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Abstract

Microscale brain injury studies suggest axonal elongation as a potential mechanism for diffuse axonal injury (DAI).

Recent studies have begun to incorporate white matter (WM) structural anisotropy in injury analysis, with initial evidence

suggesting improved injury prediction performance. In this study, we further develop a tractography-based approach to

analyze fiber strains along the entire lengths of fibers from voxel- or anatomically constrained whole-brain tractography.

This technique potentially extends previous element- or voxel-based methods that instead utilize WM fiber orientations

averaged from typically coarse elements or voxels. Perhaps more importantly, incorporating tractography-based axonal

structural information enables assessment of the overall injury risks to functionally important neural pathways and the

anatomical regions they connect, which is not possible with previous methods. A DAI susceptibility index was also

established to quantify voxel-wise WM local structural integrity and tract-wise damage of individual neural pathways.

This ‘‘graded’’ injury susceptibility potentially extends the commonly employed treatment of injury as a simple binary

condition. As an illustration, we evaluate the DAI susceptibilities of WM voxels and transcallosal fiber tracts in three

idealized head impacts. Findings suggest the potential importance of the tractography-based approach for injury pre-

diction. These efforts may enable future studies to correlate WM mechanical responses with neuroimaging, cognitive

alteration, and concussion, and to reveal the relative vulnerabilities of neural pathways and identify the most vulnerable

ones in real-world head impacts.
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Introduction

Traumatic brain injury (TBI) is a leading cause of morbidity

and mortality in the United States.1 To better understand the

mechanisms of brain injury at the macroscale level, numerous ki-

nematic injury metrics have been proposed (e.g., peak linear [alin]

and/or rotational [arot] accelerations, or their derivatives such as

Head Injury Criterion [HIC],2 Rotational Injury Criterion [RIC]

and Power Rotational Head Injury Criterion [PRHIC],3 Brain In-

jury Criteria [BrIC],4 Generalized Acceleration Model for Brain

Injury Threshold [GAMBIT],5 Head Impact Poser [HIP],6 and the

HIT severity index7). Unfortunately, they are not directly related to

the brain mechanical responses believed to initiate the injury,8 and

as of yet, no consensus has been reached on an appropriate injury

metric or a threshold to date. Further, these metrics have been shown

to be less effective in injury prediction than brain mechanical re-

sponses estimated from validated finite element (FE) models.3,9–11

Most of the model-based injury studies use isotropic response

variables, such as the maximum principal strain (eep), that are

not capable of characterizing white matter (WM) axonal shear-

ing12,13 or elongation,14,15 both of which have been thought to

cause morphological injury and functional impairment in diffuse

axonal injury (DAI) at the microscale level. To address this in-

consistency, recent studies have begun to use strains along WM

fibers to characterize elongation of axonal bundles (termed ‘‘axonal’’

or ‘‘fiber’’ strain, en).11,16–22 Initial evidence suggests that fiber

orientation-dependent en improves injury prediction relative to its

isotropic counterpart, eep:
11,18,21,22

Ji and colleagues22 used subject-specific head FE models to

evaluate and compare en with eep for a group of 11 athletes with

concussion.22 They found that the two strain measures differed

significantly in distribution and extent of WM exposure to high

strains. Further, the distribution of WM regions with high en was

consistent with typical heterogeneous patterns of WM disruptions
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in DAI. On a group-basis, the average extent of WM injury assessed

at an optimal strain threshold also matched well with the percentage

of WM voxels experiencing significant longitudinal changes in

fractional anisotropy (FA) and mean diffusivity found from another

independent imaging study.23 These findings were supported by the

work from Giordano and Kleiven,11 who studied 58 National

Football League sports accidents and concluded that en performed

better in injury prediction than eep, CSDM (Cumulative Strain

Damage Measure based on eep
24), BrIC, or HIC.

While these studies suggest the importance of WM structural

anisotropy,25 continued development along this line of research by

incorporating whole-brain tractography derived from diffusion

tensor imaging (DTI) for en evaluation may improve the injury

prediction performance even further. The reason is that tracto-

graphy potentially allows more accurate estimation of fiber orien-

tations at each individual high resolution sampling point (e.g.,

every 1 mm along fibers or ‘‘streamlines’’) than those ‘‘averaged’’

at coarse FE elements or voxels (e.g., element size up to 7.73 mm,26

or DTI voxel size of 2 mm ·2 mm ·3.6 mm27).

For example, Chatelin and associates18 used weighted directions

averaged from 70–4096 DTI voxels for each element. Both Cloots

and coworkers17 and Wright and Ramesh19 employed a multiscale

approach to couple a macroscale three dimensional (3D) or two

dimensional (2D) head model, respectively, with a microscale el-

ement embedding a single axon. Work from Wright and col-

leagues,21 Kraft and associates,20 Sahoo and coworkers,26, and

Giordano and Kleiven27 assigned average FA values and fiber di-

rections to each element from coregistered DTI for strain evalua-

tion. Instead of averaging on elements, Ji and associates22

evaluated fiber strain at each DTI voxel transformed into the cor-

responding FE model space using strain tensors from the closest FE

element on a subject-specific basis.

Assessing tractography-based fiber strains is of particular in-

terest in WM regions with crossing fibers or other complex fiber

configurations. In addition, the ability to evaluate en at a finer

spatial resolution also enables assessing WM voxel-wise injury

vulnerabilities at a scale finer than a simple injured versus non-

injured binary status, as is commonly used. Perhaps more impor-

tantly, analyzing strains along the entire lengths of fibers enables

assessing the injury risks to WM neural pathways or tracts, which is

not possible with previous element/voxel-based studies that are

limited to anatomical regions of interest (ROIs). Because axons and

their bundles are neural processes that connect neuronal cell bodies

and transmit information between them,28,29 it is reasonable to

assume that any damage along the axons, regardless of the location

(within or outside the boundary of any traversing ROI), would

constitute potential functional impairment.20

The goal of this study was to develop a technique to evaluate en

along voxel- or anatomically constrained whole-brain tracto-

graphy, which has not been performed before. An ‘‘injury sus-

ceptibility index’’ was developed to quantify injury vulnerabilities

with a finer, graded ‘‘likelihood’’ of injury of discrete WM voxels

or individual neural pathways, extending previous efforts where

typically a dichotomous injury status was instead assigned. As an

initial step, here we focus our efforts on comparing the new

tractography-based method and our previous voxel-based tech-

nique for fiber strain analysis using idealized head rotations.

As an illustration, we investigated the injury susceptibilities of

the whole-brain WM voxels as well as transcallosal fiber tracts

traversing the corpus callosum (CC). Finally, these efforts allowed

us to investigate the en response’s directional sensitivity. If en is

indeed a more effective injury predictor, our investigation using a

realistic 3D model incorporating whole-brain tractography is a

significant advancement over previous studies using 2D head

models coupled with projections of fiber directions 21 or those

based on eep:
30–32 Collectively, these efforts extend our previous

investigations22,33,34 and set the stage for future studies to explore

the causal relationships among brain mechanical responses, WM

structural integrity, and brain functional alteration or clinical

symptomatic measures in subjects with TBI.

Methods

The Dartmouth Head Injury Model

All brain strain responses were obtained using the Dartmouth
Head Injury Model (DHIM; Fig. 1). The DHIM is a subject-
specific model created with high mesh quality and geometrical
accuracy based on high-resolution magnetic resonance imag-
ing (MRI) of an athlete. Details of the model description, ma-
terial properties, and validation performances were reported
previously.22,35,36

Briefly, the DHIM is composed of solid hexahedral and surface
quadrilateral elements with a total of 101.4 k nodes and 115.2 k

FIG. 1. The Dartmouth Head Injury Model (DHIM) showing the head exterior (a) and the brain components (b). The model
incorporates whole-brain tractography from the same individual used for the baseline DHIM creation. A subset of fractional anisotropy-
encoded transcallosal fibers is shown (b). CSF, cerebrospinal fluid. Color image is available online at www.liebertpub.com/neu

WHITE MATTER INJURY SUSCEPTIBILITY 1835



elements and a combined mass of 4.562 kg for the whole head. The
brain has a total of 56.6 k nodes and 55.1 k elements, with a
combined mass of 1.558 kg. The average element sizes for the
whole head and the brain are 3.2 – 0.94 mm and 3.3 – 0.79 mm,
respectively.

The entire brain is modeled with the C3D8R type of hexahedral
elements37 using a homogenous, second-order Ogden hyperelastic
material model with rate effects incorporated through linear vis-
coelasticity. A layer of soft elements representing the cerebrospinal
fluid between the brain and its neighboring structures (skull, falx,
and tentorium) is incorporated by node sharing to enable brain
interfacial sliding.

The DHIM has successfully passed the numerical convergence
test and is of high mesh quality in terms of warpage, aspect ratio,
skew, Jacobian, minimum length, and minimum/maximum an-
gle.22 In addition, the model has been successfully validated against
relative brain-skull displacement38,39 and intracranial pressure
responses40,41 from cadaveric experiments, as well as full-field
strain responses in a live human volunteer.42 The overall ‘‘good’’
to ‘‘excellent’’ validation at the low (*250–300 rad/s2 for the
volunteer), mid (*1.9–2.3 krad/s2 for impact tests C755-T2 and
C383-T1), and high (*11.9 krad/s2 for test C393-T4) levels of
arot peak magnitudes as well as pressure responses provided
important confidence of the accuracy of DHIM-estimated brain
responses. In this study, the high-resolution T1-weighted MRI
and DTI of the same individual used to develop the baseline
DHIM were used for image registration, tractography, and strain
computation.

Neuroimage acquisition

T1-weighted MRI (Magnetization Prepared Rapid Gradient
Echo, MPRAGE; voxel resolution of 1.2 mm ·1 mm ·1 mm) and
DTI (isotropic resolution of 2 mm) scans were acquired in the
Dartmouth Advanced Imaging Center. DTIs had 46 diffusion di-
rections (collected with b = 1000 s/mm2, NEX = 1) plus an addi-
tional volume without diffusion gradients (b = 0) serving as a
reference image. Diffusion tensors, eigenvectors, and scalar dif-
fusion parameters were computed using a well-established tracto-
graphy software package, ExploreDTI,43 with corrections for eddy
currents and motion before fitting a tensor model.

In this study, we used the pre-season DTI scans of the selected
person to generate whole-brain tractography via ExploreDTI using
the default set of parameters for a deterministic streamline ap-
proach, which were selected for optimized performance.43 Tracts
were propagated from all brain voxels as seed points following the
direction of the principal diffusion orientation at each seed point
and subsequent voxel with a 1 mm step size and linear interpola-
tion. Tracts were terminated if FA fell below a specified threshold
(0.2) or if the tract angle changed by more than 30 degrees. All
tracts with lengths of 50 to 500 mm were retained, resulting in *35
k fibers for the selected individual.

Voxel- and anatomically constrained fiber tract
clustering

Intravoxel fibers traversing a given voxel were identified from
the whole-brain tractography by testing whether any fiber sampling
point fell inside the boundary of the corresponding hexahedral el-
ement converted from the voxel. Automatic clustering of fiber
tracts/bundles based on anatomical ROIs is still an active, ongoing
research topic. Here, we adopted an existing method44 to identify
transcallosal fibers using the ICBM DTI-81 WM atlas45 as an an-
atomical constraint. This atlas is a stereotaxic probabilistic map
averaged from 81 normal subjects with hand-segmented WM
parcellation of 50 deep WM structures. The atlas is provided within
a standard anatomical template (ICBM-152, isotropic image reso-
lution of 1 mm45), which allows for transformation of a given in-
dividual’s MRI and WM atlas into the same coordinates via affine
registration. The registration was performed between the
MPRAGE MRI of the individual selected for DHIM creation and
the ICBM-152 template, using the ITK Segmentation and Regis-
tration Toolkit (Version 4.7; Fig. 2).

Transcallosal fibers from the whole-brain tractography were
identified by testing whether they traversed the genu, splenium, or
main body of the CC based on the ICBM DTI-81 WM atlas. This
could be determined by first transforming the fiber sampling points
into the WM atlas space and then rounding their coordinates to their
closest voxels to perform a voxel-wise overlapping test.44 Alter-
natively, we converted CC voxels into hexahedral elements instead
and directly tested whether real-valued coordinates of fiber sam-
pling points fell inside the outer boundary of the aggregated hex-
ahedral mesh. This avoided rounding errors and reduced the
number of spuriously intersecting fibers.

To further minimize ‘‘outlier’’ fibers spuriously intersecting the
target region, thresholding was performed based on the number of
intersection points.44 Additional filtering based on geometry and
tract self-consistency was also performed (e.g., by fitting each fiber
into a plane to test its orientation, or by assessing the average
distance from fiber sampling point relative to the tract centroid).
For each CC subregion, less than 3% of the total number of fibers
were considered spurious and were thus removed. This led to 1740,
2866, and 2661 fibers retained for the genu, splenium, and main
body of the CC, respectively. The clustering process is illustrated in
Figure 3.

Idealized head impacts

Brain responses corresponding to axial, coronal, and sagittal
(anterior-to-posterior) rotations (Fig. 4a) were selected from an
existing pre-computed brain response atlas (pcBRA32,46). The
pcBRA employs triangulated arot impulses applied to the head
center of gravity (skull, scalp, and facial components were sim-
plified as rigid bodies). The shape of the acceleration impulse is not
important (e.g., triangular, sine, or haversine), as long as the peak
rotational velocity and impulse duration remain identical.46

FIG. 2. Checkerboard images overlaying the individual’s magnetic resonance image (appears lighter) with the coregistered ICBM-152
template (background; appears darker) on two axial planes (a,b). The alignment (arrows) suggests a satisfactory registration. A 10%
randomly selected subset of the individual’s fractional anisotropy-encoded, whole-brain tractography is shown in the ICBM-152 space (c).
Color image is available online at www.liebertpub.com/neu
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For the selected brain responses, the arot impulse had a peak
magnitude of 4.5 krad/s2, which was the 95th percentile of all
measured arot peak magnitudes observed in collegiate ice-hockey
(concussed and nonconcussed47) and was slightly below the me-
dian or average arot peak magnitudes for concussive impacts
measured in collegiate football.48 The impulse duration was 10
msec (average value for alin found in high-school football49; report
on typical duration for arot unavailable). The total simulation time
was 28 msec with a temporal resolution of 1 msec, which was
composed of a 10 msec acceleration impulse plus an additional
18 ms ‘‘hold’’ with zero arot (i.e., at a constant rotational velocity)
to ensure peak responses were captured (Fig. 4b).

The choice of this particular acceleration-only profile without
deceleration was made to mimic actual on-field head impact data
available, where a single largest acceleration peak dominates.50,51

Linear acceleration, alin, was not used here because alin -induced
brain strain responses are negligible because of the near in-
compressibility of the brain. This was confirmed in terms of both
maximum principal strain, eep (using DHIM and an independently
developed head model, SIMon36), and WM fiber strain, en::

21

Injury susceptibility index

For each WM DTI voxel, the accumulated peak en, regardless
of the time of occurrence, ep

n, was computed for all its enclosing
sampling points based on the Lagrangian strain tensor.22 Each
sampling point was considered ‘‘injured’’ when its ep

n exceeded a
given threshold, ethresh. A voxel-wise injury susceptibility index,
uvoxel, was defined as the fraction of ‘‘injured’’ sampling points
within the voxel, or formally:

uvoxel ethreshð Þ¼ # of injured sampling points within the voxel

total # of sampling points within the voxel
:

(1)

The value of uvoxel in percentage ranges from 0% (no injury) to
100% (fully damaged).

Quantifying WM structural integrity or the ‘‘likelihood’’ of in-
jury locally at each voxel is important to correlate brain mechanical
responses with neuroimaging at the voxel level. Nonetheless, it
does not capture the degree of functional impairment of a neural
pathway, which could be of interest for clinical symptomatic
measures. Here, we considered an anatomically constrained fiber
(i.e., a single streamline in tractography passing through a given
ROI) as injured when at least one sampling point, regardless of the
location — either within or outside the ROI boundary—has ep

n

exceeding ethresh. This is important, because global functional im-
pairment of a fiber could occur regardless of the injury location. A
tract-wise injury susceptibility index (utract) was therefore analo-
gously defined as the fraction of injured fibers from the entire tract:

utract ethreshð Þ¼ # of injured fibers for the given neural tract

total # of fibers for the given neural tract
:

(2)

The injury susceptibility indices depend on a pre-defined injury
threshold. For illustration purposes, here we selected two repre-
sentative ethresh values (0.18 and 0.09, corresponding to the upper
and lower bounds of a conservative threshold; the former is also an

FIG. 3. Illustration of anatomically or region of interest (ROI) constrained fiber tract clustering. (a) Fractional anisotropy-encoded
whole-brain tractography overlaid within the Dartmouth Head Injury Model brain mesh boundary; (b) anatomical boundaries of the
three corpus callosum subregions; (c) the resulting ROI-constrained transcallosal fiber tracts; (d) spurious fibers further filtered. A 10%
randomly selected fiber sample is shown. Color image is available online at www.liebertpub.com/neu
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‘‘optimal’’ threshold14) to create injury susceptibility maps based
on the voxel-wise average ep

n. While these injury thresholds drawn
from an in vivo animal study do not apply directly to the human
brain, the optimal value was comparable to thresholds established
from other real-world injury analyses in human TBI studies (albeit,
based on eep ; e.g., 0.21 in the CC or 0.26 in the gray matter, or 0.19
in the gray matter52,53). The lower bound value was also selected
here because it was likely relevant to subconcussive impacts to the
brain (which most likely correspond to a lower threshold).

Strategies to assess tract-wise injury susceptibility

Effectively, utract incorporates the axonal structural information
to evaluate injury susceptibilities of WM neural tracts. Current
model-based studies, however, typically assess the degree of injury
based on an aggregated volume fraction of the whole-brain or
specific anatomical ROIs exceeding a threshold, regardless of the
location or distribution of high strain exposures.3,4,31,54 Therefore,

we further compared utract with injury susceptibility measures
based on the number or ‘‘fraction’’ of all sampling points as well as
all traversing WM voxels for a given tract, regardless of whether
injury occurred along the same or different fibers. Two additional
injury susceptibility measures are defined, analogously to the
CSDM24 but applied to a neural tract:

upoint
tract ethreshð Þ¼ # of injured sampling points for the tract

total # of sampling points for the tract
; (3)

and

uvoxel
tract ethreshð Þ¼ # of injured traversing WM voxels

total # of traversing WM voxels for the tract
:

(4)

The different WM injury susceptibility indices are illustrated in
Figure 5.

Data analysis

Voxel-wise binary injury maps were created by considering
voxels with uvoxel > 50% as ‘‘injured’’ (i.e., chosen as the mean
value of uvoxel corresponding to no injury (0%) and full damage
[100%]). Similarly, binary injury maps based on averaged fiber
orientations were also produced using the previous voxel-based
approach.22 The two injury maps were then compared in terms of
predicted WM injury percentages and Dice coefficient (d) to assess
the extent of injury and consistency in injury distribution, re-
spectively. The Dice coefficient was previously used to compare
predicted injury distributions using ep

n and the corresponding ac-
cumulated peak eep, ep

ep.22

For the three transcallosal fiber tracts, distributions of ep
n were

generated for comparison. The tract-wise injury susceptibility in-
dex, utract, and the resulting binary ‘‘injury’’ prediction depend on
ethresh (Eqn. 1). A definitive ethresh for the human brain has not been
established, however. Therefore, we parametrically varied ethresh

across a range of values (range 0–0.25, with a step size of 0.0025) to
create ethresh-dependent functions to gain insight into its signifi-
cance for utract. Further, we compared utract with upoint

tract and uvoxel
tract .

The computational time to obtain ep
n for all WM voxels (N = 64.3 k)

for a 28 msec impact simulation using the voxel- and tractography-
based approach was*12 min and*66 min, respectively. The time to
obtain ep

n along the transcallosal fiber tracts (total of 7267 fibers with
813.2 k sampling points) was *28 min, which scaled approximately
linearly when compared with running on a 10% subset. All data
analyses were performed with in-house programs (not yet optimized)
in MATLAB (R2014a; MathWorks, Natick, MA) on a 12-core Linux
machine (Intel Xeon X5560, 2.80 GHz, 126 GB memory).

Results

The voxel- and tractography-based approaches produced largely

similar distribution patterns for real-valued ep
n for the three ideal-

ized impacts (Pearson correlation coefficient of 0.92, 0.91, and 0.90

for the axial, coronal, and sagittal rotation, respectively, with p = 0;

Fig. 6). Not surprisingly, the latter produced smoother distributions

because more sampling points were used to compute an average ep
n

for each voxel (vs. effectively only one with the former). The

corresponding maps of uvoxel (0.09) are also shown.

The tractography-based binary or dichotomous injury maps

(thresholded from real-valued ep
n maps in Fig. 6) were compared

against those generated from the voxel-based approach (Fig. 7).

The two ep
n evaluation techniques produced discordant distributions

of voxels susceptible to injury, especially when ethresh was high (the

average Dice coefficient, d, dropped from 0.81 to 0.66 when ethresh

increased from 0.09 to 0.18; Table 1). For all injured voxels

FIG. 4. Illustration of the three idealized head rotations (a) and
the acceleration/velocity profile used for impact simulation (b).
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predicted by at least one approach, one-tailed two-sample t tests

indicated that voxels consistently predicted as injured by both

techniques had a significantly higher mean FA value than those

predicted by only one method, regardless of ethresh or rotational

direction ( p < 0.01; Table 1). Interestingly, both approaches pre-

dicted a comparable extent of potential injury for the whole-brain

WM voxels, or proportion of CC subregions affected, regardless of

ethresh or rotational direction (Table 2).

To further compare the two strain evaluation approaches,

three representative voxels in the axial rotation were selected

that were either consistently predicted as potentially injured by

both techniques or by one but not the other (Fig. 8). Their en

response histories are shown (Fig. 8b). When intravoxel fibers

were highly aligned (corresponding to a high FA value for the

voxel; Fig. 8c), ep
n responses varied smoothly across the sampling

points. Heterogeneity and discontinuity were evident when

otherwise (Fig. 8d and e).

For the range of ethresh values, utract was computed for each CC

subregion and head impact (Fig. 9). Consistent with the distribu-

tions of real-valued ep
n (Fig. 6) and thresholded, binary-valued in-

jury locations (Fig. 7), the axial and sagittal rotations appeared the

most and least damaging, respectively, in terms of the number of

voxels with high ep
n exposures. The relative vulnerabilities of the

three CC subregions, however, depended on the direction of head

rotation (e.g., the genu was the most vulnerable in an axial rotation,

but was the least in the other two rotations). The relative vulner-

abilities were similarly observed using upoint
tract and uvoxel

tract that em-

ployed the aggregated numbers of injured sampling points and

voxels, respectively (Fig. 10). They were significantly lower,

however, than the corresponding utract based on the injured fibers

that incorporates WM axonal structural information.

Discussion

Recent brain injury studies suggest the importance of incorpo-

rating WM structural anisotropy for improved injury prediction

performance.25 Here, we extended previous work that used average

orientations on coarse elements18,20,21,27 or voxels22 to analyze

accumulated peak fiber strain, ep
n, along the entire lengths of fibers

using whole-brain tractography. Each fiber was represented by

high resolution (1 mm) sampling points, improving on the native

DTI voxel resolution (2 mm). More importantly, a tractography-

based analysis allowed assessment of injury vulnerabilities of

entire WM neural pathways, which is not possible with previous

ROI-based methods.

Assessing the mechanical responses of functionally important

WM neural pathways may be of particular interest for future studies

that correlate them with subtle changes in cognition for brains with or

even without clinically diagnosed concussion.33,55 As an initial il-

lustration, we have demonstrated this tractography-based technique

using idealized head impacts in the context of sports-related con-

cussion for all WM voxels as well as three transcallosal fiber tracts,

with results compared with those from a voxel-based approach.

At the voxel level, a unique capability of our tractography-based

technique that appears unachievable with an element/voxel-based

analogue was to enable assessment of the ‘‘degree’’ (vs. dichoto-

my) of WM structural damage. This was quantified in terms of a

voxel-wise injury susceptibility index (uvoxel), which is essentially

the proportion of ‘‘injured’’ intravoxel sampling points.

This ‘‘graded’’ susceptibility (vs. a binary injury status) may

provide a confidence measure in injury definition. For example, it

could serve as a voxel selection criterion when comparing brain

mechanical responses with longitudinal neuroimaging alterations

(e.g., larger uvoxel values indicate higher likelihood of injury).

Potentially, this concept may be further extended to an anatomical

ROI, in which case a uROI can be analogously defined to charac-

terize a regional injury susceptibility (Fig. 5). Such voxel-wise or

ROI-based utilities await further exploration.

Interestingly, with an empirical injury susceptibility threshold of

50% to define a binary injury, the tractography-based approach

predicted an extent of WM injury (i.e., volume fraction or number

of injured voxels) comparable to that from the voxel-based tech-

nique for all cases evaluated (Table 2). This finding suggests a

certain fundamental concordance between the two approaches. For

a ‘‘binary’’ injury prediction based on the volume or number of

injured WM voxels for the whole-brain, a DTI voxel-based method

appears sufficient and may be preferred because of its relatively

modest computation relative to the tractography-based analogue

(*12 min vs. *66 min in this work).

The two approaches can differ significantly, however, in terms

of binary injury distribution after thresholding (despite the similar

pattern of real-valued ep
n maps; Fig. 6), especially in regions with

low FA values or at a high ethresh, as evidenced by Dice coefficients

(Table 1). These observations suggest further studies using real-

world injury cases are required to discern the relative injury pre-

dictive power of the two competing strain evaluation techniques,

e.g., by correlating injury predictions with voxel-wise neuroima-

ging findings.23,56

Regardless, another unique capability of our tractography-

based technique is to assess injury susceptibilities for functionally

important WM neural pathways, which does not appear feasible

with a voxel-based approach. Because fibers serve as communi-

cation connections between functionally important cortical areas,

injury assessment along their entire lengths (vs. confined within

an ROI boundary) is likely critical to capturing the overall vul-

nerability of a given neural pathway. This is illustrated in

Figure 8a (arrow), where potential injury locations with high ep
n

exposures occurred outside the anatomical boundary of the CC,

FIG. 5. Illustration the different injury susceptibility indices
(see text for details). ROI, region of interest.
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but in tracts directly linked to it. This finding suggests that pre-

vious region-based, element-/voxel-wise injury studies may not

be able to capture the overall vulnerability of ROI-associated WM

neural pathways, which are important structural substrates to

brain function.

The degree of damage to neural tracts can be similarly assessed

with a tract-wise injury susceptibility index, which is essentially

the proportion of potentially injured fibers, a measure intended to

approximate that of ‘‘injured’’ axons.57 As an illustration, we

computed utract based on ep
n for the three major transcallosal fiber

clusters traversing the genu, splenium, and main body of the CC.

Results from a 10% subset of fibers were virtually identical to that

from the full set for all cases evaluated regardless of ethresh (a linear

fit of utract between the two sets led to a Pearson correlation co-

efficient of 0.99 for the pooled data, not shown; Fig. 9).

The feasibility to down-sample while preserving utract is im-

portant, because fibers from tractography themselves are effec-

tively a representative approximation of the actual whole-brain

axons. Further, reduced computational cost is an important

practical benefit. Excessive down-sampling should be avoided,

however, as insufficient sampling may cause utract to become

unreliable.

The utract was designed to incorporate WM axonal structural

information to assess the damage to neural tracts. Current strain-

based injury metrics, however, consider the aggregated measure

of the injured volume. Therefore, we compared utract with two

additional injury susceptibility indices based on the total number

of neural tract sampling points or traversing voxels, upoint
tract and

uvoxel
tract , respectively. For all the three CC subregions regardless of

the rotational direction, the two aggregated susceptibility indices

were largely comparable between themselves (Fig. 10). This was

not surprising, because they effectively sampled the same spatial

domain (albeit, with different sampling resolutions). The two

aggregated measures, however, were significantly lower than

utract, suggesting their potential underestimation of damage to

neural tracts.

The current definition of utract does not differentiate the relative

susceptibility based on the number of sampling points with high ep
n

exposure or the magnitude of ep
n along each fiber. A proper ‘‘injury

confidence’’ weighting factor may be effective to further enhance

FIG. 6. Maps of ep
n using the voxel- (top) and tractography-based (middle row) approaches, along with the injury susceptibility

maps (bottom) on a selected axial or sagittal magnetic resonance image in axial, coronal, and sagittal rotation (from left to right,
respectively). Color image is available online at www.liebertpub.com/neu
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utract. Regardless, the injury assessment utility of utract that in-

corporates WM axonal structural information has not been em-

ployed before. This awaits further exploration.

WM injury directional dependency

Numerous model-based30,32,58 and animal59–61 injury studies

have reported injury directional dependency. Our results were

largely consistent with previous findings based on ep
ep, regardless of

the strain evaluation technique. The axial rotation produced the

largest extent of injury for the whole-brain WM (Table 2), which

was consistent with previous reports based on ep
n, 21 regional av-

erage ep
ep,32 or CSDM.31 The axial rotation also led to the largest

tract-specific utract in all three CC subregions (Fig. 9). The genu and

splenium generally had a larger injury susceptibility than the main

body in this rotation.

In the coronal rotation, the main body had the largest injury

susceptibility. Contrary to earlier reports based on ep
ep, 30,32 how-

ever, this rotation did not result in the largest damage to the CC

anatomy (Table 2). Besides the different strain measures and ki-

nematic inputs used, the discrepancy may be attributable to dif-

ferences in the CC anatomy employed (ICBM atlas45 here vs.

FreeSurfer segmentation22; these give CC volume of 34.7 cm3 and

lateral width of 34 mm vs. 10.5 cm3 and 12 mm, respectively).

While no injury was predicted in the CC anatomy in the sagittal

rotation at the optimal ethresh (Table 2), a nonzero tract-specific

utract of 8.3% was observed for the CC main body (Fig. 9). This

difference highlighted an important distinction between the voxel-

wise and tract-specific injury susceptibility indices. The former

measures local structural integrity by counting injured sampling

points within the voxel or ROI. In contrast, the latter assesses global

functional damage by counting injured fibers regardless of whether

FIG. 7. The ICBM-81 white matter (WM) atlas warped onto the individual’s anatomical magnetic resonance image (MRI) (a and e;
on axial and sagittal MRI, respectively). Binary injury maps overlaid on an axial (for axial (b and f) and coronal (c and g) rotations) and
a sagittal (for sagittal rotation; d and h) MRI. ‘‘Injured’’ voxels (i.e., corresponding to ep

n > ethresh) are color-coded depending on whether
they were predicted by both or by only one of the strain evaluation techniques. For each MRI shown, the corresponding Dice coefficient,
d, is reported. (ep

n, tract and ep
n, voxel, refer to ep

n obtained from the tract- and voxel-based techniques, respectively). Color image is available
online at www.liebertpub.com/neu

Table 1. Comparison of Predicted Distributions of Potential ‘‘Injury’’ Locations in Terms of Dice Coefficient,

d, between the Voxel- and Tractography-Based Approaches at Two ethresh Levels

ethresh Axial Coronal Sagittal Avg.

0.09 Dice coefficient, d 0.86 0.81 0.76 0.81
FA Both predicted ‘‘injury’’ 0.51 – 0.16 (8.6 k) 0.51 – 0.18 (3.0 k) 0.48 – 0.15 (3.2 k) 0.50

Only one predicted ‘‘injury’’ 0.34 – 0.16 (2.7 k) 0.40 – 0.16 (1.4 k) 0.41 – 0.15 (2.0 k) 0.38

0.18 Dice coefficient, d 0.74 0.62 0.63 0.66
FA Both predicted ‘‘injury’’ 0.51 – 0.16 (1.7 k) 0.44 – 0.22 (126) 0.40 – 0.13 (83) 0.45

Only one predicted ‘‘injury’’ 0.42 – 0.16 (1.2 k) 0.37 – 0.16 (152) 0.33 – 0.15 (96) 0.37

FA, fractional anisotropy.
Voxels consistently predicted as ‘‘injured’’ by the two approaches had a mean FA value significantly higher than those predicted by one but not the

other. The numbers of identified voxels for each case are shown in parentheses.
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the injury occurred within or outside the corresponding anatomical

boundary (Fig. 8).

Unlike a previous study that reported no injury in this rotation at

the optimal threshold,21 we also identified a small amount (0.2–

0.3%) as potentially injured (Table 2). The discrepancy may have

been the result of differences in simulated head impacts. In addi-

tion, the simplified 2D head models of 21, coupled with fiber di-

rection projections that were unable to capture intrinsic 3D brain

deformations (vs. a realistic 3D model with actual 3D fiber direc-

tions in our study), may also be responsible.

Finally, the directional dependency found with ep
n is also largely

consistent with findings from an early monkey study.59 The extent

of DAI increased from sagittally to coronally rotated monkeys.

Most axonal damage occurred in both cerebral hemispheres and the

CC in axial and coronal rotations (all monkeys injured), while

sagittal rotations only produced axonal damage in the cerebral

hemispheres (in five of nine injured).

WM injury susceptibility

An important purpose of our study was to propose WM injury

susceptibility indices to assess local structural integrity and func-

tional damage to individual neural pathways (uvoxel and utract, re-

spectively). Faithful and quantitative measurement of WM structural

integrity at the voxel level may be important for direct correlation

with longitudinal alterations in neuroimaging and with behavioral

and cognitive measures in mild TBI, as suggested in numerous DTI

studies (e.g., longitudinal changes in DTI parameters,23,34,62 or WM

abnormalities63,64). The voxel-wise susceptibility index may offer

useful clinical insights and potentially serve as an important bridge

among external head impacts, tissue-level mechanical responses, and

neuroimaging, as previously attempted.21,34

Further, the tract-wise susceptibility index may also serve as a

quantitative indicator for the relative vulnerabilities of WM neural

Table 2. Summary of the Predicted Extent of Injury

(as Percentages) for the Whole-Brain White Matter

Voxels and the Three Corpus Callosum Subregions

Using the Voxel- and Tractography-Based

(in Parenthesis) Approaches at Two ethresh Levels

ethresh Axial % Coronal % Sagittal %

0.09

Whole-brain 14.84 (16.05) 5.71 (5.99) 6.19 (6.61)
Genu 35.53 (37.06) 1.53 (2.01) 2.20 (1.81)
Main body 15.61 (16.85) 14.48 (15.31) 0.95 (0.59)
Splenium 27.04 (28.72) 7.23 (7.48) 3.18 (2.55)

0.18

Whole-brain 2.95 (4.12) 0.29 (0.34) 0.15 (0.25)
Genu 20.06 (23.30) 0 (0) 0 (0)
Main body 3.56 (4.57) 0.83 (1.31) 0 (0)
sSlenium 0.12 (0.37) 0 (0) 0 (0)

FIG. 8. Illustration of ep
n responses of intravoxel sampling points in three voxels. Intravoxel fiber sampling points are color-coded by

ep
n from the tractography-based approach (ep

n, tract) using strain tensors from their nearest elements, as shown. n, number of intravoxel
fibers, which was 45 – 35 on average (range 0–269) for whole-brain white matter voxels; h, angle between each fiber and the voxel-
based average fiber orientation (arrows in b–d). All results based on ethresh of 0.09. (a) Voxel locations. (b) Time histories of en, voxel for
the three identified voxels. (c) Both the voxel- and tractography-based approaches predicted potential ‘‘injury’’ for voxel #1. (d) The
voxel-, but not the tractography-based, method predicted ‘‘injury’’ for voxel #2. (e) Vice versa for voxel #3. CC, corpus callosum. Color
image is available online at www.liebertpub.com/neu
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pathways. For example, because injury is assumed whenever high

fiber strain occurred anywhere along an entire fiber length, re-

gardless of the location, the tract-specific utract implies longer tracts

will be more prone to injury (notwithstanding potential difference

in strain distributions between long and short tracts, or differences

in injury tolerance). Indeed, this finding is consistent with neuro-

pathological and DTI studies65 that report long tracts—for exam-

ple, frontal and temporal association WM tracts—are more

susceptible to injury in mild TBI62,66 and in moderate to severe

brain injuries.67 Therefore, we anticipate that the tractography-

based ep
n evaluation technique and injury susceptibility measure

developed here in the context of sports-related concussion or mild

TBI may also be applicable to other, more severe strain-induced

WM injuries.

Limitations

Several limitations must be noted. First, while we have focused

our effort here on developing a tractography-based fiber strain

evaluation technique and compared it with a previous voxel-based

counterpart, we did not use real-world injury cases to discern their

potential differences in injury prediction performance. On the

voxel-level, the two approaches appear to differ primarily in pre-

dicting WM injury location and spatial distribution (Fig. 7 and

Table 1), rather than the extent or binary injury status of the whole

brain, according to results from the three idealized head impacts

(Table 2). Therefore, real-world injury/noninjury cases with neu-

roimaging available (as opposed to injured vs. noninjured status

only)11,68 may be necessary to serve as an independent source

of voxel-wise injury markers to correlate injuries with biome-

chanical findings.

Further investigations are needed to confirm the importance of a

tractography-based approach and to verify the clinical significance

of the WM injury susceptibility measures we established. These

points will be the focus of future studies.

Second, there are limitations related to the neuroimaging data

and tractography techniques currently available. Our tractography-

based strain evaluation was based on ExploreDTI-generated trac-

tography; however, it has been shown that different software

packages can produce discordant results.69 Therefore, there is some

uncertainty about the accuracy of tractography-based results, and

there is a need to better understand the impact of tractography

software packages and/or techniques/parameters on ep
n and the re-

sulting injury susceptibilities, which is beyond the scope of our

current study.

In addition, fibers from tractography are still much larger in di-

mension than axons, and they do not incorporate features such as

neuronal plasticity or dynamic ‘‘rewiring’’ on injury29 that could be

important to brain function as well. Regardless, we anticipate that our

technique could be easily adapted when more advanced neuroimaging

and/or more accurate tractography becomes available in the future.

Third, although our fiber sampling points were of high resolu-

tion (1 mm; generated from isotropic 2 mm DTI voxels), the DHIM

mesh is still relatively coarse (average element size of 3.3 – 0.79 mm;

FIG. 9. Tract-wise injury susceptibility index, utract, as a function
of ethresh for each corpus callosum (CC) subregion in (a) axial, (b)
coronal, and (c) sagittal rotations. The results from the same 10%
subset were virtually identical to those from the full set. At the
‘‘optimal’’ ethresh of 0.18, the largest utract of 96.8% was observed
for the genu in the axial rotation. The largest values of 25.3% and
8.3% occurred in the CC main body with coronal and sagittal ro-
tations, respectively.
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total number of 55.1 k). Because a nearest neighbor interpolation

was adopted,22 the same strain tensor was used for all fiber sam-

pling points within an element. Some resolution loss in ep
n spatial

distribution is possible (Fig. 8). This limitation because of data

discretization is common and well recognized in medical imaging.

Conceptually, the same limitation applies equally to other

studies that incorporate averaged fiber orientations derived from

uniformly sized DTI voxels into (even coarser) FE elements that

typically have a range of sizes across the brain with differing local

orientations. For example, Sahoo and associates26 used isotropic

1 mm DTI voxels and 5320 brain elements of size 1.14–7.73 mm.

In comparison, the KTH model coupled voxels of size 2 mm ·
2 mm · 3.6 mm with 7128 brain elements, whose information on FE

element size appears not available (albeit, anticipated to be com-

parable to the earlier example).27

To mitigate this issue, a multiscale simulation approach—

already performed in brain injury analysis17,19—can be employed.

This is analogous to the ‘‘multiresolution’’ strategy widely adopted

in medical image registration. In this case, our relatively coarse FE

mesh (compared with the 1 mm fiber sampling points) could serve

as an initial estimation of whole-brain responses, from which more

targeted, potentially injured, regions can be localized. A second

level simulation with locally refined mesh resolution can then be

employed to potentially improve accuracy.11 Such a multiscale

simulation strategy may offer an excellent compromise between

accuracy and runtime. In addition, WM material anisotropy can

also be incorporated at the microscale using explicit mesh repre-

sentations, thereby avoiding the limitations in current studies that

use rather coarse elements, as similarly envisioned.11

A fourth limitation is that the injury susceptibility only incor-

porates strain and not strain rate, which could also be important.70

In addition, there may be regional differences in injury tolerance71

that were not considered. We anticipate, however, that our injury

susceptibility indices could be extended to combine both strain and

strain rate (i.e., resulting in a function dependent on both variables)

and further incorporate regional injury thresholds when they be-

come available for injury definition.

Fifth, our tract-specific injury analysis was only applied to three

CC subregions as an illustration. Nevertheless, we anticipate that

the technique could be extended to other neural pathways (as many

as 130 according to some investigators72). The significant addi-

tional computational time (*28 min for the three transcallosal

tracts, which is expected to scale with the number of tracts con-

sidered) could be a concern. This may be mitigated by tract down-

sampling (e.g., using a 10% subset) to greatly reduce calculation

time without significantly altering the results (Fig. 9). In addition, a

pre-computation strategy may also be effective in the context of

contact sports,32,46 because the head’s impact temporal character-

istics appear largely similar within or across subjects.50,51 On the

other hand, when using realistic head impacts as model inputs,

tract-specific injury susceptibility indices could allow assessment

of the relative injury vulnerabilities of neural pathways to identify

the most vulnerable ones in real-world injury scenarios. These will

be the subjects of future investigations.

Last, similarly to other works evaluating fiber strain,19,73 the

DHIM uses a homogenous, isotropic material model for the entire

brain. It does not yet incorporate material property heterogeneity74

or WM material anisotropy (vs. structural anisotropy) resulting

from fiber reinforcement.26,27 While more sophisticated material

properties for the brain may further enhance the model predictive

power, we chose not to incorporate them in our current work for

several practical reasons.

First, the fiber strain magnitude appears to be dominated by WM

structural anisotropy rather than material anisotropy,54 suggesting

that focusing on the former via tractography is appropriate for our

current ‘‘technique development’’ study. Second, although the

baseline DHIM is subject-specific, we intend to use it for

population-based studies as well—e.g., via the pre-computed brain

response atlas (pcBRA32,46,76). Unfortunately, a detailed

population-based, ‘‘average’’ DTI or tractography atlas appears

unavailable, and it is not feasible to create a subject-specific pcBRA

for each athlete (e.g., hundreds), at least at present.

If material anisotropy is incorporated using DTI from a single

specific person (e.g., as in the baseline DHIM) while incorporating

structural anisotropy from different athletes’ respective DTI/trac-

tography, there could be unwanted challenges in result interpreta-

tion because of the mismatch between the baseline model material

anisotropy and individualized structural anisotropy. Employing a

homogeneous material for the brain, although it may not be ideal,

avoids such difficulties, and appears appropriate. On the other hand,

FIG. 10. Injury susceptibility indices, upoint
tract and uvoxel

tract , as a function of ethresh in (a) axial, (b) coronal, and (c) sagittal rotations. For
each corpus callosum subregion, upoint

tract and uvoxel
tract were largely similar, but were significantly lower than the corresponding utract (Fig. 9).

At the ‘‘optimal’’ ethresh, the largest upoint
tract and uvoxel

tract were 14.6% and 11.5% in the genu in the axial rotation, respectively, and were
virtually zero for the other two rotations.
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for individualized injury analyses (vs. population-based studies),

incorporating WM material anisotropy may indeed be desirable.

This appears relatively straightforward (e.g., via an existing

Holzapfel-Gasser-Ogden model75 in Abaqus37); nevertheless, it

requires fresh model validations.26,27 Given these considerations, it

seems appropriate to incorporate DHIM with material anisotropy in

a separate study in the future when suitable.

Regardless, incorporating transversely isotropic behavior for

the WM may lower ep
n.54 This is unlikely to significantly alter the

relative magnitudes of the different WM injury susceptibility

indices we established, however. On the other hand, it must be

recognized that brain material properties represent only a narrow

subset of the many variables important to predict injury (others

include, e.g., injury tolerances, on-field impacts, neuroimaging,

and clinical diagnosis of concussion, etc.). Given their uncertainty

and potential errors, a systems approach may be necessary to yield

a multifaceted understanding of the biomechanical mechanisms

of TBI.22

Conclusion

We have developed a tractography-based approach for fiber

strain evaluation using voxel- or anatomically constrained whole-

brain tractography. The technique potentially improves previous

element-/voxel-based techniques because it evaluates strains

along the entire lengths of fibers (as opposed to averages on coarse

elements/voxels). In addition, this technique enables quantifying

the ‘‘degree’’ of local WM structural integrity and injury sus-

ceptibilities of functionally important neural pathways, which are

not possible with previous methods. Therefore, the tractography-

based approach may be important to enable new brain injury

analyses in the future.

Voxel- and tract-wise injury susceptibility indices were also

established to assess local WM structural integrity and functional

damage in neural pathways. Implications from the tract-wise in-

jury susceptibility measure were consistent with previous neuro-

pathological and DTI studies of TBI across a spectrum of injury

severities. Potentially, therefore, our study may lay important foun-

dations for follow-on investigations using real-world head impacts

and actual brain injury/noninjury cases to explore the multifaceted

mechanisms of DAI.

Future investigations will: (1) analyze real-world impacts to

confirm the importance of the tractography-based approach and

to verify the clinical significance of the WM injury susceptibil-

ity measures; (2) apply the technique to other WM neural pathways;

and (3) use realistic head impacts to assess the relative injury

susceptibilities of WM neural pathways and identify the most

vulnerable ones in real-world injury scenarios.
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