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Abstract

In this work, we propose a stacked switching vector-autoregressive (SVAR)-CNN architecture to 

model the changing dynamics in physiological time series for patient prognosis. The SVAR-layer 

extracts dynamical features (or modes) from the time-series, which are then fed into the CNN-

layer to extract higher-level features representative of transition patterns among the dynamical 

modes. We evaluate our approach using 8-hours of minute-by-minute mean arterial blood pressure 

(BP) from over 450 patients in the MIMIC-II database. We modeled the time-series using a third-

order SVAR process with 20 modes, resulting in first-level dynamical features of size 20×480 per 

patient. A fully connected CNN is then used to learn hierarchical features from these inputs, and to 

predict hospital mortality. The combined CNN/SVAR approach using BP time-series achieved a 

median and interquartile-range AUC of 0.74 [0.69, 0.75], significantly outperforming CNN-alone 

(0.54 [0.46, 0.59]), and SVAR-alone with logistic regression (0.69 [0.65, 0.72]). Our results 

indicate that including an SVAR layer improves the ability of CNNs to classify nonlinear and 

nonstationary time-series.

1. INTRODUCTION

Subtle dynamical patterns in physiological time-series, often difficult to observe with the 

bare eye, may contain important information about the pathophysiological state of patients 

and their long-term outcomes. We present an approach to physiological time-series analysis 

that simultaneously models the underlying dynamical systems using a switching vector 

autoregressive (SVAR) model, and the high-level transition patterns among the dynamical 

modes using Convolutional Neural Networks (CNNs). CNNs have been shown recently to 

produce state-of-the-art performance in image classification tasks [1]. This success is largely 

attributed to their ability to exploit hierarchical structures for feature learning. However, 

direct application of CNNs to physiological time-series have been limited due to the 

presence of underlying physiological control systems, capable of exhibiting rich dynamical 

patterns at multiple time-scales.
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In previous work, we adopted a SVAR process framework to discover the shared dynamic 

behaviors exhibited in HR/BP time series of a patient cohort [2]. We used the proportion of 

time a patient spents in each of the dynamic modes (“mode proportions” from now on) to 

construct a feature vector for predicting a patient's underlying “state of health”. However, 

this feature does not capture the high-level transition dynamic among the dynamical mode. 

To address this limitation, we propose a stacked SVAR-CNN architecture. The SVAR-layer 

extracts dynamical features (or modes) from the time-series, which are then fed into the 

CNN-layer to extract higher-level features representative of transition patterns among the 

dynamical modes. We evaluated our approach using minute-by-minute mean arterial blood 

pressure (BP) of 453 ICU patients during their first 24 hours in the ICU from the Multi-

parameter Intelligent Monitoring in Intensive Care (MIMIC) II database [3].

2. Materials and Methods

This section describes the utilized dataset, as well as the SVAR and CNN architectures used 

to learn high-level features in the multivariate time-series of vital signs.

2.1. Dataset

Minute-by-minute mean arterial blood pressure (MAP) measurements of MIMIC II [3] adult 

ICU patients during the first 24 hours of their ICU stays were extracted. The analysis in this 

paper was restricted to 453 patients with day 1 SAPS-I scores [4] and with at least 8 hours of 

blood pressure data during the first 24 hours after ICU admission. Hospital mortality of this 

cohort is 14%. The data set contains over 9,000 hours of minute-by-minute heart rate and 

invasive mean arterial blood pressure measurements (over 20 hours per patient on average) 

from 453 adult patients collected during the first 24 hours in the ICU. Time series were 

detrended, and Gaussian noise was used to fill in the missing or invalid values. The median 

age of this cohort was 69 with an inter-quartile range of (57, 79). 59% of the patients were 

male. Approximately 15% (67 out of 453) of patients in this cohort died in the hospital.

2.2. Switching Vector Autoregressive Modeling of Cohort Time Series

Our approach to discovery of shared dynamics among patients was based on the SVAR 

model [2, 5], which assumes there exists a library of possible dynamic behaviors or modes; a 

set of multivariate autoregressive model parameters , 

where K is the number of dynamic modes. For each mode k, , p = 1 ··· P are the AR 

coefficient matrices (corresponding to each of the P lags) and Q(k) is the corresponding noise 

covariance matrix. Let yt be the observation at time t, and zt be an indicator variable 

indicating the active dynamic mode at time t. Following these definitions, a SVAR model is 

defined by:

(1)
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A collection of related time series can be modeled as switching between these dynamic 

behaviors which describe a locally coherent linear model that persist over a segment of time. 

We modeled minute-by-minute MAP time series as a switching AR(3) process with 20 

dynamic modes as in [2]. Patients were divided into 10 training/test sets. Ten switching VAR 

models were learned, one for each training set. The mode assignment of time series for 

patients in the test set was inferred based on the model learned from the corresponding 

training set.

2.3. Convolutional Neural Networks

Convolutional neural networks are a particular formulation of deep neural networks that 

were first developed for the automatic classification of handwritten digits in images [6]. 

Deep neural networks [7] are a class of models which consist of a hierarchy of latent 

representations distributed across numerous simple units or neurons. Although each level in 

the hierarchy is a simple transformation from the previous layer, having many units spanning 

multiple layers results in a very rich latent representation that has proven to facilitate 

complex tasks. Convolutional networks leverage the spatio-temporal structure of the data 

they model by applying a spatial or temporal convolution of the model parameters over the 

input to compute the following layer. Recently, such networks have achieved state of the art 

results on image classification [1, 8] and text understanding [9,10] tasks.

The latent or hidden representation H = {h1, ..., ht} resulting from a convolutional layer in 

such a network is computed by convolving a parameterized weight matrix W over the input 

Z = {z1, ..., zt} followed by an elementwise non-linearity g(·) i.e. H = g(W * Z). This is 

typically repeated for multiple layers and that are followed by a final classification layer.

2.4. Combining SVAR and Convolutional Neural Network

We modeled the time-series using a third-order SVAR process with 20 modes as described 

above. We then used the SVAR state marginals from the final 8 hours of the minute-by-

minute BP from each patient (during their first days in the ICU) as input to the CNN, 

resulting in first-level dynamical features of size 20×480 per patient. As a pre-processing 

step, we ordered rows of the state marginal matrix based on the modes’ odds ratios for 

hospital mortality (from logistic regression using the training set) so that modes with similar 

mortality risk share location proximity in the CNN input image space. A one-layer fully 

connected CNN is then used to learn hierarchical features from these inputs, and to predict 

hospital mortality.

As a comparison, we also use the SVAR model to learn a time-series specific transition 

matrix among the dynamic modes, and use the learned patient-specific transition matrix 

(20×20) as an input to CNN. This feature does not capture the specific time of a transition, 

but includes information regarding the frequency of transitions from one dynamical model to 

another, and will allow us to assess the relative importance of transient versus global 

transition features of the dynamics.

The CNN kernel size is 20×20 with 12 hidden units. In each of the 10-fold, the training set 

was further divided into 70%/30% training and validation set: the 70% training set was used 

to build 30 different CNN models using 30 different random initializations; for each 
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initialization, we use a 5-fold validation procedure (i.e. validate the performance of the 

learned CNN model using 5 different subsets of the validation set) to select the best CNN 

model for actual inference on the test set; the CNN model with the highest mean AUC from 

the 5-fold validation was used to do prediction on the actual test set.

3. RESULTS

3.1. State Marginals from SVAR

Figure 1 shows example dynamic modes state marginal probabilities over 8 hours (20×480) 

for survivors vs. non-survivors. (Top 4 rows are low-risk modes; the remaining modes are 

high-risk modes.) We used univariate logistic regression analysis to test the association 

between the proportion of time patients spent in each dynamic mode (20 in total) and the 

outcome (hospital mortality). The odds ratios from the association analysis were then used 

to sort the dynamic modes.

Table 2 in the Appendix shows the 20 discovered SVAR dynamic modes (from one fold), 

listed in the order of their associations with hospital mortality. The same ordering is used to 

construct a CNN input-image from SVAR state marginals: rows of the state marginals 

appear in the same order as the corresponding dynamic modes appear in Table 2. For each 

mode, we report its p value, and odds ratios (OR, with 95% confidence interval) in mortality 

risks as per 10% increase in mode proportions. Modes are listed in ascending order based on 

their odds ratios. Note that the low-risk modes are on the top four rows; the remaining 

modes are higher-risk modes with odds ratios greater than one. Table shows the order of the 

dynamic modes in the state marginal probabilities (20×480) input matrix to CNN.

3.2. Prediction Performance

Table 1 summarized the AUCs from 10-fold cross validation. Applying CNN-alone on the 

raw BP time series achieved an AUC of 0.54 [0.46, 0.59]. Applying logistic regression on 

SVAR mode proportion alone achieved an AUC of 0.69 [0.65, 0.72]. As a baseline 

comparison, an existing acuity metric SAPS-I, using 14 different physiological/lab 

measurements gave an AUC of 0.65 [0.59, 0.71].

The best performance was achieved by combining CNN/SVAR using SVAR generated state 

marginals from BP time-series as an input to CNN, achieving a median and interquartile-

range AUC of 0.74 [0.69, 0.75]. Using SVAR learned patient-specific transition matrix 

among dynamic modes as an input to CNN achieved a median AUC of 0.67 [0.63, 0.69].

4. DISCUSSION and CONCLUSIONS

We have presented a framework that combines switching state space models with 

convolutional neural networks for time series classification. Our approach uses the inferred 

state marginals of hidden variables from SVAR as inputs to convolutional neural network for 

a supervised learning task. Our approach simultaneously models the underlying dynamics of 

physiological time series using a switching state-space model, and the high-level transition 

patterns among the states using convolutional neural networks. We have compared several 

different approaches of modeling physiological time series for outcome prediction using 
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CNN, SVAR, and a stacked SVAR/CNN approach. The stacked CNN/SVAR architecture 

using state marginals achieves the best performance, outperforming both stand-alone SVAR 

and CNN in prediction performance. Our results indicate that including an SVAR layer 

significantly improves the ability of CNNs to classify nonlinear and nonstationary time-

series. The proposed approach is particularly useful when dealing with small datasets, since 

the expectation-maximization algorithm used to learn the SVAR features [5] is less likely to 

overfit to the data, compared to a supervised backpropagation based algorithm directly 

applied to the CNN on the raw time-series. Finally, a switching state space model allows for 

incorporating models of the underlying physiological processes that generate the observed 

time series, and provides a level of interpretability not achievable by the standard deep 

learning algorithms.
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Appendix: Discovered SVAR Dynamic Modes

Table 2

Discovered dynamic modes and their association with hospital mortality.

Mode p-val OR (95% CI)

1 11 0.0001 0.61 (0.47 0.78)

2 17 0.5665 0.70 (0.21 2.35)

3 15 0.0244 0.71 (0.53 0.96)

4 2 0.7395 0.90 (0.48 1.67)

5 20 0.8908 1.02 (0.78 1.34)

6 8 0.7981 1.22 (0.27 5.58)

7 13 0.0000 1.44 (1.22 1.71)

8 9 0.3519 1.58 (0.60 4.16)

9 18 0.1881 2.28 (0.67 7.76)

10 7 0.3372 2.80 (0.34 22.95)

11 10 0.1997 4.08 (0.48 35.04)

12 4 0.0677 9.18 (0.85 98.97)

13 16 0.0633 9.56 (0.88 103.45)

14 19 0.0577 11.34 (0.92 139.10)

15 6 0.0339 14.36 (1.23 168.33)

16 12 0.0311 16.38 (1.29 208.20)

17 3 0.0282 16.88 (1.35 210.84)

18 14 0.0205 18.62 (1.57 220.83)

19 5 0.0226 19.81 (1.52 258.17)

20 1 0.0120 23.41 (2.00 274.21)
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Figure 1. 
Dynamic modes state marginal probabilities over 8 hours (20×480): a comparison of the 

non-survivors vs. the survivors. Each patient was represented by a 20×480 state marginals. 

The x-axis represents the time (in minutes), and the y-axis is the probability of belonging to 

different dynamic modes (20 in total). The rows were ordered based on the modes’ odds 

ratios in ascending order, as in Table 2 (see Appendix). Low risk modes (odds ratios < 1) are 

on the top (rows 1 - 4), and higher risk modes (odds ratios > 1) are on the bottom (after row 

5).
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Table 1

Performance of Mortality Predictors. LR - logistic regression. MP - mode proportion.

AUC (IQR)

SAPS I 0.65 (0.59, 0.71)

BP Raw Samples + CNN 0.54 (0.46, 0.59)

SVAR Trans. Matrix + CNN 0.67 (0.63, 0.69)

SVAR BP Dynamics MP + LR 0.69 (0.65, 0.72)

SVAR BP Dynamics + CNN 0.74 (0.69, 0.75)
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