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Abstract

Many large-scale studies have recently been carried out to assess the reliability of diagnostic 

procedures, such as mammography for the detection of breast cancer. The large numbers of raters 

and subjects involved raise new challenges in how to measure agreement in these types of studies. 

An important motivator of these studies is the identification of factors that contribute to the often 

wide discrepancies observed between raters’ classifications, such as a rater’s experience, in order 

to improve the reliability of the diagnostic process of interest. Incorporating covariate information 

into the agreement model is a key component in addressing these questions. Few agreement 

models are currently available that jointly model larger numbers of raters and subjects and 

incorporate covariate information. In this paper, we extend a recently developed population-based 

model and measure of agreement for binary ratings to incorporate covariate information using the 

class of generalized linear mixed models with a probit link function. Important information on 

factors related to the subjects and raters can be included as fixed and/or random effects in the 

model. We demonstrate how agreement can be assessed between subgroups of the raters and/or 

subjects, for example, comparing agreement between experienced and less experienced raters. 

Simulation studies are carried out to test the performance of the proposed models and measures of 

agreement. Application to a large-scale breast cancer study is presented.
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1. Introduction

The reliability of common medical procedures for the diagnosis of cancer and other diseases 

has become an important issue over the last few decades [1–4]. Subjective classifications of 

tests including mammograms, x-rays and biopsies are routinely carried out by physicians 

and other biomedical professionals, yet wide discrepancies have been observed between 
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experts [1, 4–6]. Many studies have recently been carried out to measure the levels of 

agreement between experts in such settings, and to attempt to identify factors that may 

contribute to the observed discrepancies. Identification of influential factors provides 

valuable insight into how the reliability of diagnostic procedures might be improved [7–9]. 

These studies include, among others, a nationwide study carried out by Beam et al. [9] 

involving the classification of 148 mammograms by over 100 experts. Their study concluded 

that individual radiologists’ current reading volume was not statistically associated with the 

accuracy in reading screening mammograms, but several other factors were associated. 

Miglioretti et al. [7] examined the variability between raters in their classification of over 35 

000 mammograms. They found considerable variation in the interpretative performance of 

diagnostic mammography that was not explained by the characteristics of the patients whose 

mammograms were interpreted. Thirty-eight prostate cancer biopsies were classified by 41 

pathologists in a Gleason grading study [10], where barely moderate agreement between 

raters was found. The assessment of agreement in these studies is challenging due to the 

large numbers of experts and subjects under study. Further, the modeling of additional 

information that may lead to the identification of influential factors raises a further 

challenge.

Currently available methods for modeling agreement and reliability among raters can be 

broadly categorized as summary measures and model-based approaches. Summary statistics 

include the very popular Cohen’s kappa [3] and its extensions, which are often applied in 

biomedical studies to describe the overall level of chance-corrected agreement between two 

or more raters. The inclusion of covariate information when using Cohen’s kappa has also 

been described [11–13]. However, it is well acknowledged that Cohen’s kappa has a number 

of weaknesses in its usage [14, 15] and can lead to an inaccurate assessment of agreement, 

sometimes severely so. Cohen’s kappa is applicable when several subjects are classified by 

two raters. However, when multiple raters are classifying several subjects, the multirater 

intraclass kappa described in Kraemer et al. [16] is the appropriate summary measure of 

reliability to use. In general, summary statistics provide a useful overall measure of 

agreement, but sustain a large loss of information due to outputting a single value about the 

agreement within a process.

Model-based approaches provide a more complete and broader framework for assessing 

factors influencing agreement, and thus perhaps improving reliability. These include log-

linear models [17–21], latent class and trait models [20–24], and logistic regression models 

[25, 26]. Several of these approaches include the raters as fixed effects, and provide 

inference to the specific raters and items under study, not extending to agreement involving 

entire populations of such raters. Such methods work well when a small number of raters is 

involved, but become increasingly complex, frequently involving a large number of 

parameters when the classifications of more than two or three raters are included. Log-linear 

models and latent models can incorporate covariate information; however, few methods 

currently available are able to both incorporate covariate information and yield inference 

regarding the underlying diagnostic procedure.

For common medical procedures, it is desirable to make inference regarding the levels of 

agreement in the underlying populations of raters and subjects who are typically involved in 
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the diagnostic procedure of interest, and to examine the influence of factors on the 

agreement process in such a setting. A number of approaches have been developed with this 

purpose in mind, including a population definition for the intraclass kappa [27], a flexible 

latent variable model proposed by Williamson and Manatunga [23] for ordinal 

classifications, and more recently, a generalized linear mixed model for modeling binary 

classifications [28], which is designed to examine agreement in a population-based setting. 

While Williamson and Manatunga’s approach can potentially include any number of raters, 

a fixed effect term is included for each individual rater in the model and is thus best-suited to 

a small to a moderate number of raters.

Clinical factors are often associated with the prevalence of a disease and may influence the 

reliability of diagnostic procedures. In the breast cancer setting, a mammogram presenting 

an advanced stage breast cancer is easier to distinguish than many less advanced forms of 

breast cancer, leading to a better agreement between the raters. Prior knowledge regarding a 

subject’s clinical history could also influence a rater’s perception of the mammogram and 

consequently their classification. For example, in the classification of mammograms, the age 

of the woman is an important factor as the prevalence of breast cancer increases with a 

woman’s age [29]. Other factors such as a rater’s level of experience and type of training 

could affect the levels of agreement present.

The earlier paper by Nelson and Edwards [28] proposed a simple population-based 

agreement model and summary statistic that focuses on inference regarding agreement in a 

diagnostic procedure for large numbers of raters and subjects (assumed randomly sampled 

from their populations), where each rater in the sample of raters is assumed to rate each 

subject independently of the other raters. This paper focused on defining the general 

concepts of measuring reliability, and also how the class of generalized linear mixed models 

could be used as a suitable framework in such a setting. Attention was focused on the more 

theoretical aspects underlying the simplest model proposed through the use of probit and 

logit link functions.

In this paper we extend the simple population-based agreement model and summary 

measure of agreement proposed by Nelson and Edwards [28] to the measurement of 

agreement between subgroups of raters and/or subjects, for example, how agreement 

between experienced raters compares with that of less experienced raters, by the 

incorporation of important covariate information into the model. Such models can lead to the 

identification of factors that influence agreement and the reliability of the diagnostic 

procedure, where consistency between raters is an important prerequisite for a reliable 

procedure. In agreement models, the inclusion of covariate information requires careful 

consideration due to its influence on both the prevalence of the disease under study and on 

the agreement process, and yields valuable information regarding factors that influence both 

how a rater classifies a subject and the agreement between the raters.

The remainder of the paper is as follows: Section 2 introduces the basic population-based 

agreement model described in Nelson and Edwards [28] and presents the extensions to the 

model. In Section 3, the associated population-based summary measure of agreement and an 

extended version are described. Simulation studies are carried out in Section 4 to examine 
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the effects of including important factors into the proposed model and the agreement 

summary statistic described in Sections 2 and 3. Application to a breast cancer study 

involving the classifications of a large set of mammograms is presented in Section 5. In 

Section 6 concluding remarks and discussion are made.

2. Models and measures of agreement

A natural choice for modeling agreement data when the underlying populations of raters and 

subjects and the diagnostic procedure are of interest is the class of generalized linear mixed 

models with a crossed random effect structure. We restrict our attention here to 

classifications made on a binary scale, for example, yij = 1 if the ith subject is rated as 

positive (for example, diseased) by the jth rater, and yij = 0 otherwise. It is assumed that the 

raters and the subjects are randomly selected from their respective populations, and that each 

of the J raters classify all of the subjects under study (independently from the other J − 1 

raters). Although binary outcomes can be modeled using a generalized linear mixed model 

with either a probit or logit link function, among others, we will focus here on the probit link 

function for ease of mathematics. Nearly identical results are achieved for the logistic link 

function [28]. The basic form of the agreement model is

(1)

for subject i = 1, …, I and rater j = 1, …, J. The quantity pij = pr(yij = 1) is the probability of 

the ith item being classified as positive by the jth rater, and the constant η refers to the 

intercept term of the model and can also be regarded as a measure of the prevalence of 

positives in the data. When η is large, the overall frequency of positives in the data is high. 

The terms ui and vj represent random effects for the ith subject and jth rater respectively, 

with assumed independent Normal  and Normal  distributions. A subject with a 

positive (negative) random effect is more (less) likely than other such subjects to be 

classified as positive over many raters. A large value of  is indicative of subjects that are 

easy to distinguish from one another. A rater with a positive (negative) random effect is 

more liberal (cautious) in classifying a subject as positive over many subjects. A large value 

of  suggests more variability between the raters within the population in how they classify 

the subjects.

2.1. Inclusion of covariates

Many agreement models, including log-linear and logistic regression models, utilize an 

agreement index as the response, where 0 = two raters disagree, 1 = two raters agree, in their 

classification of a single item [17, 25, 26, 30]. In the generalized linear mixed model 

considered here, and in Williamson and Manatunga’s agreement model [23], the response 

variable yij, instead, is the binary classification made on the ith subject by the jth rater. Then 

when a covariate is included into the model, careful consideration has to be given as to 

whether it is likely to directly impact the prevalence so that it is included as a fixed effect, or 

more likely to influence the agreement between the raters and is then included as a random 
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effect term. Covariates that influence both the prevalence and the agreement can be included 

as both fixed and random effects.

Earlier studies [5, 7, 9, 10] demonstrated that certain factors including a radiologist’s 

average volume of mammogram interpretations, a woman’s age and time since previous 

mammogram, a physician’s length of practice and type of training may influence how a rater 

classifies an item, and may affect the agreement between the raters. For example, raters who 

carry out more classifications on a routine basis may develop more experience and accuracy 

in reading mammograms, leading to a higher rate of agreement between the experienced 

raters. Factors related to subject (for example, stage of cancer) would lead to using a test in 

some clinical populations and not in others. Factors related to raters would change the form 

of the test in the same population. The basic agreement model in equation (1) is extended to

(2)

where xi (r × 1) is the vector of factors associated with the ith subject, and xj (s × 1) the 

vector of fixed effects associated with the jth rater. The associated vectors of parameters are 

β1 (r × 1) and β2 (s × 1), respectively. The vectors z1 (p × 1) and z2 (q × 1) represent the 

design vectors of the random effects for the random effect vectors ui (p × 1) and vj (q × 1), 

respectively, where ui and vj contain the associated random effects for the subjects and the 

raters. The random effects are assumed to follow multivariate normal distributions

where the covariance matrices Σu and Σv are of dimensions p × p and q × q, respectively. 

More complex random effect structures can be employed if required and if sufficient data are 

available. The random effect vectors ui and vj can be predicted to describe the unique effects 

of each rater and subject included in the study.

3. A population-based measure of agreement

Cohen’s kappa is a very popular summary measure of agreement due to its appealing 

simplicity of both calculation and interpretation. In this section, we describe and extend a 

simple population-based summary measure of agreement introduced in Nelson and Edwards 

[28] to include covariate information associated with the raters and subjects to try and 

improve the reliability of a diagnostic test, and to determine their influence on the 

prevalence and agreement. It is demonstrated how the extended summary statistic can be 

used to compare the agreement between the subgroups of raters and/or subjects, for 

example, the amount of agreement between the experienced and the inexperienced raters. 

The summary statistic is comparable to Cohen’s kappa in style and interpretation, avoiding 

many of the weaknesses observed in Cohen’s kappa use, while allowing for population-

based inference. An advantage of the model-based kappa statistic is that all available data is 

utilized to estimate the parameters, even when the agreement between the sub-groups are of 

interest. A general overall measure of agreement based upon all the raters and subjects 
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included in a study can be obtained by fitting the simplest form of the generalized linear 

mixed model presented in equation (1).

The simplest form of the model-based kappa measure of agreement as introduced in Nelson 

and Edwards [28] is

(3)

where  and 0≤κm≤1; the maximum likelihood estimates of the variances 

 and  are obtained from the corresponding generalized linear mixed model in equation 

(1). We can interpret the numerical value of our summary statistic in a similar manner to 

Cohen’s kappa, where a value close to 1 is suggestive of strong agreement, such that as 

given in Landis and Koch [31]. The approximate asymptotic variance of κ̂M is derived using 

the multivariate delta theorem, and is estimated as

3.1. Inclusion of covariates

In equation (4), we present a measure of agreement (extended from the original κm in 

equation (3)) between two raters j and j′ each classifying the ith subject, which accounts for 

the fixed effects vector xj, where the two raters may have different values for at least one of 

the covariates of interest contained in xj. For example, κm in equation (4) provides a 

summary measure of agreement between two randomly chosen raters, who have different 

amounts of experience in reading mammograms.

(4)

where

(5)
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The terms  and  represent the variances of the sums of the random effect components 

 and  for the ith subject and jth rater, respectively, that is, the variability associated 

with the rater and the subject random effects such that  and 

. Similarly,  for the j’th rater. The quantity 

 is a measure of the total variability present in the model (T for total), given 

the covariate values of the ith subject and the jth rater. Similarly,  is the total variability in 

the model given the covariate values of the ith subject and the j’th rater. In equation (5) an 

extended version of ρ is presented. It is defined as a measure of subject distinguishability 

relative to the variability between two raters with the same covariate information, given the 

ith subject’s covariate information. Similarly, the term ρ′ specifies the value of ρ for another 

rater j′ who may have a different set of covariate values from rater j, thus leading to a 

different value of , and consequently ρ. The formula for ρ′ is presented in equation (5).

With the inclusion of covariates, the exact form of the variance of κm is dependent upon the 

random effect design vectors z1 and z2 and the assumed correlation structures of the random 

effects. The model-based kappa statistic κm is a function of the variance components 

contained in Σu and Σv, and the regression coefficient vectors β1 and β2, where vector θ 
contains all of the individual components. The asymptotic variance of κm can then be 

obtained using the multivariate delta theorem, and estimated as

(6)

(7)

is the vector of derivatives of κm with respect to the variance components contained in the 

Σu and Σv matrices and β1 and β2, and Σ (l × l) is the variance–covariance matrix of all the 

variance components and β contained in θ. An application of this equation is presented in 

the Appendix.

4. Simulation studies

Simulation studies were carried out to examine the effects of including factors of interest on 

the estimation in the models and measures of agreement described. The simulations were 

based upon three probit generalized linear mixed models of increasing complexity as 

follows:
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where i = 1, …, I, j = 1, …, J with I and J each set at 50. The term η is the intercept and the 

response variable yij represents the classification made by the jth rater on the ith subject, 

equaling 0 for a subject classified as not diseased and 1 otherwise. The random effects ui and 

vj in models (a) and (b) are assumed to be normally distributed as  and , 

respectively. The additional random effect v1j in model (c) is associated with a factor z2 

likely to influence the agreement between the raters, such as a rater’s level of experience (z2 

= 1 for an experienced rater, and 0 otherwise). For simulation purposes, z1j is randomly 

generated from a Bin(n = 1, p = 0.5) distribution, j = 1, …, J, and the random effect term v1j 

is also assumed to be normally distributed with variance  and correlated with the other 

rater random effect vj. The covariance matrix for model (c) thus takes the form

(8)

In models (b) and (c), xj represents a fixed covariate value for the jth rater, (for example, the 

experience level of the jth rater (1 = high, 0 = low). In the simulations, xj is randomly 

generated from a Bin(1,0.5) distribution. Two different values for the intercept, η = 1 and 3, 

were included in the simulations. The regression coefficient β was set at 0.5. Different 

values of the variance components were also included to assess the effects of increasing 

variability: for all three models,  and  were set at (1,1,1) and (5,5,5), and for model 

(c), the correlation ρv between random effects vj and v1j was set at 0.25. Due to the 

computational intensity involved, the number of simulations was restricted to the fitting of 

100 randomly generated data sets for each simulation scenario.

Each data set was fitted using a Monte-Carlo expectation–maximization algorithm (MCEM) 

developed by McCulloch [32] (see also Kuk and Cheng [33]) to obtain almost-exact 

maximum likelihood estimates of the parameters in the generalized linear mixed model. A 

description of this algorithm is provided in Nelson and Edwards [28].

Starting values of the parameters in the vector θ were set at η = 0.5, β = 0.05 and the 

random effect parameters,  and ρv were all set at 0.5 for simplicity. Other sets of 

starting values were also tested, and resulted in the same estimated parameters in each case. 

Convergence criteria within the algorithm was set at max(|θk − θk−1|<0.0001, where k = 1, 
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…, K is the number of parameters to be estimated, and θ contains the parameters to be 

estimated.

The model-based kappa statistic was calculated for each individual data set, based upon the 

estimated values of the parameters from the corresponding generalized linear mixed model, 

and for model (a), a version of Cohen’s kappa for multiple raters [31] was calculated.

Tables I and II display the mean estimates of the parameters and their associated standard 

errors from the simulation studies are described. We observe that the parameters η and β are 

estimated on average with little bias in each of the 12 models examined. Similarly, the 

almost-exact maximum likelihood mean estimates of the variance components  and  are 

nearly unbiased, although there is a slight increase in the level of bias observed for the 

variance components for model (c). The mean estimates of the correlation coefficient ρv are 

underestimated for each simulation scenario for model (c), sometimes severely so. In the 

simplest model (a), the mean estimated Cohen’s kappa is only slightly lower in value than 

the corresponding model-based kappa statistic when the prevalence term η = 1; however, the 

mean estimated Cohen’s kappa is noticeably smaller than the mean estimated model-based 

kappa for η = 3 (Cohen’s κ̂ = 0.09, κm̂ = 0.21) and the associated standard errors are large 

enough to suggest that there may be no significant difference between these two estimated 

measures of agreement.

5. Application to a breast cancer study

An agreement study was carried out by Beam et al. [9] where 148 randomly selected 

mammograms were classified by a large number of physicians randomly selected from a 

group of 294 physicians from the USA. The mammograms included both diseased and non-

diseased cases. Data on a number of covariates, including the subject’s age, the number of 

mammograms read in the previous year by each rater and the number of years of experience 

of the raters, were collected. The subjects’ ages ranged from 40 to 85 years. The 

classifications were made using the BIRADS scale, and have been dichotomized here so that 

an outcome of 0 represents a mammogram classified as non-diseased, and 1 as diseased. Full 

details on the data collection can be found in Beam et al. [9]. Data on 104 randomly sampled 

physicians were analyzed using the models and measure of agreement described in Sections 

2 and 3 and a summary of the pairwise agreement is presented in Table III. The age of each 

woman on whom the mammograms was taken was included as an indicator variable xi, 

where xi = 1 for a subject less or equal to 60 years of age. The level of experience of a 

physician was included as an indicator variable z2 = 1 if a physician had 10 or more years 

experience of rating mammograms and 0 otherwise. These are two examples of models that 

can be fit to this data set; there are other models that could also be feasible.

Two generalized linear mixed models with a probit link function were fitted to this data set 

using McCulloch’s MCEM algorithm; one model (i) to assess the overall agreement present 

between all the raters and subjects included in the study, and a second model (ii) to assess 

agreement after accounting for a subject’s age and each rater’s level of experience. These 

models are
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Details on the forms of ρv, var(κ̂m) and the likelihood function L(θ, y) for model (ii) are 

presented in the Appendix.

Table IV presents the parameter estimation and model-based and Cohen’s kappa statistics 

for these two models. We observe a negative intercept for both models, reflecting the fact 

that over half of the mammograms were classified as not having cancer present. The 

negative regression coefficient for subject’s age suggests that the odds in favor of a younger 

patient (less than 60 years) being classified as having a diseased mammogram is 

approximately 45 per cent of that of an older patient (over 60 years old). The variability 

observed between the subjects  is larger than the variability observed between the raters 

. Cohen’s kappa for overall agreement between all raters was estimated at κ̂ = 0.60, 

whereas the model-based kappa κ̂m = 0.53 (se = 0.08). The agreement between highly 

experienced raters classifying mammograms of younger women (z2 = 1 and xi = 1) is κ̂m = 

0.53 (se = 0.07), whereas chance-corrected agreement between less experienced raters is 

estimated as κ̂m = 0.50 (se = 0.08), suggesting little difference between these two estimated 

measures of agreement.

6. Discussion

In this paper, we have extended a model-based approach and measure of agreement, which 

are appropriate for use in large studies with the goal of improving diagnostic tests that wish 

to examine the reliability between many raters each classifying the same set of many 

subjects. This population-based approach, which is based upon the class of generalized 

linear mixed models allows for inference regarding the underlying diagnostic procedure, and 

for conclusions to be made regarding the populations of raters and subjects who are typically 

involved in the medical testing procedure of interest.

Extending the basic model and measure of agreement presented by Nelson and Edwards [28] 

to include covariate information that may affect both the prevalence of the disease and the 

agreement process yields valuable information about the roles of raters and subjects. For 

example, the significance of the level of experience of raters when classifying test items, 

such as mammograms, can be more closely examined. Other information can also be easily 

incorporated in this modeling approach, such as factors related to the subject’s clinical 

history. The use of generalized linear mixed models allows for missing observations and 

unbalanced data, and easily incorporates large numbers of raters and subjects, unlike most 

other methods for assessing agreement. Specific details regarding the performance of 

individual raters included in the study can also be obtained easily by estimating the random 

effects.
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Obtaining almost-exact maximum likelihood estimates of the parameters in the generalized 

linear mixed models requires the use of a computationally intensive algorithm, such as 

McCulloch’s MCEM algorithm [32] or an equivalent [33]. At present, software packages do 

not have the capacity to obtain almost-exact maximum likelihood estimates for generalized 

linear mixed models with crossed random effects structures. The model-based kappa statistic 

can also be calculated using standard software such as R and SAS; a computer function 

written in the freely available software package R included in Table V.

As is the case for any class of models where the outcomes of interest are binary, larger data 

sets are required when more factors are to be included into the model, since more parameters 

are required to be estimated. This also ensures successful convergence of the MCEM 

algorithm in the parameter estimation process.

It is assumed in the current model setting that the random effects of the subjects and raters 

are normally distributed. Previous research [34] has shown that for a generalized linear 

mixed model with a Poisson link function, fixed effect parameters are estimated with little or 

no bias, whereas variance components are estimated with more bias and variability when 

non-normal random effects are modeled assuming normality.

Further extensions to the model include multiple independent classifications of each item by 

the individual raters. This can be useful when we wish to examine the variability of ratings 

made by any rater for a particular item, also known as ‘intra-rater’ variability. This can be 

flexibly included in the framework of the generalized linear mixed model and summary 

statistic proposed, and is a topic for future research. Other future directions for extending 

this class of models in the assessment of agreement include development of a model to allow 

for ordinal classification scales, and to investigate the inclusion of non-normal random effect 

distributions for the raters and items.
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APPENDIX A

DETAILS ON MODEL FITTING FOR APPLICATION

For model (i), the random effects ui and vj, i = 1, …, I and j = 1, …, J, are assumed to be 

normally distributed with zero means and variances  and , respectively. The random 

effects in model (ii) are assumed to be distributed as in Section 5. For model (ii), the term ρ 
takes the form
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and . The statistic κ̂m is calculated using the estimated 

quantities,  and ρ̂ from the fitted model. To calculate the variance for κm, let 

. Since κm is a function of θ, the multivariate delta theorem can be 

applied directly. The variance of κ̂m, var(κ̂m) can be obtained using equation (7), where 

vector h takes the following form:

The matrix Σ is of dimension 5 × 5 since the vector θ contains five elements, and takes the 

form

where the likelihood function of interest here is

with pij = Φ(η+βxi+ui+vj+z2v1j).
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Table I

Simulation results for the probit generalized linear mixed model and κm based upon 100 data sets for I = 50 

and J = 50 for two different sets of parameter values .

Parameter True value Model (a) Model (b) Model (c)

(i) η = 1, 

η 1 0.95 (0.17) 0.99 (0.24) 1.02 (0.36)

β 0.5 — 0.46 (0.25) 0.48 (0.41)

1 0.97 (0.20) 0.94 (0.26) 0.94 (0.21)

1 1.02 (0.23) 1.09 (0.31) 0.97 (0.32)

1 — — 1.37 (0.46)

ρv01 0.25 — — −0.0004 (0.001)

κ 0.19 (0.04)

κm 0.21 (0.03)

(i) η = 1, 

η 1 0.89 (0.29) 0.71 (0.48) 1.049 (0.50)

β 0.5 — 0.38 (0.67) 0.43 (0.66)

5 4.90 (0.84) 4.65 (0.98) 4.66 (0.92)

5 5.26 (1.26) 5.09 (1.36) 4.28 (0.82)

5 — — 6.64 (2.24)

ρv 0.25 — — 0.0004 (0.005)

κ 0.28 (0.05)

κm 0.29 (0.04)

The three models fitted are: (a) Φ−1(pij) = η+ui+vj, (b) Φ−1(pij) = η+βxj+ui+vj and (c) Φ−1(pij) = η+βxj+ui+vj+z2v1j; xi ~ Bin(1,0.5), z2 ~ 

Bin(1,0.5). Cohen’s kappa = κ and model-based kappa = κm. Mean parameter estimates are presented with associated standard errors in 

parentheses.
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Table II

Simulation results for the probit generalized linear mixed model and model-based kappa statistic κm based 

upon 100 data sets for I = 50 and J = 50 using two different sets of parameter values .

Parameter True value Model (a) Model (b) Model (c)

(ii) η =3, 

η 3 2.95 (0.25) 3.05 (0.41) 3.02 (0.41)

β 0.5 — 0.51 (0.40) 0.42 (0.08)

1 1.00 (0.37) 1.05 (0.30) 0.76 (0.30)

1 1.09 (0.38) 1.14 (0.36) 1.3 (0.52)

1 — — 1.25 (0.94)

ρv 0.25 — — −0.004 (0.002)

κ 0.09 (0.04)

κm 0.21 (0.05)

(ii) η = 3, 

η 3 2.93 (0.33) 2.87 (0.49) 2.71 (0.29)

β 0.5 — 0.45 (0.56) 0.54 (0.31)

5 5.00 (1.12) 4.44 (1.04) 3.99 (0.56)

5 5.39 (1.51) 4.34 (0.51) 4.44 (1.59)

5 — — 5.21 (3.25)

ρv 0.25 — — 0.003 (0.01)

κ 0.24 (0.06)

κm 0.29 (0.05)

The three models fitted are: (a) Φ−1(pij) = η+ui+vj, (b) Φ−1(pij) = η+βxj+ui+vj and (c) Φ−1(pij) = η+βxj+ui+vj+z2v1j; xi ~ Bin(1,0.5), z2 ~ 

Bin(1,0.5). Cohen’s kappa = κ and model-based kappa = κm. Mean parameter estimates are presented with associated standard errors in 

parentheses.
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Table III

Summary of the pairwise agreement between 104 randomly selected physicians each independently 

classifying 148 slides for the presence (yij = 1) or absence (yij = 0) of breast cancer [9].

Physician B

Category Non-diseased Diseased Total

Physician A Non-diseased 460 951 64 531 525 482

Diseased 74 467 192 739 267 206

Total 535 418 257 270 792 688
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Table IV

Results for the breast cancer data set.

Parameter Model (a) Model (b)

η −0.83 (0.15) −0.13 (0.02)

β — −0.37 (0.03)

3.54 (0.45) 3.45 (0.40)

0.25 (0.04) 0.25 (0.03)

— 0.24 (0.003)

ρv — 0.001 (0.01)

Cohen’s kappa κ 0.60

Model-based kappa κm 0.53 (0.08)

κm(z2 = 0, xi = 1) — 0.50 (0.08)

κm(z2 = 1, xi = 1) — 0.53 (0.07)

The two models fitted are: (a) Φ−1(pij) = η+ui+vj and (b) Φ−1(pij) = η+βxi+ ui+vj+z2v1j; xi is an indicator variable for ith subject’s age (1 for 

subjects less than or equal to 60 years of age, 0 for subjects greater than 60 years of age). The term z2 = 0 for an inexperienced rater, and 1 for an 

experienced rater. Parameter estimates are presented with standard errors in parentheses.
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Table V

Function in R for calculating the two-rater model-based kappa statistic and its variance.

twokappafn = function(sigma2u, beta1)

{

integrand1 = function(z)

  {

    term1=pnorm(sqrt(sigma2u)*z − beta1)

    term2= pnorm(sqrt(sigma2u)*z + beta1)

fullintegrand= term1*term2*dnorm(z)

}

result1 = integrate (integrand1, lower=−100, upper=100)

integrand2=function(z)

{

    term3=(1-pnorm(sqrt(sigma2u)*z − beta1))

    term4=(1-pnorm(sqrt(sigma2u)*z + beta1))

fullintegrand2=term3*term4*dnorm(z)

}

result2= integrate(integrand2, lower=−100, upper=100)

res2=result2 $value

# two-rater model-based kappa

2*(res1 + res2)−1

}

# Calculation of variance: need to enter values for varbeta1, varsigmasqu, 
sigmasqu and beta1.

integrand1a = function(z)

{term=(0.5*(1/sqrt(sigmasqu))*dnorm(sqrt(sigmasqu)*z + 
beta1/2)*pnorm(sqrt(sigmasqu)*z − beta1/2)

+ 0.5*(1/sqrt (sigmasqu))*pnorm(sqrt(sigmasqu)*z + 
beta1/2)*dnorm(sqrt(sigmasqu)*z − beta1/2))

*dnorm(z)*z }

result1a=integrate(integrand1a, lower=−100, upper=100)

integrand1b = function(z)

{term=(−0.5*(1/sqrt(sigmasqu))*dnorm(sqrt(sigmasqu)*z + beta1/2)*(1-
pnorm(sqrt(sigmasqu)*z − beta1/2))*z

−0.5*(1/sqrt(sigmasqu))*pnorm(sqrt(sigmasqu)*z + beta1/2)*dnorm(sqrt(sigmasqu)*z 
− beta1/2))

*dnorm(z)*z}

result1b=integrate(integrand1b, lower=−100, upper=100)

vectorh1=result1a$value+result1b$value

integrand1b = function(z)
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{term=(0.5*dnorm(sqrt(sigmasqu)*z + beta1/2)*pnorm(sqrt(sigmasqu)*z − beta1/2) 
− 0.5*pnorm(sqrt(sigmasqu)*z

+ beta1/2)*dnorm(sqrt(sigmasqu)*z − beta1/2))*dnorm(z)}

result2a=integrate(integrand2a, lower=−100, upper=100)

integrand2b = function(z)

{term=(−0.5*dnorm(sqrt(sigmasqu)*z + beta1/2)*(1-pnorm(sqrt(sigmasqu)*z − 
beta1/2))

+ 0.5*(1-pnorm(sqrt(sigmasqu)*z + beta1/2))*dnorm(sqrt(sigmasqu)*z − 
beta1/2))*dnorm(z)}

result2b=integrate(integrand2b, lower=−100, upper=100)

vectorh2=result2a$value+result2b$value

covarmat = matrix(c(varsigmasqu,0,0,varbeta1), ncol=2)

vectorh = c(vectorh1, vectorh2)

varkappam = 4*(vectorh %*% covarmat %*% vectorh)

}
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