Skip to main content
. 2016 Jun 29;5(3):e30011. doi: 10.5812/atr.30011

Table 3. Binary Logistic Regression Analysis: Association Between the Relative Speed of the Opponent, Age and Gender of the Accident Victim, Using a Helmet, the Collision Partner and the Type of Collision (Independent Variables) and the Occurrence of a Fracture (Dependent Variable).

Risk Factors B(SE) Sign. Odds Ratio (OR) 95% Confidence (CI) Interval for OR
Lower value Upper value
Helmet (yes/ no) -0.184 (0.329) 0.577 0.832 0.437 1.586
Relative Speed (km/h) 0.042 (0.006) <0.001 1.043 1.031 1.055
Age, y 0.015 (0.004) 0.001 1.015 1.006 1.023
Gender (male/ female) -0.145 (0.177) 0.414 0.865 0.611 1.225
Collision partner a
Car -0.296 (0.598) 0.622 0.744 0.231 2.403
Utility vehicle 0.612 (0.642) 0.340 1.845 0.524 6.491
Motorized two-wheeler -0.044 (1.166) 0.706 0.644 0.066 6.328
Bicycle 0.852 (0. 620) 0.169 2.346 0.696 7.909
Object 1.09 (0.601) 0.069 2.980 0.917 9.682
Several -0.627 (0.701) 0.387 0.534 0.392 6.105
Type of collision b
Typ 2 0.487 (0.272) 0.075 1.628 0.951 2.787
Typ 3 -0.546 (0.484) 0.259 0.579 0.224 1.495
Typ 4 -0.377 (0.332) 0.256 0.686 0.358 1.314
Typ 5 -0.195 (0.610) 0.749 0.823 0.249 2.719
Typ 6 -0.071 (0.400) 0.857 0.931 0.425 2.036
Typ 7 1.034 (0.210) <0.001 2.812 1.864 4.244

areference category: pedestrians.

breference category: collision with two-wheeler, pedestrian, object, or a fall (Type 1).