomic affiliation
of encoded genes in ggKbase (http://ggkbase.berkeley.edu). All
genomes were curated to remove wrongly assigned scaffolds,
eliminate scaffolding errors and increase scaffold lengths. To
enable comprehensive and accurate characterization of microbial
metabolic potential, we targeted microorganisms with an
initial genome-completion estimate 470% for further analysis
(Supplementary Data 3). Ultimately, we generated and analysed
2,516 bacterial genomes (Supplementary Data 4) and 24 archaeal
genomes (Supplementary Data 5). Twenty-one of these bacterial
genomes are complete (closed, no gaps). Since analysis of strain
variations in these genomes was not a goal of this specific study,
we clustered the genomes at an average nucleotide identity of 98%
(Methods). Using these thresholds, the 2,540 genomes were
assigned to 1,297 clusters representing distinct microorganisms
(Supplementary Data 6). The genomes have a median genome-
completion estimate of 493%. In total, these 1,297 genomes
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Figure 1 | Sampling scheme for sediment and groundwater microbial communities from the Rifle Integrated Field Research site. Samples were

collected for metagenomics from sediment and groundwater spanning several redox transitions including natural unamended samples, and acetate and

oxygen stimulation of groundwater microbial communities. Sediment samples were collected from depths of 4, 5 and 6 m below the surface. Groundwater

was pumped from a depth of 5 m and filtered through serial 1.2, 0.2 and 0.1mm filters. Groundwater samples were collected at six time points (A–F)

during acetate stimulation, four time points during oxygen stimulation (A–D) and two time points representing naturally encountered high (high O2)- and

low (low O2)-oxygen concentrations in the aquifer respectively. 1.2mm filters from the acetate stimulation experiment were not sequenced.
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account for up to 29% of all microorganisms detected in
groundwater samples and 36% of those from sediments at the
site to date, including prior studies (Supplementary Fig. 1). To the
best of our knowledge, this is the most detailed genomic sampling
of any terrestrial ecosystem. The vast majority of these
reconstructed genomes belonged to previously unknown and
little studied bacterial and archaeal lineages.

Phylogenetic diversity and 47 new phylum-level lineages. To
evaluate the phylogeny of the recovered organisms, we performed
analyses utilizing both concatenated ribosomal proteins (RPs)

and 16S rRNA genes. For the RP tree, we used a previously
benchmarked set of 16 RPs that are encoded by genomically
co-located genes26. Novelty of phylum-level lineages relied upon
these phylogenies and previously suggested evolutionary distance
metrics27 (Methods). The bacterial genomes derive from B78%
of previously established phylum-level lineages (including
candidate phyla; Fig. 2; Supplementary Fig. 2) and from 47 new
putative phylum-level lineages (defined using 554 genomes), 46 of
which had not been previously detected by 16S rRNA sequencing.
Thirty of these new phylum-level lineages belong to the recently
described Candidate Phyla Radiation (CPR)17 and two affiliate
with the Proteobacteria (Fig. 2; Table 1). In total, these novel
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Figure 2 | Phylogeny of bacterial genomes inferred by maximum likelihood. The phylogenetic tree is based on 16 concatenated RPs and was collapsed

at the phylum level. Colours of the wedges indicate the following: black: phylum-level lineage identified at Rifle; blue: phylum-level lineage not identified

at Rifle. Coloured circles describe important biogeochemical roles inferred for newly described phylum-level lineages. Proposed names for newly

described phylum-level lineages (RIF1-RIF46 and SM2F11) are detailed in Table 1. The phylogenetic inference configurations with detailed branch support

values are provided in Supplementary Fig. 2 and Supplementary Data 12.
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lineages (if validated as phyla by further research) would expand
the number of lineages in the Bacterial domain by B50%
(ref. 28). Less than 11% of all genomes belonged to the four
phylum-level lineages that constitute the vast majority of
genomes currently in public databases29, namely, Proteobacteria,
Actinobacteria, Firmicutes and Bacteroidetes. Overall, the genomes
reported here belong to 117 distinct bacterial and archaeal
phylum-level lineages (Supplementary Data 7).

Estimation of microbial abundance. We tracked the abundances
of each microorganism in communities across 15 distinct
geochemical regimes (Supplementary Data 8). Sediments (which
include pore fluids) show very high levels of organism diversity
yet exhibit more consistency in terms of overall community
composition than the extracted pore fluids (natural groundwater;

Supplementary Movies 1–5). Changes in environmental
conditions appear to drive selection of pore fluid-associated
species from the particle-associated ‘microbial seed bank’30,31.
Notably, although organisms capable of specific key processes
such as aerobic respiration, nitrate reduction, carbon fixation
and nitrogen fixation are present in all samples, the abundant
species with these capacities in each environment are typically
always different (Fig. 3; Supplementary Data 3). Key ecosystem
functions occur in a vast array of genomic contexts
(Supplementary Data 9).

Genome-specific metabolic reconstructions. The 2,540
reconstructed genomes encoded a total of 4,107,178 protein-
coding genes. Detailed genome-specific metabolic potential was
determined by profiling all the genes against specific databases

Table 1 | Proposed names for newly described phyla.

Code Proposed phylum name Named after Institution/explanation

RIF1 Candidatus Firestonebacteria Mary K. Firestone University of California, Berkeley
RIF2 Candidatus Lindowbacteria Steven E. Lindow University of California, Berkeley
RIF3 Candidatus Schekmanbacteria Randy W. Schekman University of California, Berkeley
RIF4 Candidatus Kerfeldbacteria Cheryl A. Kerfeld University of California, Berkeley
RIF5 Candidatus Glassbacteria N. Louise Glass University of California, Berkeley
RIF6 Candidatus Komeilibacteria Arash Komeili University of California, Berkeley
RIF7 Candidatus Raymondbacteria Kenneth N. Raymond University of California, Berkeley
RIF8 Candidatus Coatesbacteria John D. Coates University of California, Berkeley
RIF9 Candidatus Andersenbacteria Gary L. Andersen Lawrence Berkeley National Laboratory
RIF10 Candidatus Ryanbacteria Kathleen R. Ryan University of California, Berkeley
RIF11 Candidatus Niyogibacteria Krishna K. Niyogi University of California, Berkeley
RIF12 Candidatus Tagabacteria Michiko E. Taga University of California, Berkeley
RIF13 Candidatus Terrybacteria Norman Terry University of California, Berkeley
RIF14 Candidatus Vogelbacteria John P. Vogel University of California, Berkeley
RIF15 Candidatus Zambryskibacteria Patricia C. Zambryski University of California, Berkeley
RIF16 Candidatus Taylorbacteria John W. Taylor University of California, Berkeley
RIF17 Candidatus Sungbacteria Z. Renee Sung University of California, Berkeley
RIF18 Candidatus Brennerbacteria Steven E. Brenner University of California, Berkeley
RIF19 Candidatus Spechtbacteria Chelsea D. Specht University of California, Berkeley
RIF20 Candidatus Staskawiczbacteria Brian J. Staskawicz University of California, Berkeley
RIF21 Candidatus Wildermuthbacteria Mary C. Wildermuth University of California, Berkeley
RIF22 Candidatus Portnoybacteria Daniel A. Portnoy University of California, Berkeley
RIF23 Candidatus Muproteobacteria Greek letter ‘Mu’ (m) In continuation of the practice of naming lineages within

Proteobacteria with greek letters, we suggest ’Mu’.
RIF24 Candidatus Lambdaproteobacteria Greek letter ’Lambda’ (l) In continuation of the practice of naming lineages within

Proteobacteria with greek letters, we suggest ’Lambda’.
RIF25 Candidatus Fischerbacteria Robert L. Fischer University of California, Berkeley
RIF26 Candidatus Delongbacteria Edward F. DeLong University of Hawaii, Manoa
RIF27 Candidatus Handelsmanbacteria Jo E. Handelsman Yale University
RIF28 Candidatus Eisenbacteria Jonathan A. Eisen University of California, Davis
RIF29 Candidatus Edwardsbacteria Katrina J. Edwards University of Southern California
RIF30 Candidatus Margulisbacteria Lynn Margulis University of Massachusetts at Amherst
RIF31 Candidatus Fraserbacteria Claire M. Fraser University of Maryland
RIF32 Candidatus Riflebacteria Rifle Sampling site for this study
RIF33 Candidatus Wallbacteria Judy D. Wall University of Missouri
RIF34 Candidatus Woykebacteria Tanja Woyke DOE Joint Genome Institute
RIF35 Candidatus Blackburnbacteria Elizabeth H. Blackburn University of California, San Francisco
RIF36 Candidatus Chisholmbacteria Sallie W. Chisholm Massachusetts Institute of Technology
RIF37 Candidatus Buchananbacteria Bob B. Buchanan University of California, Berkeley
RIF38 Candidatus Jacksonbacteria Andrew O. Jackson University of California, Berkeley
RIF39 Candidatus Veblenbacteria David R. Veblen Johns Hopkins University
RIF40 Candidatus Nealsonbacteria Kenneth H. Nealson University of Southern California
RIF41 Candidatus Colwellbacteria Rita R. Colwell University of Maryland
RIF42 Candidatus Liptonbacteria Mary S. Lipton Pacific Northwest National Laboratory
RIF43 Candidatus Harrisonbacteria Susan T.L. Harrison University of Cape Town
RIF44 Candidatus Yonathbacteria Ada E. Yonath Weizmann Institute of Science
RIF45 Candidatus Lloydbacteria Jonathan R. Lloyd University of Manchester
RIF46 Candidatus Abawacabacteria Abawaca Program used for metagenomic binning
SM2F11 Candidatus Doudnabacteria Jennifer A. Doudna University of California, Berkeley
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(KEGG, Uniref, TIGRfam, Pfam and Custom)32–35 using hidden
Markov models (HMM)36 and homology-based searches37

(Methods). Specifically, we targeted genes involved in microbial
energy metabolism (electron donors and acceptors), key
ecosystem functions such as carbon and nitrogen fixation and
other important functions (Supplementary Data 9). Our results
show that the use of an inorganic compound as an energy source
(lithotrophy) appears to be a common metabolic strategy in the
studied subsurface ecosystem (Fig. 4). Across all environments
sampled, between 26 and 36% of the genomes analysed carried
the potential to use carbon monoxide (CO), hydrogen (H2) or
reduced sulfur species as electron donors (Supplementary
Data 9). Thus, the metabolism of subsurface-associated
microbes appears to be closely linked to the biogeochemical
cycles of carbon, hydrogen and sulfur. The potential for nitrite

and iron transformations is encoded in many fewer genomes, and
for methane and ammonia oxidation only rarely (Supplementary
Data 9). However, the capacity for anaerobic ammonium
oxidation (Anammox), a process rarely observed in subsurface
environments38, was encoded in a few genomes of members of
the phylum Planctomycetes. Importantly, the possibility that
CO and H2 are significant ‘currencies’ in the subsurface
microbial economy is not evident from the geochemical data,
as the concentrations of these compounds are extremely low
(o1 mg l� 1 CO and 2–17 nM H2). In combination, the results
suggest rapid cycling of CO and H2, possibly in syntrophic
microbial associations.

Less than 2% of the genomes are predicted to encode the
capacity for use of sulfate as an electron acceptor. Oxygen and
nitrate appear to be the most widely used terminal electron
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acceptors, with genes for these functions in 34% and 17% of the
genomes, respectively. Nitrite also appears to be a relatively
important electron acceptor, and some organisms can potentially
convert it to nitric oxide and others to ammonia. Selection for
aerobes and denitrifiers is probably a consequence of electron
donor availability and proximity to the water table. Overall,
the availability of statistics describing prevalence of traits
associated with carbon, nitrogen, sulfur and hydrogen cycling

(Supplementary Data 9,10) will serve as a benchmark for
comparative studies involving other ecosystems.

Metabolic handoffs in subsurface microbial communities. We
analysed which metabolic traits are potentially encoded in each
genome (Supplementary Data 9). We found that few organisms
appear to have the potential for complete oxidation of sulfide to
sulfate, or complete denitrification of nitrate to N2, despite the
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fact that a greater energy yield would be achieved by catalysis of
the entire pathways. Specifically, many organisms appear to be
able to mediate a single step, fewer would be able to carry out two
steps, and very few seem to be able to conduct three or more
sequential redox transformations (Fig. 5). We do not attribute
this finding to genome incompleteness because, even with
conservative estimates of genome completeness39 (Supplementary
Data 4,5), the probability that genes were consistently missed for
steps in sulfur oxidation in 319 organisms and for denitrification
in 330 organisms is o10� 50 and o10� 16, respectively
(assuming a simple hypergeometric distribution). Only 10 and
12 organisms appeared to have the complete set of genes for
sulfur oxidation and denitrification pathways, respectively. Based
on these analyses, we conclude that use of the byproducts of the
metabolism of one organism by another organism is prominent
in subsurface microbial communities.

Discussion
Microbial communities across various environments have been
documented to contain thousands of different species, most of
which occur at low abundance, and thus are members of the ‘rare
biosphere’20. Because rare organisms are difficult to characterize
genomically, the overall functioning of microbial communities
has remained largely unknown. In this study, we demonstrate the
ability to genomically describe thousands of microorganisms
from a single ecosystem and bring to light aspects of the microbial
community metabolic network. In addition, we defined the
metabolic capacities of 1,297 organisms represented by 2,540
genomes. We show that metabolic plasticity involving the use of
multiple electron donors and acceptors appears to be extremely
common in microorganisms in the studied terrestrial subsurface
system. A wide metabolic repertoire is likely to be important in
the face of the natural environmental perturbations that occur at
this site, such as seasonal snowmelt-induced fluctuations in the
water table that move the oxic/anoxic interface.

In spite of redox metabolic plasticity, we found that the
majority of organisms probably lack the ability to perform
multiple sequential redox transformations within a pathway. This
result expands on prior research that has described syntrophic
interactions4,40,41. Thus, it appears that organisms often work in
cohorts to turn biogeochemical cycles. Further, the organisms
that mediate individual reaction steps display a multitude of
combinations of metabolic traits, and different organisms
proliferate as conditions change (Fig. 3; Supplementary Data 1
and 9). Thus, selection for different organisms to carry out
specific steps in redox pathways has the potential to change the

ways in which biogeochemical cycles are cross-linked. Metabolic
handoffs to a wide variety of potential recipients, in combination
with the potential for cycles within cycles, provide very high levels
of complexity and flexibility. This modular ‘plug and play’
strategy enables an enormous variety of system configurations
and likely confers ecosystem resilience in the face of perturbation.

Recognition of the importance of metabolic handoffs motivates
new thinking about how biogeochemical processes should be
modelled. Specifically, based on genomic information, individual
reaction steps should be explicitly assigned to different organisms.
Although this will increase model complexity and require detailed
consideration of fluxes, such modifications will be essential to
capture effects that can arise from metabolic handoffs, such as
‘leakage’ of reaction intermediates following perturbations
(Fig. 6). Leakage is likely when ecosystem discordance arises
from lags in activation of microbial community members
responsible for sequential steps in a biogeochemical cycle. This
is analogous to the uncoupling that occurs when climate warming
causes early flowering that is out of sync with insect hatching,
leading to pollination failures42. Such phenomena are little known
in microbial ecosystems, but could give rise to large fluxes of
climate-relevant intermediate compounds. Examples include
pulses of N2O following influx of ammonium-rich water43 or
decrease in oxygen availability44.

Another important finding, from the perspective of
development of both conceptual and quantitative models of
biogeochemical processes, is the possibility of ‘cycles within
cycles’. These could short-circuit the elemental cycles as they are
traditionally conceived45 (for example, where the most reduced
form, for example, S2� , N3� , is presumed to be converted to the
most oxidized form, S6þ , N5þ and vice versa). For example, we
conclude that the inter-conversion of elemental sulfur and sulfide
may be a prominent cycle within the larger sulfur cycle in this
system. A similar phenomenon could also occur in the nitrogen
cycle, when nitrate is reduced to nitrite by bacteria that have no
further capacity for denitrification46, resulting in a substrate that
could be oxidized back to nitrate by nitrite oxidizers.

We observed no correlation between the number or
relative abundance of organisms mediating a particular step of
a pathway and the total energy yields associated with that
step (Supplementary Data 11). This would suggest that thermo-
dynamic considerations alone do not control selection for the set
of pathway steps that occur in organisms.

The trait distribution data (Fig. 4) highlight an example of
where a cycle occurs within a larger cycle: the oxidation of sulfide
to elemental sulfur, which can be converted back to sulfide rather
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than oxidized to sulfite and sulfate. The direct oxidation of sulfide
(S2� ) to elemental sulfur (S0) is mediated by two different
enzymes, sulfide:quinone oxidoreductase (sqr)47 and
flavocytochrome c sulfide dehydrogenase (fcc)48, which were
present in 11% (groundwater) and 27% (sediment) of the
recovered genomes. Elemental sulfur may also be produced as a
byproduct of thiosulfate disproportionation by the sox enzyme
system if soxCD are lacking49. Significantly, genes for elemental
sulfur reduction were present in 17% (groundwater) and 22%
(sediment) of the genomes, whereas the capacity for elemental
sulfur oxidation was present in only 4% (groundwater) and 13%
(sediment) of the genomes.

The tremendous novelty of microorganisms observed in the
aquifer ecosystem highlights the potential for biological discovery
in the terrestrial subsurface. Given the novel phylogenetic
diversity of the studied organisms, the genomes reported here
represent a vast treasure-trove that could be mined for
biotechnological applications and for potential strategies for
genome-enabled cultivation of novel organisms. The findings
relating to metabolic network topology will guide future in silico
studies of inter-organism metabolic networks50, and may have
application in trait-based ecosystem models that are needed to
predict the impacts of changing environmental conditions on
biogeochemical cycles51.

Methods
Sampling. Groundwater and sediment samples were collected from an aquifer
adjacent to the Colorado River near Rifle, CO, USA, at the Rifle Integrated Field
Research site.

Sediment samples were collected from the ‘RBG’ field experiment carried out in
2007. A sediment core was drilled at the location of well D04 (elevation: 1,618 m;
39� 310 4400 N, 107� 460 1900 W) and alluvial sediments with visible organic matter
were collected from 4, 5 and 6 m below the surface (Fig. 1; Supplementary Data 1).

Groundwater samples were collected from three different field experiments:
six sampling time points across the duration of acetate amendment (A–F); four
sampling time points across the duration of oxygen injection (A–D); and two
sampling time points from natural high- and low-oxygen conditions in the
groundwater), driven by fluctuations in the water table at the site. Aquifer well
CD-01 (elevation: 1,618 m; 39� 310 4500 N, 107� 460 2000 W) was monitored as part
of a 95-day acetate amendment experiment during which acetate was added to the
aquifer (target concentration of 15 mM). Following this experiment, aquifer well
CD-01 was monitored as part of a 126-day oxygen injection experiment where
oxygen-saturated water was injected into the aquifer (Fig. 1, Supplementary
Data 1).

Aquifer well FP-101 (elevation: 1,618 m; 39� 320 500 N, 107� 460 5700 W) was
sampled during two specific time points characterized by high and low oxygen in
the groundwater (Fig. 1; Supplementary Data 1). All groundwater samples were
collected from 5 m below the ground surface by serial filtration onto 1.2, 0.2 and
0.1 mm filters (Supor disc filters; Pall Corporation, Port Washington, NY, USA).
All sediment samples were frozen on site, while groundwater samples were
preserved in RNAlater (Thermo Fisher Scientific, Waltham, MA, USA).

Geochemical measurements. Geochemical measurements were performed on
samples collected from a depth of 5 m. Water quality parameters including pH and
dissolved oxygen were measured using multi-parameter sondes that were calibrated
at regular intervals (YSI Inc., Yellow Springs, OH, USA). Acetate, chloride, nitrate,
nitrite, thiosulfate and sulfate were measured using an ion chromatograph
(ICS-1000, Dionex Corporation, Sunnyvale, CA) equipped with an AS-22
column52. Fe (II) and sulfide concentrations were measured using Phenanthroline
and Methylene Blue colorimetric methods, respectively (Hach Company, Loveland,
CO, USA). Dissolved gases in groundwater were measured using the AM20GAx
method using Gas Chromatography Mass Spectrometry (Supplementary Data 1).
Detailed geochemical data are publicly available from http://rifleifrc.org/
geochemicaldata.

DNA extraction and sequencing. Thirty-three samples from sediment and
groundwater spanning 15 geochemical conditions were chosen for metagenomic
analysis.

For the 30 groundwater samples, DNA was extracted from B1.5 g of each
frozen filter using the PowerSoil DNA Isolation kit (MoBio Laboratories Inc.,
Carlsbad, CA, USA) with modifications as follows: DNA was concentrated by
sodium acetate/ethanol precipitation with glycogen, followed by elution in 50 ml
Tris buffer.

For the three individual sediment samples, DNA was extracted from 10
different thawed samples from the same depth to account for heterogeneity
(7–14 g each) using the PowerMax Soil DNA Isolation kit (MoBio Laboratories
Inc., Carlsbad, CA, USA) with the following modification to the manufacturer’s
instructions: samples were vortexed at maximum speed for an additional 3 min in
the SDS reagent, and then incubated for 30 min at 60 �C in lieu of extended bead
beating. DNA was concentrated by sodium acetate/ethanol precipitation with
glycogen, followed by precipitation in 50 ml Tris buffer. Finally, all 10 replicate
DNA samples were pooled together.

Metagenomic library preparation and DNA sequencing were conducted at the
DOE Joint Genome Institute. DNA was sequenced on the Illumina HiSeq 2000
platform, producing 150 bp paired reads with a targeted insert size of 500 bp. Raw
sequence data were processed using the Illumina CASAVA pipeline version 1.8.
All reads were trimmed based on quality scores using the adaptive read trimmer,
Sickle (https://github.com/najoshi/sickle; default parameters).

Metagenomic assembly and binning. The 33 individual samples were each
assembled de novo to obtain 33 separate assemblies. Assemblies were performed
using IDBA-UD53 with the following parameters: --mink 40, --maxk 100, --step 20,
--min_contig 500. Sequencing coverage was determined for each assembled
scaffold by mapping reads from the sample to the assembly using Bowtie2 (ref. 54).
All resulting scaffolds were clustered into genome bins using multiple algorithms.
First, scaffolds were binned on the basis of % GC content, differential coverage
abundance patterns across all 33 samples using ABAWACA17, and taxonomic
affiliation. Scaffolds that did not associate with any cluster using this method were
binned based on tetranucleotide frequency using Emergent Self-Organizing Maps
(ESOM)24. All tetramers containing start and stop codons were removed prior to
ESOM analysis as described previously55. The RBG13 sample (representing
sediments from a depth of 3 m) could not be resolved by ABAWACA and was
binned solely by tetranucleotide ESOM. All genomic bins were manually inspected
within ggKbase (http://ggkbase.berkeley.edu/2500-curated-genomes/organisms).
Twenty high-quality genomes chosen at random were clustered using ESOM on
the basis of tetranucleotide composition for visual validation (Supplementary
Fig. 3).

Genome curation and completeness assessment. Sequence reads were mapped
to all genomic scaffolds to identify assembly and scaffolding errors. Scaffolding
errors typically occurred in short regions where two contigs had been erroneously
scaffolded. These regions were identified and repaired as previously described17.
In brief, errors were detected as regions with zero coverage after excluding reads
mapped to the assembly with r2 mismatches. Reads mapped to a 1 kb region
flanking the misassembly were collected and reassembled with Velvet56 to attempt
to correct the error. Regions that could not be corrected were replaced with Ns. In
cases where no paired reads spanned the detected error, the scaffolds were broken.

Genome completeness for bacteria was estimated using 43 universal single-copy
genes (SCGs) that represent a subset of a previously reported list39 (Supplementary
Data 4). The reduced set was selected due to the large proportion of CPR that either
lack a number of SCG, or whose SCG are too divergent to be predicted
accurately17. Genome completeness for archaea was estimated using 38 SCGs as
described elsewhere57 (Supplementary Data 5).

High-quality genomes with r8 scaffolds were selected for genome finishing.
Sixty-nine genomes passed these thresholds. Genomic scaffolds were extended by
mapping reads to the end of contigs, searching for overlapping regions and for
paired-read connections between contigs. Genomes were considered complete if
they were circular and free of assembly errors and gaps (Ns). Read mapping for all
complete genomes was performed using Bowtie2 (ref. 54) and the complete
mapped read alignments were manually inspected by visualization in Geneious58 to
ensure the absence of misassemblies by looking for discordant read pairs and zero
coverage regions.

Annotation. Open reading frames (ORFs) were predicted on genomic scaffolds
using the metagenome mode of Prodigal59. Predicted ORFs were annotated using
USEARCH (-ublast; http://drive5.com/usearch/)37 to search all predicted ORFs
against Uniref90 (ref. 33), KEGG32 and an in-house database containing genomes
from CPR organisms and other novel genomes from ongoing projects7,13–17,22,60,61.

Determination of genome redundancy. Genomes were dereplicated by first
generating an alignment of all scaffolds within one genome individually against
scaffolds of all other bins using NUCmer62 at 98% nucleotide level or greater.
Genomes were then grouped at 450% similarity level and the best representative
was chosen based on a scoring system of SCGs: score¼ number of archaeal or
bacterial SCGs� 2� number of multiple SCGs. In case of a tie, the genome with
the greatest nucleotide information was chosen.

Genome coverage. Read mapping for calculation of genome coverage was
estimated by mapping reads against assembled scaffolds using Bowtie2 (ref. 54)
with default parameters. Sample-specific genome relative abundance was calculated
by normalizing for differences in read counts between samples.
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Bacterial community composition. Bacterial community composition was also
determined using ribosomal protein S3 (RpS3) in order to enable comparisons of
abundance of organisms for which draft genomes could not be assembled. A total
of 15,247 RpS3 sequences assembled at the Rifle site to date (January 2016) were
clustered at 99% with USEARCH37. Read mapping of all 33 individual samples was
performed using Bowtie2 (ref. 54) with the following parameters (--very-sensitive
--all). BlastP of the RpS3 clusters against the RpS3 genes identified on the 1,297
non-redundant genomes was performed to identify clusters with high-quality
genomes from our study.

Phylogenetic analyses using RPs and 16S rRNA. Phylogenetic analysis was
performed using two different markers, the 16S rRNA gene (SSU) and a syntenic
block of 16 universal RPs (L2-L6, L14-L16, L18, L22, L24, S3, S8, S10, S17 and S19).
Although both methods were used for validation of phylogeny wherever possible,
RPs were encountered more frequently on genomes than SSU, as observed
previously61.

Each RP was aligned along with reference sequences using MUSCLE63 with
default parameters. Individual RP alignments were concatenated in Geneious
version 7 (ref. 58). All columns with 497% gaps were removed before further
analyses. In total, the alignment of 5,969 sequences spanned 3,068 columns.
Phylogenetic analysis of RP was inferred by RAxML64 implemented by the CIPRES
Science Gateway65. RAxML was called as follows:

raxmlHPC-HYBRID -T 4 -s input -N autoMRE -n result -f a -p 12345 -x 12345
-m PROTCATLG. Archaea were included to the root the tree. This analysis
required 4,317 computational hours, and a total of 156 bootstrapped replicates
were sampled before being stopped automatically by the autoMRE algorithm. The
complete RP tree is available in nexus format as Supplementary Data 12.

For SSU analysis, 573 16S rRNA genes representing non-redundant genomes
were aligned with 4,673 bacterial, archaeal and eukaryotic reference sequences with
the SINA aligner66 using the SILVA web interface67 with default parameters. 16S
rRNA genes could not be linked to all 1,297 genomes since rRNA regions in
scaffolds often fragment and are hence difficult to bin68. All introns in 16S rRNA
genes were removed as described previously17. All columns with 495% gaps were
removed and the final alignment spanned 1,626 nucleotides. Phylogenetic analysis
of the 16S rRNA gene SSU was inferred by RAxML64. RAxML was called as
follows:

raxmlHPC-PTHREADS -f a -s input -n result -m GTRGAMMA -x 12345 -#
autoMRE -p 12345 -T 4. Eukarya were included as the root for the tree. A total of
300 bootstrapped replicates were sampled before being stopped automatically by
the autoMRE algorithm. The complete 16S rRNA tree is available in nexus format
as Supplementary Data 13.

Phylogenetic trees were visualized with figtree v1.2.2 (http://tree.bio.ed.ac.uk/
software/figtree/).

Identification of novel phylum-level lineages. Novel phylum-level lineages were
proposed on the basis of three conditions. First, 16S rRNA genes had a pairwise
identity less than B75% with known phylum-level lineages and formed a mono-
phyletic clade. This threshold for difference in 16S rRNA gene identity between
phylum-level lineages has been proposed previously27. Second, RP phylogeny
indicates these genomes form a monophyletic clade. And third, high-quality draft
or near-complete genomes were available for these phylum-level lineages. We
propose names for these newly described phylum-level lineages based on eminent
microbiologists and current University of California, Berkeley microbiology faculty
(Table 1).

Metabolic potential analysis. Genome-specific metabolic potential was
determined by (1) searching all predicted ORFs in a genome with Pfam35,
TIGRfam34, Panther69 and custom HMM profiles (Supplementary Data 8 and 12)
of marker genes for specific pathways using hmmscan36, and (2) assessment of
complete pathways for metabolic transformations using ggKbase. For generation of
custom HMM profiles, references for each marker gene were aligned using
MUSCLE with default parameters followed by manually trimming the start and
ends of the alignment. The alignment was converted into Stockholm format and
databases were built using hmmscan36. For Rubisco and hydrogenases70, different
hmm databases were constructed for each distinct group. For HMM searches
against TIGRfam, all hits above the preset noise cutoff were considered for manual
inspection. Individual cutoffs for all HMMs were determined by manual inspection
and are listed in Supplementary Data 14.

In ggKbase, lists for specific metabolic pathways were generated by searching
for specific keywords in gene annotations. Coupling the genome abundance to
metabolic traits allowed the simultaneous assessment of all 2,540 genomes
assembled in this study. All custom HMM profiles used in this study are publicly
available from https://github.com/banfieldlab.

Data availability. DNA sequences (genomes and raw sequence reads) have been
deposited in NCBI BioProject database with accession code PRJNA288027. NCBI
Genbank accession numbers for individual genomes are listed in Supplementary
Data 3. Genomes are also available through ggKbase: http://ggkbase.berkeley.edu/
2500-curated-genomes/organisms (ggKbase is a ‘live’ site, genomes may be updated

after publication). Detailed geochemical data are publicly available from
http://rifleifrc.org/geochemicaldata. Hmm databases used in this study are available
from https://github.com/banfieldlab/metabolic-hmms. The authors declare that all
other data supporting the findings of this study are available within the article and
its supplementary information files, or from the corresponding author on request.
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