Skip to main content
. Author manuscript; available in PMC: 2016 Oct 25.
Published in final edited form as: Stat Med. 2010 Mar 15;29(6):617–626. doi: 10.1002/sim.3819

Table II.

Simulation results for the probit generalized linear mixed model and model-based kappa statistic κm based upon 100 data sets for I = 50 and J = 50 using two different sets of parameter values θ=(η,β,σu2,σv2σv11,ρv).

Parameter True value Model (a) Model (b) Model (c)
(ii) η =3, σu02=σv02=σv12=1
η 3 2.95 (0.25) 3.05 (0.41) 3.02 (0.41)
β 0.5 0.51 (0.40) 0.42 (0.08)
σu2
1 1.00 (0.37) 1.05 (0.30) 0.76 (0.30)
σv2
1 1.09 (0.38) 1.14 (0.36) 1.3 (0.52)
σv12
1 1.25 (0.94)
ρv 0.25 −0.004 (0.002)
κ 0.09 (0.04)
κm 0.21 (0.05)
(ii) η = 3, σu02=σv02=σv12=5
η 3 2.93 (0.33) 2.87 (0.49) 2.71 (0.29)
β 0.5 0.45 (0.56) 0.54 (0.31)
σu2
5 5.00 (1.12) 4.44 (1.04) 3.99 (0.56)
σv2
5 5.39 (1.51) 4.34 (0.51) 4.44 (1.59)
σv12
5 5.21 (3.25)
ρv 0.25 0.003 (0.01)
κ 0.24 (0.06)
κm 0.29 (0.05)

The three models fitted are: (a) Φ−1(pij) = η+ui+vj, (b) Φ−1(pij) = η+βxj+ui+vj and (c) Φ−1(pij) = η+βxj+ui+vj+z2v1j; xi ~ Bin(1,0.5), z2 ~ Bin(1,0.5). Cohen’s kappa = κ and model-based kappa = κm. Mean parameter estimates are presented with associated standard errors in parentheses.