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ABSTRACT
The complexity of cell-matrix adhesion convolves its roles in the development and functioning of
multicellular organisms and their evolutionary tinkering. Cell-matrix adhesion is mediated by sites
along the plasma membrane that anchor the actin cytoskeleton to the matrix via a large number of
proteins, collectively called the integrin adhesome. Fundamental challenges for understanding how
cell-matrix adhesion sites assemble and function arise from their multi-functionality, rapid
dynamics, large number of components and molecular diversity. Systems biology faces these
challenges in its strive to understand how the integrin adhesome gives rise to functional adhesion
sites. Synthetic biology enables engineering intracellular modules and circuits with properties of
interest. In this review I discuss some of the fundamental questions in systems biology of cell-matrix
adhesion and how synthetic biology can help addressing them.
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Background

The seed of the complexity of cell adhesion is that multi-
cellular organisms develop and maintained by self-organi-
zation of their cells. Therefore cell adhesion must be a
dynamic process that can respond to local cues. Cell-
matrix adhesion has to sense the physical, chemical and
topographical properties of the matrix as well as internal
mechanical and biochemical cues. In response to these
input cues, the adhesion process has to generate diverse
outputs, including modulating locally the adhesion
strength, signaling to the cell and modulating the matrix.1

The mechanisms by which cell-matrix adhesion achieves
these functions evolved by tinkering, rather than by direct
design, along the evolution of multicellular metazoan
organisms with increasing complexity.2,3 These develop-
mental, evolutionary and functional dimensions are
reflected in the complexity of cell-matrix adhesion and
cause the challenges in studying this process.

The founding studies of cell-matrix adhesion discov-
ered, about 40 y ago, that this process is mediated by spe-
cific sites along the plasma membrane.4-6 Shortly later,
these sites were found to be associated with actin fila-
ments.7,8 (Fig. 1). The open question then became what
are the components that mediate the association of actin
filaments with the plasma membrane in cell-matrix adhe-
sion sites.9 Integrins were identified as the transmembrane
receptors that bind components of the matrix in adhesion
sites.10,11 Gradually, more than hundred cytosolic proteins,

collectively called the integrin adhesome, were found to be
localized in cell-matrix adhesion sites.12-15 Furthermore, a
complex network of regulated interactions, in which each
protein can bind and affect multiple others, had been
revealed.12-15 Naturally, the central question shifted from
what are the components9 to how their collective actions
give rise to functional cell-matrix adhesion sites.14

Systems biology studies how cell properties emerge
from the interactions between its components. The emerg-
ing properties of the integrin adhesome are the formation
of cell-matrix adhesion sites and their functions. Major
challenges in studying these processes are the large number
of integrin adhesome components, the molecular diversity
of adhesion sites and the alternative manners by which
integrin adhesome proteins can bind and regulate each
other. Synthetic biology would enable, by itself, valuable
bottom-up explorations of cell-matrix adhesion by recon-
stituting adhesion sites in minimal synthetic cells and
building gradually the complexity.16 In this review I dis-
cuss a complementary path, namely – how synthetic biol-
ogy can be applied to engineer intracellular modules and
circuits that will facilitate studying adhesion sites in cells.

Exploring the assembly principles of cell-matrix
adhesion sites

Cell-matrix adhesion sites assemble by local self-
organizations of the integrin adhesome, triggered and
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shaped by local cues. This assembly is a multistep pro-
cess along which the adhesion sites mature, change
their properties, molecular content and functions.17-19

Initially, small (<0 .25 mm) and transient (< 1 min)
nascent adhesions are formed at the cell edge. Nascent
adhesions can evolve to bigger (»0.5 mm) and more
stable (»1–5 min) focal complexes in response to
forces applied on them from actin polymerization and
its centripetal flow.18,20,21 Focal complexes can evolve
to focal adhesions connected to contractile stress-fibers
upon application of actomyosin contractility.1,18

Finally, fibronectin-bound fibrillar adhesions can seg-
regate from focal adhesions and translocate toward the
cell center by actomyosin contractility.22,23 Each of
these types of adhesion sites has distinct functions and
properties. Mainly, focal complexes are exploratory
adhesions sites, focal adhesions are the main mechani-
cal anchors and fibrillar adhesions are tension-inde-
pendent sites involved in fibronectin fibrillogenesis.19

The maturation and diversification of cell-matrix
adhesion sites are accompanied by changes in their inter-
nal molecular content and organization. However, the
molecular events underlying these processes are still
largely unknown. The primary reason for this is that the
integrin adhosome is designed to form distinct structures
with distinct properties. In this sense, the integrin adhe-
some has a higher magnitude of complexity in compari-
son to systems that give rise to relatively conserved
multi-molecular structures within a cell, such as viral
capsids,24-26 the nuclear pore complex27 and the kineto-
chores.28,29 The integrin adhesome can form heteroge-
nous structures since its components interact with each
other in multiple manners.14,15,30 For the sake of under-
standing the assembly process this property implies that
there is an enormous number of potential paths by which

a given adhesion site could have been assembled. There-
fore, a combination of experimental and system-level
analysis is required in order to decipher the assembly
paths that are actually taking place, their logic and
regulation.

An important intermediate layer in the assembly path
of adhesion sites from individual integrin adhesome pro-
teins is the formation of soluble multi-protein building
blocks in the cytosol31 (Fig. 2). These building blocks are
combinatorially diversified, implying that each protein
could be recruited to adhesion sites as being embedded
in different types of protein complexes. Therefore, in
order to understand the assembly of adhesion sites we
need to find out what are the repertoire and design prin-
ciples of the cytosolic building blocks for adhesion sites
and how their recruitment to these sites is performed
and regulated (Fig. 2).

Synthetic biology can help interrogating the assem-
bly of adhesion sites by rewiring their cytosolic build-
ing blocks (Fig. 3). This rewiring could be performed
by designing switchable interactions between proteins
that normally do not bind each other at all or between
proteins that bind each other only in adhesion sites.
Acute induction of protein interactions within cells
can be achieved by small, cell permeable, chemical
inducers of dimerizerization (CIDs)32-41 or optoge-
netics42-51 (Fig. 3A). The time scales of such induced
interactions are seconds to minutes, which are faster
than, or comparable to, the time scale of focal adhe-
sions assembly and maturation. The acuteness of the
rewiring is important as it allows observing their direct
effects on the assembly process, before indirect effects
on the cellular state start taking place. Moreover, the
acute induction of interaction between two ectopically
expressed proteins, fused to dimerization domains,

Figure 1. Cell-matrix adhesion sites. The image shows a porcine aortic endothelial cell labeled for phosphotyrosine (red) and actin fila-
ments (green). Two types of cell-matrix adhesion sites are indicated, focal adhesions and focal complexes. Focal complexes are small,
dot-like structures located at the cell edge while focal adhesions are bigger and ovular structures located relatively more toward the
cell center. Scale bar, 5 mm. The scheme illustrates a simplified cross-section view of cell-matrix adhesion sites.
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enables to detect its effects also in the presence of
endogenous copies of these proteins. Photocleavable or
photocaged CIDs allow for localized control of the tar-
get interaction.52-54 Such a spatial control enables
rewiring the pool of cytoslic building blocks around
single focal adhesions and hence to get a sensitive
internal comparison of the outcomes with other focal
adhesions within the same cell. Important consider-
ation with CIDs and optogenetically induced interac-
tions is whether the protein complex that is mediated

via dimerization of fused domains preserves the rele-
vant functionalities of the proteins and of the native
complex, if such exists. Another useful rewiring of
building blocks is inhibition of native interactions
between proteins in the cytosol, thereby breaking
down the corresponding multi-protein building blocks
(Fig. 3A). Acute inhibition of protein interactions can
be achieved by peptides mimicking binding domains55

or small molecule inhibitors.56,57 Genetic manipula-
tions enable rewiring the building blocks for adhesion

Figure 3. Rewiring the cytosolic pool of building blocks for studying its design principles and the assembly of adhesion sites. (A) Multi-
protein building blocks can be rewired using optogentics, CIDs and genetic approaches. (B) Left, main types of building blocks rewiring
based on the change from the native design of the interactions to their rewired design. Right, corresponding examples of integrin adhe-
some proteins that are natively wired as shown on the left.

Figure 2. Layers of complexity along the self-organization of integrin adhesome proteins to cell-matrix adhesion sites. The integrin
adhesome is self-assembled in the cytosol as diverse protein complexes, some of which serve as multi-protein building blocks for cell-
matrix adhesion sites. Adhesion sites recruit these building blocks, plausibly in a specifically regulated manner. Each adhesion site
matures by self-organization that affects the types of building blocks it recruits. The functions of an adhesion site emerge from the local
interactions between its constituents as well as from their regulated exchange with the cytosolic pool.
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sites in a variety of manners, including mutations that
change binding affinities,58 fusion of proteins,59,60

splitting a protein to its modules and swapping of
binding domains59 (Fig. 3A). Since genetic perturba-
tions are slow, the observed effects on adhesion sites
could be due to global changes in the cellular state,
like reduced spreading and overall mechanical tension.
Still, due to their flexibility and generic applicability,
genetic rewiring of building blocks would provide a
useful complementary approach to the acute rewiring.

Rewiring of cytosolic building blocks could have dif-
ferent informative effects on cell-matrix adhesion sites,
on the cytosolic pool of integrin adhesome complexes
and on other cellular phenotypes such as migration and
cell-cell adhesion (Fig. 3B). Forcing two integrin adhe-
some proteins that do not have binding sites to each
other to form a complex in the cytosol may potentially
disrupt the layered structural organization of focal adhe-
sions,61 if the proteins are normally positioned distally
from each other (e.g. paxillin and zyxin61). Inducing an
interaction between proteins that have binding domains
to each other, but do not interact in the cytosol (e.g., talin
and vinculin31), will help to study the role of the native
regulation of this interaction in the assembly of adhesion
sites. For example, the interaction of talin with vinculin
in focal adhesions depends on the activation of talin by
mechanical stretching62-64 and of vinculin by interaction
with phosphatidyl-inositol-4-5-bisphosphate on the
plasma membrane.65 Importantly, there is no release of
talin-vinculin complexes from focal adhesions, plausibly
in order to retain the checkpoint of mechanical tension
and memebranal proximity for the assembly of these
structures.31 Therefore, triggering the formation of a
talin-vinculin building block in the cytosol may hamper
the regulation of focal adhesions assembly and their
mechanosensitivity. Similarly, bypassing the native regu-
lation of an interaction between components of adhesion
sites can disrupt or halt their maturation and diversifica-
tion, for example by preventing the segregation of fibril-
lar adhesions from focal adhesions.

An intruiging question is how the integrin adhesome
retains its switchability to form large adhesion sites while
avoiding spontaneous nucleation and assembly of aber-
rant complexes in the cytosol. Considering the multiple
binding domains that integrin adhesome proteins have
to each other, the system is plausibly confining the unde-
sirable assembly of large complexes in the cytosol by a
network-level design of dependencies between interac-
tions, i.e. mutual exclusion and allosteric regulations, as
well as by controlling the lifetime of each interaction.66

Inducing regulated interactions, or rewiring the logical
dependencies between protein interactions by genetically
adding or swapping binding domains, will help to

understand the robust switchability of the cytosolic pool
of the building blocks for adhesion sites.

Studying how protein networks in adhesion sites
function

Cell-matrix adhesion sites should not be conceived as
devices that first assemble and only then are ready to
perform their functions. In fact, the assembly, matura-
tion and diversification of adhesion sites are by them-
selves also the means by which many of their functions
are been carried out. For example, the dynamic segrega-
tion of fibrillar adhesions from focal adhesions is not
only that way by which fibrillar adhesions are formed
but also how they reorganize the fibronectin in the
matrix.19,22,23 Therefore, the questions how protein net-
works in adhesion sites perform their functions and how
adhesion sites assemble and mature are largely
inseparable.

The first challenge in studying how adhesion sites per-
form their functions starts already with identifying and
defining rigorously these functions (Fig. 4A). In contrast
to discrete cell fate decisions (e.g. to divide or to differen-
tiate) or phenotypes that can be described by a confined
set of parameters (e.g., migration speed, persistency,
etc.), cell adhesion can potentially integrate enormous
types of inputs and consequently change quantitatively
many aspects of its state. For example, cell-matrix adhe-
sion sites can sense the rigidity of the matrix19,23,67 as
well as spatial gradients in this rigidity68,69 – two distinct
functions that require their own mechanistic designs.
Once a function of adhesion sites is sharply defined at a
phenomenological level, then the questions what are the
involved components and how they give rise to this func-
tion can be posed (Fig. 4A).

To understand the principles by which a protein net-
work performs a certain function we need to find out
how its components affect each other. A complete
quantitative description of such a network of effects
would include the spatial concentrations of all the com-
ponents, all the biochemical reactions between them
and the kinetic constants of these reactions. However
obtaining such complete and quantitative information
is fundamentally difficult, even for small intracellular
biochemical systems. Instead, the causal topology of the
protein network, which indicates how the active state of
each component affects the active state of the other
components, can be reverse engineered70,71 (Fig. 4A).
The causal topology of a network indicates its possible
dynamics and what underlie its response properties to
input cues.71 Hence reverse engineering can illuminate
the principles of how a protein network performs its
functions. Experimentally, reverse engineering requires
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systematic perturbations of the active state of the net-
work components (i.e., the acting components) and
quantifying the changes in the active states of the
others.71 The results are then processed to account for
indirect effects between components that are mediated
by other components in the considered network.70,71

Reverse engineering of protein networks in cell-
matrix adhesion sites encounters several challenges. Due
to the large number of integrin adhesome components
and the fuzzy boundaries of the network12,13,15 it is
unfeasible to define a priory the conclusive set of pro-
teins that are relevant to a certain function. The dense

network of interactions between integrin adhesome com-
ponents lack a clear modularity, making it problematic to
investigate it part by part. The pre-assembly of integrin
adhesome proteins to multi-protein building blocks,31 as
well as the multiple phosphorylation states possible for
many proteins,72 increase drastically the number of dis-
tinct biochemical species in the system. Many integrin
adhesome components have several activities that are
regulated separately, therefore the same protein may
have more than one type of active state. Finally, the
molecular heterogeneity of cell-matrix adhesion sites and
their rapid dynamics imply that changes in their

Figure 4. Engineering synthetic circuits for reverse engineering intracellular biochemical systems. (A) Generic pipeline of reverse engi-
neering a protein network, starting from defining its inputs and outputs and ending up with resolving its causal topology, which
explains its response properties. Experimentally, reverse engineering requires systematic perturbations of the system components and
measuring their effects on each other. (B) Synthetic biology can be applied to construct intracellular circuits enabling generic, acute and
flexible perturbations of the system components. (C) Left, an example of a biochemical system in which the states of the acting (i.e.,
active) components are defined by their conformation, interaction or post-translational modifications (PTM). The causal topology
describes how the level of each acting component affects the level of the others acting components. Accordingly, perturbations applied
for reverse engineering should alter the levels of the acting components either by converting their states or by depleting them.
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response to perturbations should be monitored in indi-
vidual adhesion sites and with high temporal resolution.
Due to these reasons, effective reverse engineering of
cell-matrix adhesion sites requires generic approaches
for systematic acute perturbations of their components
in cells.

Synthetic biology can facilitate reverse engineering of
cell-matrix adhesion sites by constructing switchable
interactions and circuits allowing for systematic acute
perturbations of integrin adhesome components
(Fig. 4B). CIDs and optogenetics can be implemented to
induce an interaction between a target protein and a
dimerization domain ectopically expressed on the sur-
face of a distal compartment,73 such as the mitochon-
dria.74 Thus, upon triggering of the interaction by an
addition of the CID or by light, the target protein will be
recruited to the mitochondria and thereby depleted from
the cytosolic pool. Reversible CIDs systems32,75 and
optogenetics42,43 enable to deplete and then to replete
the target protein in time scales of seconds to minutes.
Such reversible perturbations are valuable for reverse
engineering as they allow assessing if the investigated
system did not change qualitatively its properties upon
each perturbation. Since depletion of adhesion site com-
ponents can cause their gradual disassembly, reversible
perturbations that are faster than the disassembly process
will enable to check if components respond directly to
the perturbed components or are indirectly affected by
the destruction of the site. Reversible perturbations are
also valuable to assess directly if the system exhibits hys-
teresis or irreversibility. For example, depletion and
repletion of tyrosine phosphomimetic mutants of paxil-
lin76,77 and FAK,78 as active input components, can
reveal hysteresis or irreversibility in their phenotypic
outputs, including focal adhesions turnover, fibrillar
adhesions segregation, cell protrusion and cell migration.

Reverse engineering of intracellular biochemical net-
works is still a developing research field in systems biol-
ogy.79-81 The number of possible causal topologies
increases exponentially with the size of the considered
protein network. Therefore, a major challenge is reverse
engineering correctly the causal connections between
proteins in large networks in the presence of noise and
effects from other cellular components. The more dif-
ferent perturbations are applied on a studied network
more information about its causal topology can be
derived. Along this line, an emerging exploratory direc-
tion in the reverse engineering of intracellular systems
is the application of repetitive perturbations.82-85

Reversible CIDs systems,32 as well as optogenetics with
time varying light inputs,42,43 can generate such pertur-
bations by repetitive cycles of depletion and repletion of
the target component (Fig. 4B).

A quantum leap in our capabilities to reverse engineer
large intracellular systems would be achieved by generic
approaches for systematic, large scale, acute perturba-
tions of protein activities in cells. Synthetic biology can
be applied to construct inert intracellular circuits that
would interfere with the cellular system only by perturb-
ing one of its components86 (Fig. 4B). Such synthetic
circuits can be designed to generate oscillatory perturba-
tions.84,85,87-96 Currently, synthetic oscillatory circuits in
mammalian cells are based mainly on gene networks and
therefore generate low frequencies.89,90,94,97 However,
with the gradual expansion of the synthetic biology
toolbox toward controlling protein activities,98 the engi-
neering of fast, protein-network based, oscillators in
mammalian cells should become more feasible.91 Gener-
ating cell lines stably expressing the synthetic circuit
components would provide a modular and generic plat-
form in which only the target protein, fused to an effec-
tor binding domain and a fluorescent protein, should be
ectopically expressed.

Activation of the integrin adhesome proteins can be
based on conformational change, interactions or post-
translational modifications (Fig. 4C). The assembly of
multi-protein building blocks in the cytosol reduces the
specificity of the perturbations of the acting (i.e. active)
components. Depleting a protein by recruiting it to a dis-
tal compartment will deplete it in all of its states, includ-
ing the protein complexes embedding it. Therefore,
ultimately it would be highly beneficial to be able design-
ing synthetic switchable interactions depending not only
on external triggers but also on the states of the proteins
themselves. Such conditional switchable interactions
would allow the targeting of specific protein complexes,
phosphorylation states and conformations. Recent stud-
ies about engineering allosteric proteins98,99 could pio-
neer approaches for designing synthetic state-dependent
switchable protein interactions.

Conclusions

Several features make cell-matrix adhesion sites among
the most complex self-organizing intracellular devices.
Therefore their study requires, and inspires, novel con-
cepts and methods. Synthetic biology can synergize
with systems biology by designing intracellular mod-
ules and circuits facilitating informative interferences
with the integrin adhesome. Rewiring of building
blocks in the cytosol can help interrogating the assem-
bly logic of cell-matrix adhesion sites. Synthetic circuits
for acute perturbations of integrin adhesome compo-
nents would facilitate reverse engineering the mecha-
nisms by which protein networks in adhesion sites
perform their functions.
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