Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1997 Mar 15;99(6):1340–1350. doi: 10.1172/JCI119293

LFA-1 is sufficient in mediating neutrophil emigration in Mac-1-deficient mice.

H Lu 1, C W Smith 1, J Perrard 1, D Bullard 1, L Tang 1, S B Shappell 1, M L Entman 1, A L Beaudet 1, C M Ballantyne 1
PMCID: PMC507950  PMID: 9077544

Abstract

To better define the specific function of Mac-1 (CD11b) versus LFA-1 (CD11a) and the other CD11 integrins in vivo, we have disrupted murine CD11b by targeted homologous recombination in embryonic stem cells and generated mice which are homozygous for a mutation in CD11b. A null mutation was confirmed by Southern blotting, RNase protection assay, immunohistochemistry, and flow cytometry. Neutrophils isolated from mice deficient in Mac-1 were defective in adherence to keyhole limpet hemocyanin-coated glass, iC3b-mediated phagocytosis, and homotypic aggregation. When challenged by thioglycollate intraperitoneally, Mac-1-deficient mice had similar levels of neutrophil accumulation in the peritoneal cavity at 1, 2, and 4 h. Treatment with mAb to LFA-1 blocked 78% of neutrophil accumulation in Mac-1-deficient mice and 58% in wild-type mice. Neutrophil emigration into the peritoneal cavity 16 h after the implantation of fibrinogen-coated disks was not reduced in Mac-1-deficient mice whereas neutrophil adhesion to the fibrinogen-coated disks was reduced by > 90%. Neutrophils from Mac-1-deficient mice also showed reduced degranulation. Our results demonstrate that Mac-1 plays a critical role in mediating binding of neutrophils to fibrinogen and neutrophil degranulation, but is not necessary for effective neutrophil emigration, which is more dependent upon LFA-1.

Full Text

The Full Text of this article is available as a PDF (454.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson D. C., Mace M. L., Brinkley B. R., Martin R. R., Smith C. W. Recurrent infection in glycogenosis type Ib: abnormal neutrophil motility related to impaired redistribution of adhesion sites. J Infect Dis. 1981 Mar;143(3):447–459. doi: 10.1093/infdis/143.3.447. [DOI] [PubMed] [Google Scholar]
  2. Anderson D. C., Miller L. J., Schmalstieg F. C., Rothlein R., Springer T. A. Contributions of the Mac-1 glycoprotein family to adherence-dependent granulocyte functions: structure-function assessments employing subunit-specific monoclonal antibodies. J Immunol. 1986 Jul 1;137(1):15–27. [PubMed] [Google Scholar]
  3. Anderson D. C., Schmalstieg F. C., Arnaout M. A., Kohl S., Tosi M. F., Dana N., Buffone G. J., Hughes B. J., Brinkley B. R., Dickey W. D. Abnormalities of polymorphonuclear leukocyte function associated with a heritable deficiency of high molecular weight surface glycoproteins (GP138): common relationship to diminished cell adherence. J Clin Invest. 1984 Aug;74(2):536–551. doi: 10.1172/JCI111451. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Argenbright L. W., Letts L. G., Rothlein R. Monoclonal antibodies to the leukocyte membrane CD18 glycoprotein complex and to intercellular adhesion molecule-1 inhibit leukocyte-endothelial adhesion in rabbits. J Leukoc Biol. 1991 Mar;49(3):253–257. doi: 10.1002/jlb.49.3.253. [DOI] [PubMed] [Google Scholar]
  5. Chen H., Chopp M., Zhang R. L., Bodzin G., Chen Q., Rusche J. R., Todd R. F., 3rd Anti-CD11b monoclonal antibody reduces ischemic cell damage after transient focal cerebral ischemia in rat. Ann Neurol. 1994 Apr;35(4):458–463. doi: 10.1002/ana.410350414. [DOI] [PubMed] [Google Scholar]
  6. Corbi A. L., Kishimoto T. K., Miller L. J., Springer T. A. The human leukocyte adhesion glycoprotein Mac-1 (complement receptor type 3, CD11b) alpha subunit. Cloning, primary structure, and relation to the integrins, von Willebrand factor and factor B. J Biol Chem. 1988 Sep 5;263(25):12403–12411. [PubMed] [Google Scholar]
  7. Entman M. L., Youker K., Shoji T., Kukielka G., Shappell S. B., Taylor A. A., Smith C. W. Neutrophil induced oxidative injury of cardiac myocytes. A compartmented system requiring CD11b/CD18-ICAM-1 adherence. J Clin Invest. 1992 Oct;90(4):1335–1345. doi: 10.1172/JCI115999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Furie M. B., Tancinco M. C., Smith C. W. Monoclonal antibodies to leukocyte integrins CD11a/CD18 and CD11b/CD18 or intercellular adhesion molecule-1 inhibit chemoattractant-stimulated neutrophil transendothelial migration in vitro. Blood. 1991 Oct 15;78(8):2089–2097. [PubMed] [Google Scholar]
  9. Graf J. M., Smith C. W., Mariscalco M. M. Contribution of LFA-1 and Mac-1 to CD18-dependent neutrophil emigration in a neonatal rabbit model. J Appl Physiol (1985) 1996 Jun;80(6):1984–1992. doi: 10.1152/jappl.1996.80.6.1984. [DOI] [PubMed] [Google Scholar]
  10. Hughes B. J., Hollers J. C., Crockett-Torabi E., Smith C. W. Recruitment of CD11b/CD18 to the neutrophil surface and adherence-dependent cell locomotion. J Clin Invest. 1992 Nov;90(5):1687–1696. doi: 10.1172/JCI116041. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Issekutz A. C., Issekutz T. B. The contribution of LFA-1 (CD11a/CD18) and MAC-1 (CD11b/CD18) to the in vivo migration of polymorphonuclear leucocytes to inflammatory reactions in the rat. Immunology. 1992 Aug;76(4):655–661. [PMC free article] [PubMed] [Google Scholar]
  12. Jones D. H., Schmalstieg F. C., Dempsey K., Krater S. S., Nannen D. D., Smith C. W., Anderson D. C. Subcellular distribution and mobilization of MAC-1 (CD11b/CD18) in neonatal neutrophils. Blood. 1990 Jan 15;75(2):488–498. [PubMed] [Google Scholar]
  13. Jutila M. A., Rott L., Berg E. L., Butcher E. C. Function and regulation of the neutrophil MEL-14 antigen in vivo: comparison with LFA-1 and MAC-1. J Immunol. 1989 Nov 15;143(10):3318–3324. [PubMed] [Google Scholar]
  14. Kishimoto T. K., O'Connor K., Lee A., Roberts T. M., Springer T. A. Cloning of the beta subunit of the leukocyte adhesion proteins: homology to an extracellular matrix receptor defines a novel supergene family. Cell. 1987 Feb 27;48(4):681–690. doi: 10.1016/0092-8674(87)90246-7. [DOI] [PubMed] [Google Scholar]
  15. Kuijpers T. W., Hakkert B. C., Hart M. H., Roos D. Neutrophil migration across monolayers of cytokine-prestimulated endothelial cells: a role for platelet-activating factor and IL-8. J Cell Biol. 1992 May;117(3):565–572. doi: 10.1083/jcb.117.3.565. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Kurose I., Anderson D. C., Miyasaka M., Tamatani T., Paulson J. C., Todd R. F., Rusche J. R., Granger D. N. Molecular determinants of reperfusion-induced leukocyte adhesion and vascular protein leakage. Circ Res. 1994 Feb;74(2):336–343. doi: 10.1161/01.res.74.2.336. [DOI] [PubMed] [Google Scholar]
  17. Larson R. S., Corbi A. L., Berman L., Springer T. Primary structure of the leukocyte function-associated molecule-1 alpha subunit: an integrin with an embedded domain defining a protein superfamily. J Cell Biol. 1989 Feb;108(2):703–712. doi: 10.1083/jcb.108.2.703. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Larson R. S., Springer T. A. Structure and function of leukocyte integrins. Immunol Rev. 1990 Apr;114:181–217. doi: 10.1111/j.1600-065x.1990.tb00565.x. [DOI] [PubMed] [Google Scholar]
  19. Lee H. M., Rich S. Co-stimulation of T cell proliferation by transforming growth factor-beta 1. J Immunol. 1991 Aug 15;147(4):1127–1133. [PubMed] [Google Scholar]
  20. Loike J. D., Silverstein R., Wright S. D., Weitz J. I., Huang A. J., Silverstein S. C. The role of protected extracellular compartments in interactions between leukocytes, and platelets, and fibrin/fibrinogen matrices. Ann N Y Acad Sci. 1992 Dec 4;667:163–172. doi: 10.1111/j.1749-6632.1992.tb51608.x. [DOI] [PubMed] [Google Scholar]
  21. Loike J. D., Sodeik B., Cao L., Leucona S., Weitz J. I., Detmers P. A., Wright S. D., Silverstein S. C. CD11c/CD18 on neutrophils recognizes a domain at the N terminus of the A alpha chain of fibrinogen. Proc Natl Acad Sci U S A. 1991 Feb 1;88(3):1044–1048. doi: 10.1073/pnas.88.3.1044. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. McMahon A. P., Bradley A. The Wnt-1 (int-1) proto-oncogene is required for development of a large region of the mouse brain. Cell. 1990 Sep 21;62(6):1073–1085. doi: 10.1016/0092-8674(90)90385-r. [DOI] [PubMed] [Google Scholar]
  23. Moser R., Schleiffenbaum B., Groscurth P., Fehr J. Interleukin 1 and tumor necrosis factor stimulate human vascular endothelial cells to promote transendothelial neutrophil passage. J Clin Invest. 1989 Feb;83(2):444–455. doi: 10.1172/JCI113903. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Muchowski P. J., Zhang L., Chang E. R., Soule H. R., Plow E. F., Moyle M. Functional interaction between the integrin antagonist neutrophil inhibitory factor and the I domain of CD11b/CD18. J Biol Chem. 1994 Oct 21;269(42):26419–26423. [PubMed] [Google Scholar]
  25. Nathan C., Srimal S., Farber C., Sanchez E., Kabbash L., Asch A., Gailit J., Wright S. D. Cytokine-induced respiratory burst of human neutrophils: dependence on extracellular matrix proteins and CD11/CD18 integrins. J Cell Biol. 1989 Sep;109(3):1341–1349. doi: 10.1083/jcb.109.3.1341. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Nolte D., Hecht R., Schmid P., Botzlar A., Menger M. D., Neumueller C., Sinowatz F., Vestweber D., Messmer K. Role of Mac-1 and ICAM-1 in ischemia-reperfusion injury in a microcirculation model of BALB/C mice. Am J Physiol. 1994 Oct;267(4 Pt 2):H1320–H1328. doi: 10.1152/ajpheart.1994.267.4.H1320. [DOI] [PubMed] [Google Scholar]
  27. Pytela R. Amino acid sequence of the murine Mac-1 alpha chain reveals homology with the integrin family and an additional domain related to von Willebrand factor. EMBO J. 1988 May;7(5):1371–1378. doi: 10.1002/j.1460-2075.1988.tb02953.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Ramírez-Solis R., Rivera-Pérez J., Wallace J. D., Wims M., Zheng H., Bradley A. Genomic DNA microextraction: a method to screen numerous samples. Anal Biochem. 1992 Mar;201(2):331–335. doi: 10.1016/0003-2697(92)90347-a. [DOI] [PubMed] [Google Scholar]
  29. Rochon Y. P., Frojmovic M. M., Mills E. L. Comparative studies of microscopically determined aggregation, degranulation, and light transmission after chemotactic activation of adult and newborn neutrophils. Blood. 1990 May 15;75(10):2053–2060. [PubMed] [Google Scholar]
  30. Rosen H., Gordon S. Monoclonal antibody to the murine type 3 complement receptor inhibits adhesion of myelomonocytic cells in vitro and inflammatory cell recruitment in vivo. J Exp Med. 1987 Dec 1;166(6):1685–1701. doi: 10.1084/jem.166.6.1685. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Rosenbaum J. T., Boney R. S. Efficacy of antibodies to adhesion molecules, CD11a or CD18, in rabbit models of uveitis. Curr Eye Res. 1993 Sep;12(9):827–831. doi: 10.3109/02713689309020387. [DOI] [PubMed] [Google Scholar]
  32. Rote W. E., Dempsey E., Maki S., Vlasuk G. P., Moyle M. The role of CD11/CD18 integrins in the reverse passive Arthus reaction in rat dermal tissue. J Leukoc Biol. 1996 Feb;59(2):254–261. doi: 10.1002/jlb.59.2.254. [DOI] [PubMed] [Google Scholar]
  33. Rutter J., James T. J., Howat D., Shock A., Andrew D., De Baetselier P., Blackford J., Wilkinson J. M., Higgs G., Hughes B. The in vivo and in vitro effects of antibodies against rabbit beta 2-integrins. J Immunol. 1994 Oct 15;153(8):3724–3733. [PubMed] [Google Scholar]
  34. Schmits R., Kündig T. M., Baker D. M., Shumaker G., Simard J. J., Duncan G., Wakeham A., Shahinian A., van der Heiden A., Bachmann M. F. LFA-1-deficient mice show normal CTL responses to virus but fail to reject immunogenic tumor. J Exp Med. 1996 Apr 1;183(4):1415–1426. doi: 10.1084/jem.183.4.1415. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Shappell S. B., Toman C., Anderson D. C., Taylor A. A., Entman M. L., Smith C. W. Mac-1 (CD11b/CD18) mediates adherence-dependent hydrogen peroxide production by human and canine neutrophils. J Immunol. 1990 Apr 1;144(7):2702–2711. [PubMed] [Google Scholar]
  36. Simpson P. J., Todd R. F., 3rd, Fantone J. C., Mickelson J. K., Griffin J. D., Lucchesi B. R. Reduction of experimental canine myocardial reperfusion injury by a monoclonal antibody (anti-Mo1, anti-CD11b) that inhibits leukocyte adhesion. J Clin Invest. 1988 Feb;81(2):624–629. doi: 10.1172/JCI113364. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Sligh J. E., Jr, Ballantyne C. M., Rich S. S., Hawkins H. K., Smith C. W., Bradley A., Beaudet A. L. Inflammatory and immune responses are impaired in mice deficient in intercellular adhesion molecule 1. Proc Natl Acad Sci U S A. 1993 Sep 15;90(18):8529–8533. doi: 10.1073/pnas.90.18.8529. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Smith C. W., Hollers J. C., Patrick R. A., Hassett C. Motility and adhesiveness in human neutrophils. Effects of chemotactic factors. J Clin Invest. 1979 Feb;63(2):221–229. doi: 10.1172/JCI109293. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Smith C. W., Marlin S. D., Rothlein R., Toman C., Anderson D. C. Cooperative interactions of LFA-1 and Mac-1 with intercellular adhesion molecule-1 in facilitating adherence and transendothelial migration of human neutrophils in vitro. J Clin Invest. 1989 Jun;83(6):2008–2017. doi: 10.1172/JCI114111. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Smith C. W., Rothlein R., Hughes B. J., Mariscalco M. M., Rudloff H. E., Schmalstieg F. C., Anderson D. C. Recognition of an endothelial determinant for CD 18-dependent human neutrophil adherence and transendothelial migration. J Clin Invest. 1988 Nov;82(5):1746–1756. doi: 10.1172/JCI113788. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Takeuchi K., Wood H., Swank R. T. Lysosomal elastase and cathepsin G in beige mice. Neutrophils of beige (Chediak-Higashi) mice selectively lack lysosomal elastase and cathepsin G. J Exp Med. 1986 Mar 1;163(3):665–677. doi: 10.1084/jem.163.3.665. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Tang L., Eaton J. W. Fibrin(ogen) mediates acute inflammatory responses to biomaterials. J Exp Med. 1993 Dec 1;178(6):2147–2156. doi: 10.1084/jem.178.6.2147. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Tang L., Ugarova T. P., Plow E. F., Eaton J. W. Molecular determinants of acute inflammatory responses to biomaterials. J Clin Invest. 1996 Mar 1;97(5):1329–1334. doi: 10.1172/JCI118549. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Truong L. D., Farhood A., Tasby J., Gillum D. Experimental chronic renal ischemia: morphologic and immunologic studies. Kidney Int. 1992 Jun;41(6):1676–1689. doi: 10.1038/ki.1992.241. [DOI] [PubMed] [Google Scholar]
  45. Van der Vieren M., Le Trong H., Wood C. L., Moore P. F., St John T., Staunton D. E., Gallatin W. M. A novel leukointegrin, alpha d beta 2, binds preferentially to ICAM-3. Immunity. 1995 Dec;3(6):683–690. doi: 10.1016/1074-7613(95)90058-6. [DOI] [PubMed] [Google Scholar]
  46. Wilson R. W., Ballantyne C. M., Smith C. W., Montgomery C., Bradley A., O'Brien W. E., Beaudet A. L. Gene targeting yields a CD18-mutant mouse for study of inflammation. J Immunol. 1993 Aug 1;151(3):1571–1578. [PubMed] [Google Scholar]
  47. Zimmerman B. J., Holt J. W., Paulson J. C., Anderson D. C., Miyasaka M., Tamatani T., Todd R. F., 3rd, Rusche J. R., Granger D. N. Molecular determinants of lipid mediator-induced leukocyte adherence and emigration in rat mesenteric venules. Am J Physiol. 1994 Mar;266(3 Pt 2):H847–H853. doi: 10.1152/ajpheart.1994.266.3.H847. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES