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Abstract

Summary: We present ChAsE, a cross-platform desktop application developed for interactive visu-

alization, exploration and clustering of epigenomic data such as ChIP-seq experiments. ChAsE is

designed and developed in close collaboration with several groups of biologists and bioinformati-

cians with a focus on usability and interactivity. Data can be analyzed through k-means clustering,

specifying presence or absence of signal in epigenetic data and performing set operations between

clusters. Results can be explored in an interactive heat map and profile plot interface and exported

for downstream analysis or as high quality figures suitable for publications.

Availability and Implementation: Software, source code (MIT License), data and video tutorials

available at http://chase.cs.univie.ac.at.

Contact: mkarimi@brc.ubc.ca or torsten.moeller@univie.ac.at

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Epigenetics is the study of changes in the regulation of gene activity

and expression that are not dependent on gene sequence. Advances

in DNA sequencing technology have enabled researchers to investi-

gate the epigenetic state of cells by profiling modifications such as

histone methylation across the whole genome using techniques such

as chromatin immunoprecipitation followed by sequencing (ChIP-

seq). While computational methods to interpret ChIP-seq data con-

tinue to evolve and improve, many questions cannot be easily ad-

dressed in an automated fashion, and biologists need to be engaged

directly in data processing and interpretation.

Several techniques such as ChromaSig (Hon et al., 2008) and

ChromHMM (Ernst and Kellis, 2010) use probabilistic methods for

the discovery of epigenetic signatures, but often require significant

computational skill to use. Platforms such as Cistrome (Liu et al.,

2011) and SeqMonk (www.bioinformatics.babraham.ac.uk/projects/

seqmonk) provide a tool chain of diverse analysis methods and graph-

ical interfaces for improved usability; however, they offer limited

interactivity and visualization. Genome browsers such as the WashU

Epigenome Browser (Zhou et al., 2011) are popular interactive visual-

ization tools that plot data along a reference genome coordinate and

display epigenomic marks as separate tracks vertically stacked to fa-

cilitate comparison. Local regions can be viewed one-at-a-time, but

obtaining an overview of global data patterns can be challenging.

More recently, Epiviz (Chelaru et al., 2014) provides a scripting inter-

face in addition to the genome browser, to allow invoking R functions

and displaying the results within the tool, however, this extension re-

mains accessible only to users with relevant technical skills.

To lower this computational barrier, we had previously de-

veloped Spark (Nielsen et al., 2012) which employed an interactive
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visualization for pattern discovery, particularly in the early data ex-

ploration phases. However, support for cluster comparison and the

ability to directly query for clusters with specific data patterns re-

main outstanding needs. In addition we realized that most biologists

prefer a standard heat map visualization for communicating and

publishing results.

Observing the limitations of available solutions, we designed and

developed ChAsE in close collaboration with several groups of

biologists and bioinformaticians with a focus on usability and inter-

activity. The main features include:

• exploration through multiple linked interfaces including an inter-

active heat map and profile plot;
• automatic clustering using k-means or manual clustering by sort-

ing and selecting items in the heat map;
• querying for absence or presence of signal in epigenomic marks;
• comparing clusters by performing set operations;
• exporting results for downstream analysis as well as producing

high quality figures for publications. (examples included in the

supplementary document).

2 Methods

2.1 Data input
The input dialog allows users to specify one or more marks as

genome-wide read density data files (in Wig or bigWig formats) and

a single region set containing genomic intervals of interest, such as

regions around transcription start sites (in GFF or BED formats).

Other parameters such as binning and normalization can be speci-

fied to allow for effective comparison of different marks on a uni-

form scale. The processing time depends on the size of the input and

typically takes a few minutes per mark; however the processed data

are stored so future loading will be only a few seconds per data.

2.2 Exploration
The graphical user interface consists of multiple linked panes. The

‘Workspace’ pane (Fig. 1(a)) shows a snapshot of the current ana-

lysis and is organized in a table layout where columns correspond to

marks and rows correspond to subsets (clusters). Mark names are

shown above the columns and clusters can have user specified labels.

Each cell shows an average of the data for one mark in a subset as a

profile plot, where the x-axis is relative position in the region and

the y-axis is the signal value. For each subset, the left most column

shows an overlay of the profile plots of all marks, as well as the size

of the subset. Subsets can also be added to the ‘Favourites’ pane

(Fig. 1(b)), and brought back to the workspace as needed.

The ‘Heat map’ pane (Fig. 1(c)) displays a heat map view of the

subsets. Each pixel row corresponds to one or more genomic regions

and columns correspond to marks. The rows have a consistent order

across the columns and can be sorted by several criteria such as sig-

nal average or user specified annotations. Users can interactively

zoom and pan the heat map or drag over the heat map and create a

subset of the selected regions.

The ‘Plot’ pane (Fig. 1(d)) shows a zoomed version of a single

profile plot or the overlay plot where the profiles of all marks for a

subset are displayed together. As the user moves the mouse over the

plots, the corresponding mark is highlighted in the plot legend and

across other panes.

Users can add custom labels to the subsets and export them as

BED or GFF files (same format as the input regions file) for down-

stream analysis. In addition, the heat map or profile plots can be

customized and exported to PDF format suitable for communication

or publication of the findings.

2.3 Analysis
Methods are accessed from the menu and appear above the work-

space pane (Fig. 1(e)). The ‘K-means’ method allows performing a

clustering on the currently selected subset or the entire dataset. A

user can indicate the number of clusters and toggle the check-boxes

above the marks to specify which marks are included in the cluster-

ing. Clicking the ‘Run’ button executes the clustering and the results

appear in the workspace in a tree structure. As the exploration con-

tinues, the user might be clustering subsets. To help him/her capture

the exploration history, the clusters and subsequent cluster are

organized in a hierarchical tree interface.

Subsets with child nodes are shown by a (-) sign when expanded

or � sign when collapsed, and the leaf nodes are represented with

solid circles. The user can further select a subset and perform clus-

tering hierarchically.

The ‘Signal Query’ method shown in Figure 1(f) allows users to

find regions with the signal present or absent in any combination of

the marks. Once selected, the first row shows the input region sets

with on/off switches allowing the user to specify either presence (on-

selected), absence (off-selected) or no preference (neither selected).

A region is considered having a signal if there is any enrichment of

the corresponding mark within the bounds of the region. This would

be most effective if the enrichment peaks have already been detected

through a peak finding tool such as FindPeaks (Fejes et al., 2008).

The second row shows a preview of the result for the currently se-

lected combination and is dynamically updated as the user makes

changes. Upon clicking the ‘Add’ button, the result is added to the

Workspace.

The ‘Comparison’ method shown in Figure 1(g) allows the user

to perform intersections across multiple subsets. The check box on

the left of the summary plot for each subset allows the user to spe-

cify either inclusion (set intersection) or exclusion (set subtraction)

of the set regions. Any subset currently present in the workspace

Fig. 1. ChAsE Interface: (a) Workspace Pane, (b) Favourites Pane, (c) Heat

Map Pane, (d) Plot Pane, (e) Method Pane with K-means currently active, al-

ternatively (f) Method Pane with Signal Query Method, (g) Method Pane with

Comparison Method. The heat map is sorted by average CpG as indicated by

the black inverted triangle
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may be used in the comparison method. For instance, the clusters

might be from different runs of k-means on different marks or re-

sults of the signal query.

3 Application

We used ChAsE to study the relationships between DNA methyla-

tion, histone modifications and several DNA-binding regulatory

proteins in mouse embryonic stem cells (mESCs) (data available at

the tool website). After loading the data, we performed a clustering

across promoter regions using ChIP-seq data for H3K4me3 and

H3K27me3, histone modifications characteristic of transcriptionally

active and silent promoters, respectively. We specified these two

marks for clustering by selecting the corresponding check boxes in

k-means pane (Fig. 1(e)). The clustering results are shown in a tree

in the workspace pane in Figure 1(a) with each cluster connected to

the corresponding section in the heat map in Figure 1(c). The top

cluster shows low H3K27me3 (blue) and moderate to high

H3K4me3 (yellow-red) indicative of ‘active’ promoters. In contrast,

the middle cluster has moderate H3K4me3 and H3K27me3 (blue-

yellow) typical of transcriptionally poised or ‘bivalent’ promoters.

The bottom cluster contains low levels of both modifications (blue)

indicative of ‘inactive’ promoters. We used the contextual menu to

appropriately label each of the clusters in the workspace pane.

We wanted to examine the DNA methylation status of these sub-

populations, as well as to study the TET family of proteins known

to catalyze the oxidation of 5-methylcytosine (5mC) to 5-hydroxyl-

methylcytosine (5hmC). Consistent with recent reports (Yu et al.,

2012), we observed high levels of 5hmC in the presence of TET1 at

bivalent promoters in the middle cluster of Figure 1(c). Intriguingly,

the top cluster of Figure 1(c) shows high levels of TET1, but only

low to moderate levels of 5mC and 5hmC consistent with the model

that H3K4me3-marked promoters harbor very low levels of DNA

methylation. We also investigated the enrichment of the ESET his-

tone methyltransferase at gene promoters. This protein catalyzes the

methylation of H3K9 and deposition of H3K9me3 at retrotrans-

posons and certain gene promoters (Karimi et al., 2011). Examining

H3K9me3 and ESET ChIP-seq datasets revealed that ESET bound

promoters in the top and middle clusters were almost all devoid of

H3K9me3. This raised the possibility that ESET functions at pro-

moters independent of its catalytic activity, perhaps to positively in-

fluence transcription. Furthermore, the presence of H3K4me3 at

both the top and middle clusters may prevent the bound ESET from

depositing H3K9me3 at such genomic sites. Although these observa-

tions have yet to be validated by further lab experiments, this ex-

ample demonstrated the effectiveness of ChAsE for deriving new

hypotheses.
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