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Abstract

Neurofilaments are uniquely complex among classes of intermediate filaments in being composed 

of four subunits (NFL, NFM, NFH and alpha-internexin in the CNS) that differ in structure, 

regulation, and function. Although neurofilaments have been traditionally viewed as axonal 

structural components, recent evidence has revealed that distinctive assemblies of neurofilament 

subunits are integral components of synapses, especially at postsynaptic sites. Within the synaptic 

compartment, the individual subunits differentially modulate neurotransmission and behavior 

through interactions with specific neurotransmitter receptors. These newly uncovered functions 

suggest that alterations of neurofilament proteins not only underlie axonopathy in various 

neurological disorders but also may play vital roles in cognition and neuropsychiatric diseases. 

Here, we review evidence that synaptic neurofilament proteins are a sizable population in the CNS 

and we advance the concept that changes in the levels or post-translational modification of 

individual NF subunits contribute to synaptic and behavioral dysfunction in certain 

neuropsychiatric conditions.
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1. Introduction

Neurofilaments (NFs), the intermediate filaments of mature neurons, are among the most 

abundant proteins in brain. Unlike the intermediate filaments of other cell types, which are 

usually homopolymers, NFs in the CNS are hetero-polymers composed of NFL, NFM, NFH 

and alpha-internexin subunits [187]. Although structurally distinctive, these four NF 

subunits share a basic tripartite domain structure consisting of a conserved central α-helical 
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rod region, a short variable head domain at the amino-terminal end and a tail of highly 

variable length at the C-terminal end. The short head domain is rich in serine and threonine 

residues and contains consensus sites for O-linked glycosylation and phosphorylation [188]. 

The central rod domain, which is relatively conserved among intermediate filament family 

members, contains long stretches of hydrophobic heptad repeats favoring formation of α-

helical coiled-coil dimers. The C-terminal domains contain glutamic- and lysine-rich 

stretches of varying length that mainly establish the size range (58–200 kDa on SDS gels) of 

the four NF subunits. Although all intermediate filament types serve roles as structural 

scaffolds, NF subunit heterogeneity also confers specialized structural properties to NF, in 

axons where the filaments are extremely long and are often arranged in parallel with uniform 

spacing conferred by the long C-terminal tails of NFM and NFH extending perpendicularly 

from the filament core [141, 142]. These unique space filling properties of NF facilitate their 

well-established role in caliber expansion of large-diameter myelinated axons of peripheral 

nerves, which is critical for effective nerve conduction [198]. NFs also extensively cross-link 

with other cytoskeletal elements along axons to form a large metabolically stable stationary 

NF network [126, 185, 190] that is critical to axon caliber expansion [66, 84, 129] and 

organelle distribution along axons [143].

Besides these unique structural and functional features, NF subunits are distinguished from 

other intermediate filament proteins by the complex regulation of their head and tail domains 

by phosphorylation, especially those of NFM and NFH, which involves actions of multiple 

protein kinases and phosphatases at many polypeptide sites [133]. Although certain 

phosphorylation events are known to control tail extension and subunit assembly and slow 

turnover, the purpose of such complex and dynamically changing phosphate topography on 

NF subunits [49, 127, 133] has remained puzzling, given the mainly static structural support 

roles ascribed to NF. Both the complex hetero-polymeric structure and dynamically 

changing phosphate topography of NF proteins suggests that individual NF proteins might 

serve additional biological roles although there has been relatively little exploration of this 

issue until recently.

NF gene mutations are well recognized as causes of several neurological disorders mainly 

involving degeneration of peripheral nerve fibers in accordance with the prominent function 

of NF in supporting large-diameter myelinated axons [26]. Notably, however, NF proteins 

are abundant in grey matter CNS regions as well as white matter [33] but influence caliber 

expansion much less dramatically in most populations of CNS axons [55]. These 

observations and evidence that NF subunits can be axonally transported in various minimally 

assembled forms (including as heterodimers) suggest a broader distribution and range of 

assembly forms of NF subunits within CNS neurons, including substantial populations in 

synapses. In light of these findings, alterations of a particular NF subunit as seen in specific 

brain regions in psychiatric and neuropsychiatric disorders [30, 40, 69] may reflect an 

alteration within synapses which influences the clinical phenotype.

Psychiatric diseases, affecting an estimated 54 million Americans yearly, cause mild to 

severe disturbances in thought or behavior usually in the absence of known changes in 

axonal integrity. Nevertheless, changes in levels and phosphorylation of NF subunits have 

consistently been noted in certain psychiatric disorders although the location of these 
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changes within neurons is poorly understood. Psychiatric diseases prominently involve 

alterations of synaptic transmission. The highly specialized composition of synapses 

includes not only the well characterized vesicular and protein receptor machinery supporting 

neurotransmission but also a specialized cytoskeleton important for delivering, inserting, and 

recycling synaptic components. Like other domains in a neuron, the cytoskeleton in 

synapses is composed of microtubules, actin filaments, the spectrin-rich membrane skeleton, 

and as recently shown, NF assemblies [191, 193]. Evidence is also emerging that the 

cytoskeleton, and especially the NF scaffold, acts as a docking platform to organize the 

topography of organelles within different neuronal compartments. Rearrangements of this 

topography are dynamically coordinated at least in part by cellular signals regulating the 

phosphorylation state of the binding partners [137, 143, 163, 193]. Such evidence suggests a 

range of possibilities for understanding the newly recognized roles of individual NF subunits 

in modulating synaptic function. In this review, we consider the properties of synaptic NF 

assemblies in the CNS and, in this context, raise the possibility that certain changes in levels 

or phosphorylation of NF subunits reported in neuropsychiatric disorders (Table 1) disrupt 

synaptic signaling or, in some cases, reflect adaptive or maladaptive responses to these 

synaptic disruptions.

2. NF proteins in synapses

2.1 Distinctive assemblies of NF subunits in synapses

Synapses have long been considered to be degradative sites for NF reaching terminals by 

axonal transport [145]. When NF proteins have been detected in synaptic fractions and 

bound to synaptic proteins in vitro, they have previously been viewed as contaminating 

axonal NF proteins [112] and their possible role in synapses has rarely been entertained. 

Using multiple independent approaches, however, Yuan et al. recently provided definitive 

evidence that all four CNS NF subunits are integral resident proteins of synapses and have 

distinct roles in synaptic function and behavior (Figure 1)[191, 193]. The NF assemblies 

isolated from synapses are distinctive as compared to those in other parts of the neuron in 

terms of their morphology and in having higher proportions of alpha-internexin, a lowered 

phosphorylation state of NFM, and a higher NFH phosphorylations state. This unique 

population of synaptic NF proteins is more abundant in the postsynaptic area than in 

adjacent dendritic areas or presynaptic terminals and exhibits a different response to subunit 

perturbation than the axonal population. For example, when NFM is deleted from mice, 

NFH phosphorylation and the ratio of NFH to NFL subunit increase significantly in the 

synaptic pool in comparison to the total NF pool [193]. Because NF subunit monomers are 

inefficiently transported along axons [186, 187, 193], NF proteins in synapses are at least 

oligomeric in form and can be transported as such in axons, providing one possible basis for 

their synaptic location. It is also possible that some NF protein in postsynaptic boutons is 

synthesized locally because mRNAs of NFL [45, 134] and alpha-internexin [180] are 

reported to be present in dendrites and polyribosomes are preferentially localized under the 

base of dendritic spines [161]. In this regard, evidence suggests that NF proteins identified in 

nerve terminals isolated from squid brain are produced by local protein synthesis [46, 

110].In light of these findings, aforementioned reports noting the presence of NF in synaptic 
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fractions and interactions of NF proteins with known synaptic proteins can be viewed as 

further support for a substantial synaptic pool of NF proteins in the brain.

Remarkably, previous proteomic analyses of synaptic fractions have consistently identified 

NF proteins but these findings were not followed up with additional proof of a synaptic 

localization or function. During the study of activity-regulated proteins in postsynaptic 

density fractions by two-dimensional gel electrophoresis and mass spectrometry, Satoh et al. 

identified a total of 90 spots containing 47 different protein species in the PSD fractions 

isolated from mouse forebrain [148]. Among these spots, alpha-internexin and NFM 

accounted for 8 and 4 spots, respectively. With an improved proteomic method involving 

nanoflow HPL coupled to electrospray tandem mass spectrometry (LC-MS/MS), Jordan et 

al. identified all four CNS NF proteins (NFL, NFM, NFH and alpha-internexin) as abundant 

components of biochemically purified PSD fractions from rat or mouse brain[92]. A 

subsequent phospho-proteomic analysis of PSD proteins, identified 42 phosphoproteins in 

PSD preparations from mouse brains [172]. Out of 90 phosphorylated peptides derived from 

these 42 phosphoproteins, NF proteins accounted for 23 (NFL 1, NFM 5 and NFH 17), 

indicating the considerable abundance of NF proteins in the PSD. NF proteins are also 

glycosylated and in a glyco-proteomic analysis of PSD preparations from mouse brain, NFL, 

NFM and alpha-internexin were among 18 identified GlcNAc-modified proteins [181]. A 

limited idea of how NF proteins are organized within the PSD has been achieved using a 

novel solid phase and chemical crosslinking approach to distinguish proteins that reside 

either at the surface of the PSD or in its interior [108]. The analysis suggested that NFM, 

NFH and alpha-internexin together with tubulin subunits reside in the interior of the PSD 

while actin resides primarily on the surface. Recently, Moczulska et al. performed precise 

quantification of the mouse synaptosomal proteome during postnatal maturation (from 3 – 8 

weeks of age) using peptide-based iTRAQ labeling and high-resolution two-dimensional 

peptide fractionation [119]. Among the 3422 identified proteins with complete 

quantifications, NFL, NFM, NFH and alpha-internexin were established to be components 

of the synaptosomes and their levels increased during brain postnatal maturation, a period 

when synapse formation sharply increases [2]. Alpha-internexin had long been believed to 

form a separate filament system from NF triplet proteins until it was shown to be the fourth 

subunit of NFs in the mature CNS [187] although somewhat over-represented among the 

other NF subunits present in synapses [193]. Benson et al. detected alpha-internexin 

immunoreactivity in dendrites extending into dendritic spines of cultured hippocampal 

neurons [17]. This immunoreactivity receded from spines and remained at the base of 

dendritic protrusions when cells were treated with latrunculin A to disrupt actin filaments 

[195].

Besides their association with the PSD, NF subunits have been noted to interact with other 

synaptic proteins. The synapse-specific PSD95-associated protein SAPAP interacts via its N-

terminal region with all 4 NF subunits, co-immunoprecipitates with NF proteins from rat 

brain, and co-localizes with NFs in transfected COS cells [80]. Spinophilin, a synaptic 

protein highly enriched in dendritic spines [3], regulates the formation and function of the 

spines [59]. Using a shotgun proteomic approach, Baucum et al. showed that spinophilin 

interacts via its N-terminal domain with NFL, NFM, and alpha-internexin in mouse striatum 

[13, 14, 79]. Moreover, the association increased significantly during mouse brain 
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maturation [14] during the period of synaptogenesis [2] and was dependent on the 

phosphorylation state of either spinophilin or NF protein [79]. The NFL subunit also directly 

binds to tau [118], a protein initially considered to localize in dendritic spines only under 

pathological conditions [86], but is not believed to have a physiological role in dendritic 

functioning [65, 90]. Knockdown of tau using specific shRNA significantly decreased the 

spine density of cultured hippocampal neurons [36] and deletion of tau in mice abolished 

long-term depression [95]. Thus the interaction between NFL and tau in dendritic spine 

could be important for normal synaptic transmission.

NF polymers are highly abundant in myelinated axons as estimated by conventional electron 

microscopy but 10nm filaments have also been noted in the perikarya and dendrites of 

neurons, including ones lacking a myelinated axon [55, 81, 98, 196]. In 1977, Blomberg et 

al. reported 10 nm filaments as major constituents of the partially broken up PSD isolated 

from dog cerebral cortex and assumed that they were composed of NF proteins [21]. Using a 

rapid-freezing technique, Landis and Reese described infrequent 9–10nm filaments in 

dendritic spines of mouse brain but interpreted these structures as actin filaments due to their 

periodicity [104]. Yuan et al. also identified in some synapses that short 10 nm filaments 

were decorated by immunogold antibodies to different NF subunits indicating that at least 

some synaptic NF subunits exist in polymerized form (Yuan et al. 2015b)[193]. Although 

NF proteins are present in both pre- and postsynaptic areas, 10nm NF polymers are not 

abundant in synaptic areas compared to myelinated axons, estimated by conventional 

electron microscopy. The infrequency of conventional long intermediate-sized polymers in 

synapses indicates that most NF subunits in synapses are probably in the form of oligomeric 

structures (protofilaments or protofibrils). Consistent with this interpretation, transport of 

NFM in non-filamentous, but oligomeric form, has been reported [166, 184, 186]. The 

organization of oligomeric NF assemblies in synapses, quite different from those parallel 

arrays with spacing controlled by C-terminal extensions of NFH/MFM in axons, might be 

closely associated with the synaptic actin network since disruption of such actin filaments 

also remarkably affects the distribution of NF assemblies [195]. The relative abundance of 

NF proteins in synapses is synapse type-dependent, e.g., NF proteins are not present at the 

postsynaptic sites of neuromuscular junctions. Instead, another intermediate filament protein 

desmin is highly concentrated near the AChR-rich crests of the junctional folds at the 

neuromuscular junctions [154].

2.2 NF subunit-specific modulation of synaptic functions and behavior

N-methyl-D-aspartate (NMDA) receptors are excitatory neurotransmitter receptors critical 

for synaptic plasticity and neuronal development in the mammalian brains [107]. These 

receptors are highly concentrated in postsynaptic membranes of glutamatergic synapses. 

Yeast-two-hybrid screening revealed that NFL interacts through its rod domain directly with 

the cytoplasmic C-terminal domain of NR1 [56] suggesting that NFs may anchor or localize 

NMDA receptors within the neuronal plasma membrane. Co-expression of NFL with either 

NR1 or NR2B subunits in HEK293 cells did not increase surface expression of these 

subunits whereas expression of all three components increased surface abundance of NR1 by 

20% and concomitantly increased NMDA-mediated cytotoxicity [144]. The NR1 subunit is 

ubiquitinated in HEK293 cells and the co-expression with NFL antagonizes this 
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ubiquitination process, suggesting another way that the interaction of NFL with NR1 may 

stabilize the NMDA receptor. NFL also binds to protein phosphatase-I (PP1), a protein /

serine /threonine phosphatase in the PSD [168]. NFL-bound PP1 could regulate the 

phosphorylation states of NF subunits and NMDA NR1 receptors the cellular distribution of 

which is regulated by the phosphorylation of specific serines in the C1 exon cassette [57]. 

On the one hand, NFL may modulate synaptic plasticity through interactions with NR1, PP1 

or 14-3-3 [56, 115, 168]. On the other hand, the phosphorylation state of NFL is regulated 

by synaptic plasticity events such as long-term potentiation (LTP) [78] and long-term 

potentiation depression (LTD) [77]. NFL selectively influences dendritic spine and 

glutamate receptor function since NFL-null mice not only have abnormal spines but also 

dysfunction of hippocampal-dependent spatial memory, NMDA receptor protein expression 

and synaptic plasticity (Yuan, Veeranna et al. unpublished data). LTP is a persistent increase 

in synaptic strength following high-frequency stimulation of a chemical synapse and is 

generally considered one of the major cellular mechanisms that underlie learning and 

memory [20]. Yuan et al. recently determined LTP in the Schaffer collateral pathway of the 

hippocampal slices prepared from wild-type control and IHL-TKO mice lacking alpha-

internexin, NFH and NFL subunits [192]. The tetanic stimulation evoked a typical LTP of 

fEPSP in slices from wild-type mice. These responses were stable for 120 min. However, 

tetanic stimulation evoked a significantly reduced fEPSP slopes in IHL-TKO mice, 

indicating NF proteins are, therefore, required for synaptic plasticity. Because LTP in the 

Schaffer collateral pathway of the hippocampus is NMDA receptor-dependent, altered LTP 

may be associated with reduced levels of NMDA-NR1 receptor (Yuan, Veeranna et al. 

unpublished data). Yuan et al. also conducted a 5-trial social memory assay to determine if 

IHL-TKO mice have a social memory defect. In this test, the subject mouse was given four 

brief exposures (trials 1–4) in its home cage to the same stimulus mouse (intruder). In the 5th 

trial, the subject mouse encountered an entirely novel stimulus mouse (novel intruder). Wild-

type control mice displayed normal social memory, as demonstrated by a marked habituation 

(decreased exploration) during the first 4 trials and a striking dishabituation (increased 

exploration) on the presentation of a novel animal on the 5th trial. In contrast, IHL-TKO 

mice showed no significant habituation during the 4 exposures to the stimulus mouse or 

dishabituation to the novel stimulus mouse. Consistent with reduced LTP, IHL-TKO showed 

social interaction deficits, indicating that mice lacking NF proteins failed to develop normal 

social memory.

Dopamine receptors are G-protein-coupled receptors that mediate functions of dopamine 

ranging from voluntary movement and reward to hormonal regulation and hypertension [72]. 

These receptors are highly concentrated in the postsynaptic membrane of dopaminergic 

synapses. Yeast-two-hybrid screening has shown that the C-terminal tail of NFM directly 

interacts with the cytoplasmic loop of dopamine D1receptor [94] and that their co-

expression in HEK-293 cells resulted in more than 50% reduction of receptor binding. 

Recently, the relevance of this interaction at synapses was established in genetically 

modified mice. Deletion of NFM, but not deletion of any of the other NF subunits, greatly 

amplified dopamine D1-receptor-mediated motor responses to cocaine while redistributing 

postsynaptic D1-receptors from endosomes to the plasma membrane (Figure 2)[193]. In 

wild-type mice, NFM colocalized with the D1 receptor in synaptic boutons by immunogold 
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electron microscopy. Deletion of NFM also significantly increased D1R–stimulated 

hippocampal LTP further indicating an in vivo interaction between NFM and D1R [193]. 

Depressed hippocampal LTP induction is NF subunit-selective: maintenance of LTP is 

deficient in NFH-null mice while basal neurotransmission and induction of LTP are normal 

in NFM-null mice. Eliminating all NF proteins from the CNS profoundly disrupted synaptic 

plasticity and social memory without altering the structural integrity of synapses [193].

Peripherin, a subunit of peripheral nerve NFs, is almost exclusively expressed in the neurons 

of PNS and in the CNS only in defined subsets of neurons directly projecting to the 

periphery [25, 189]. However, brain injuries such as stab lesions and focal ischemia can 

trigger peripherin expression in CNS neurons normally silent for this gene [15]. Although 

definitive evidence for the presence of peripherin in synapses in the CNS is lacking, 

electrophysiological studies revealed synaptic plasticity was markedly altered in transgenic 

mice over-expressing the normal peripherin gene under its own promoter [101]. LTP was 

50% greater in CA3 and 50% diminished in CA1 of hippocampus of the mutant mice than in 

wild-type controls. These data indicate a role for peripherin as a mediator of plasticity of 

hippocampal synapses potentially relevant to cognitive diseases. Peripherin was recently 

shown to be a strong binding partner of Rab-7A mutations of which are capable of altering 

the ratio of soluble and insoluble peripherin in vitro and are causative of CMT2B [42], 

indicating that peripherin may also have a role in vesicular transport. More recent studies 

involving yeast two-hybrid screens established interactions of peripherin and SNAP25-

interacting protein SIP30 through coiled-coil domains [71] further suggesting a potential 

important role of peripherin in regulating vesicular trafficking at the synapses.

3. Alterations of NF proteins in psychiatric disorders

3.1. Schizophrenia and bipolar disorder

Schizophrenia, a severe chronic brain disorder affecting ∼1% of the population [136], is 

characterized by abnormal interpretation of reality and social behavior. The behavioral 

syndrome reflects a combination of positive symptoms (eg. hallucinations, delusions, and 

disordered thinking and behavior), negative symptoms (eg. reduced expression, feelings, and 

speech production), and cognitive deficits (eg. poor executive functioning, working memory, 

and attention). The causes of schizophrenia are unknown. Various alterations of neuronal 

and glial functions have been reported although loss of neurons or neurodegenerative change 

is not considered fundamental to disease development. Postmortem brains from individuals 

with schizophrenia are usually characterized by reduced dendritic spine density [70, 73, 

165].

Pharmacological and biochemical evidence supports an important role of NMDA receptor 

hypofunction in the pathophysiology of schizophrenia [11, 44]. Many genetic risk factors for 

schizophrenia have been reported, including inherited common single nucleotide 

polymorphisms, copy number variants, rare single nucleotide variants and rare de novo 

variants. De novo genomic copy number variants known to substantially increase 

susceptibility to schizophrenia are enriched for members of the NMDA receptor 

postsynaptic signaling complex and are significantly more frequent in individuals with 

schizophrenia than in controls [96]. Fromer et al. confirmed these findings and further 
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implicated abnormalities of synaptic cytoskeleton regulation and glutamatergic 

neurotransmission [67]. The fact that NFL, NFM and NFH genes map to chromosomal 

regions (8p21, 8p22 and 22q12, respectively) that are strongly implicated in schizophrenia 

suggests the involvement of NF proteins in this disease [8, 106]. As earlier noted, NFL in 

synapses [193] binds the NR1 receptor and may stabilize its presence in the cell membrane 

by preventing its ubiquitination and subsequent degradation [56, 144]. Besides binding NR1 

to influence NMDA receptor function, NFL has also been shown to interact in a 

phosphorylation-dependent manner with 14-3-3 gamma [115], another protein implicated in 

schizophrenia [117, 171].

Of further potential relevance to NMDA receptor dysfunction in schizophrenia is a 

consistent body of evidence that points to selectively reduced levels of NFL subunits in brain 

regions essential for the cognitive and behavior functions affected in schizophrenia [100]. In 

dorsolateral prefrontal cortex (DLPFC), NFL transcript expression is significantly increased 

across all cortical isodense layers in DLPFC from elderly individuals with schizophrenia 

(mean patient age 80y) while levels of NFL protein are decreased about 50%, collectively 

suggesting possibly that turnover of NFL is abnormally high. Proteomic analysis of the 

DLPFC in schizophrenia revealed synaptic and metabolic abnormalities, including 

significantly reduced NFL (1.5-fold) and NFM levels (1.2-fold) without changes in NFH and 

alpha-internexin proteins [135]. Reduced NFL and NFM levels were also found in study of 

DLPFC deep white matter in schizophrenia (English et al.) and in the ACC (anterior 

cingulate cortex) white matter [39] where a 3-fold increase (p<0.05) in alpha-internexin was 

also measured. Similar changes in NFL and alpha-internexin levels were seen in another 

proteomic analysis of schizophrenic corpus callosum [157]. Although NFL transcription was 

significantly decreased in the thalamus of younger adult schizophrenics (mean age 43y), it 

was increased 25%-30% relative to controls, along with NFM levels, in elderly 

schizophrenics (mean age 70y) [41]. Collectively, these results implicate regional 

abnormalities of NFL transcription and /or accelerated NFL degradation in schizophrenia. 

NFL protein has been shown to be more vulnerable than NFM and NFH subunits to 

calcium-dependent proteases [199]. The changes observed in NFs may be part of the 

dynamic cytoskeletal remodeling in the pathogenesis of schizophrenia. Dramatic changes in 

the levels of NF proteins were also observed in axotomized motor and sensory neurons [84, 

169, 183]. In light of evidence linking NFL to the functional activity of the NMDA receptor, 

the lowered levels of NFL could be a potential contributor to the NMDA hypofunction 

proposed to underlie various phenotypic features of schizophrenia.

Bipolar disorder is a brain disease that causes extreme mood swings that include emotional 

highs and lows. The exact cause of bipolar is unknown. Imaging and cellular studies have 

identified dysfunction of the dorsolateral prefrontal cortex in bipolar disease [54, 140, 162]. 

NFL transcripts are reported significantly reduced, along with NFM and alpha-internexin 

proteins [135], in adults with bipolar disorder (mean age 42y), but not in major depressive 

disorder [41]. Examining the differential protein expression in the deep white matter from 

DLPFC from individuals with bipolar disorder and controls, English et al. identified 

differences in 15% of proteins classified as cytoskeletal proteins which included increased 

NFM (1.66 fold, p= 0.03)[58].
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Given that most studies of psychiatric disorders focusing on cytoskeletal changes analyzed 

brain areas enriched in white matter axons and the alterations of NF proteins may well 

reflect disturbed function of the axonal compartment. Given the ubiquity and abundance of 

synapses in CNS, it is also possible that even white matter analyses capture alterations of the 

significant synaptic NF protein pool in neuropsychiatric disorders. It is also reasonable to 

expect that future deeper analyses that include terminal regions of these same vulnerable 

brain regions and target additional relevant grey matter regions enriched with synaptic 

boutons, may identify dysfunction of the synaptic cytoskeletal network, including NF 

subunit interactions, more sensitively.

3.2. Drug addiction

Drug addiction is a chronic brain disorder that causes compulsive drug seeking and use 

despite adverse consequences. The mesolimbic pathway, which connects the ventral 

tegmental area (VTA) to the nucleus accumbens, has been implicated in common 

mechanisms of drug addition [139]. The mesolimbic pathway releases dopamine into the 

nucleus accumbens, where it affects motivation for rewarding stimuli. Drugs abused by 

humans such as morphine, cocaine, ethanol and nicotine have very different chemical 

structures but all preferentially increase synaptic dopamine concentrations in the mesolimbic 

system [53]. This is believed to be the neural substrate mediating the reinforcing properties 

of drugs of abuse. Given their diverse primary sites of action on cell surface receptors, these 

addictive drugs have to act indirectly on intracellular proteins as a convergence point to exert 

similar effects on mesolimbic dopamine function. Beitner-Johnson et al. first reported that 

NF proteins NFL, NFM and NFH were decreased 15–50% in the VTA by chronic 

administration of morphine or cocaine in rats [16]. The lowering of NF protein levels by 

these drugs was selective since the levels of 8 other major cytoskeletal or cytoskeletal-

associated proteins did not change. Chronic exposure to psychotropic drugs lacking 

reinforcing properties did not alter NF levels. In separate studies, morphine administration 

caused a decrease of NFL immunoreactivity in rat cerebral cortex, which was antagonized 

completely by concurrent administration of naloxone [22]. Similar antagonism was achieved 

in three separate knockout mice of opioid receptors (mu or delta or kappa) [68], implicating 

all opioid receptor subtypes in these effects of morphine. Chronic morphine and cocaine also 

increased phosphorylation of NFH and NFM tail domains, an effect ablated by knockout of 

cortical mu-opioid receptors [68]. Interestingly, chronic cocaine, but not chronic morphine, 

lowered alpha-internexin levels in the VTA, hinting at somewhat different mechanisms at 

play for these two drugs, which are known to act at different receptors [16].

Rats inbred for alcohol preference expressed lower levels of NF subunits, suggesting that NF 

proteins in the VTA may influence preference for drugs [74, 75]. Examining its influence on 

NF proteins, GFAP and NMDA receptors, Ortiz et al. reported that chronic ethanol treatment 

significantly decreased NF protein levels in VTA (by 14%-37%) while increasing GFAP (by 

40%) and NMDA NR1 subunit (by 27%) [131]. Similar to other drugs of abuse, nicotine 

activates the mesolimbic pathway by increasing cell firing of dopaminergic neurons in the 

VTA via nicotinic receptors [113]. Nicotine microinfusions into the VTA which resulted in 

sensitization of dopamine release [10], also reduced NFL (by 34%, p<0.05), NFM (by 42%, 

p<0.01), and NFH levels (by 38%, p<0.05) in the VTA but not in the substantia nigra in rats 
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[28, 150] without altering neuron numbers. The similar reductions of NF proteins in the 

VTA by the chronic treatment of different drugs of abuse with reinforcing properties suggest 

that common mechanisms underlie these addictive states.

Other brain targets, such as frontal cortex [29, 156], also show lowered NFL levels (47%, p 

< 0.001) in brains of addicts dying from opiate overdose [69]. Similar NFL reductions (49%, 

p<0.001) are also seen in the frontal cortex of rats after chronic morphine treatment. 

Narayana et al. reported immunohistochemical evidence for a significant decrease in NFH 

expression in the fimbria and internal capsule of rats after chronic cocaine administration 

[123]. Analysis of NF phosphorylation in the prefrontal cortex of human opioid addicts 

uncovered significantly reduced nonphosphorylated forms of NFH, NFM, and NFL and 

corresponding increases in phosphorylated forms [61, 62]. Similar changes are seen in brain 

regions of rats chronically treated with cocaine [109]. Acute morphine exposure also induces 

a marked increase in phosphorylated NFH whereas chronic morphine administration 

followed by opiate withdrawal results in a time-dependent decline in phosphorylated NFH 

[32, 91]. A recent study found chronic morphine causes persistent nitration of NFL in cortex 

and subcortex in mice even during abstinence [132], although its significance remains 

unclear.

Since PP2A has been shown to be the most effective in the nervous system in 

dephosphorylating the sites in NFH known to be phosphorylated by cdk5 [177], this 

phosphatase together with cdk5 were also examined. Surprisingly, the levels of PP2A were 

found unchanged while the levels of cdk5 and its neuron-specific activator p35 in the 

prefrontal cortex of human opioid addicts were decreased by 18% and 26–44%, respectively 

[62]. In these brains, phosphorylated NFH significantly correlated with p35 but not with 

cdk5. Further studies showed that acute treatment of rats with morphine increased the 

density of cdk5 by 35% in the cerebral cortex. In contrast to the acute effects, chronic 

morphine induced a marked decrease in cdk5 by 40% and p35 by 47% in rat brain [62]. It 

therefore appears that, despite the possible stimulating effect of the deadly opiate overdose 

on cdk5, the reduced expression of the cdk5/p35 complex in brains of opioid addicts is the 

net result of a chronic opiate effect. These results indicate that opioid addiction is associated 

with down regulation of cdk5/p35 levels in the brain and the hyperphosphorylation of NFH 

is not the result of a reduced dephosphorylation process. Although the abundance of cdk5 

was decreased in the brains from chronic opioid abusers, Narita et al. showed that the level 

of phosphorylated cdk5 (serine-159) immunoreactivity in the frontal cortex was significantly 

increased by chronic morphine treatment [124] and phosphorylation of cdk5 at serine-159 

dramatically increases cdk5 activation [155]. They also demonstrated that the treatment of 

selective cdk5 inhibitor, roscovitine and a half deletion of the cdk5 gene caused a significant 

inhibition of the rewarding effect of morphine. In addition, chronic cocaine or morphine 

administration also activates extracellular signal-regulated kinase (ERK), a known NF 

protein kinase [176], by promoting its phosphorylation [18, 174]. Altogether, these data 

indicate the hyperphosphorylation of NF proteins under these conditions may be related to 

the up-regulation of phosphorylated cdk5 and increased ERK activity.

D1R and NMDA NR1 receptors are assembled as an oligomeric complex and are 

functionally interdependent [63, 105]. Both receptors bind to NF proteins [56, 94] and are 
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also involved in drug addiction [43, 173]. Cocaine has been shown to reduce the D1R-NR1 

physical interaction and may influence intracellular signaling [164]. On the one hand, D1R 

is a primary target of stimulant drugs and chronic exposure to drugs of abuse lower levels of 

NF proteins and alter their phosphorylation state [16]. On the other hand, NMDA receptor 

inhibition increases the phosphorylation state and the solubility of NFM protein [64]. 

Glutamate has been shown to inhibit NF transport, which can be reversed by NMDA 

receptor blocker MK-801 [1]. Over-activation of primarily NMDA receptors by glutamate 

leads to rapid disruption of NF proteins in cultured neurons [37]. The basis for these NF 

changes and their relationship to synaptic function remain elusive. As discussed above, our 

recent studies demonstrated that deletion of NFM in mice amplifies D1R–mediated motor 

responses to cocaine while redistributing postsynaptic D1R from endosomes to the plasma 

membrane, indicating a role of this NF subunit in drug addiction [193].

4. Alterations of NF proteins in Alzheimer’s disease

Alzheimer’s disease is an irreversible, degenerative brain disorder that progressively 

destroys memory and other mental functions. Early striking loss of synaptic connections 

within brain regions involved in memory and thinking skills is followed by loss of neurons 

of many types. Accompanying neurodegenerative changes is the development of defining 

neuropathological hallmarks of AD, neuritic plaques, and neurofibrillary tangles, along with 

extracellular deposition of β-amyloid. The causes of the most common late-onset forms of 

AD (more than 95% of all cases) are not fully understood: the much less common early-

onset familial forms (less than 5% of all cases) are caused by mutations of either of three 

genes, amyloid precursor protein (APP) and presenilins 1 and 2(PSEN1 and PSEN2) [76, 

175]. These causative genes and other risk factors influence the production and clearance of 

APP metabolites that mediate APP signaling cascades and may also have cytotoxic 

properties.

An important feature of AD is the disruption of the neuronal cytoskeleton leading to 

formation of neurofibrillary tangles (NFTs) [27, 102] numbers of which correlate well with 

neurodegeneration and severity of cognitive decline in AD [5, 19, 23]. The main constituents 

of tangles are paired helical filaments (PHF), initially believed to be composed of NF 

proteins [4, 47, 88] and later shown to be mainly fibrillar aggregates of tau protein [99, 103, 

128]. Although NF proteins were somewhat ignored as tangle constituents, data has amply 

confirmed that NF proteins are integral components of the NFTs [138]. Most recently, mass 

spectrometry analysis by Pant and colleagues confirmed the presence of NFM and NFH in 

purified NFTs from AD brain independently of antibody cross-reaction between NF protein 

and tau [147]. The NFTs are far more complex than that of tau - PHFs. They also contain 

abundant NF proteins, vimentin, phosphorylated MAP1, phosphorylated MAP2, 

nonphosphorylated MAP1B, nonphosphorylated MAP2, nonphosphorylated MAP4 and 

nonphosphorylated MAP6. The question of whether the formation of tau-PHF is the 

initiating event in NFT formation has not been thoroughly addressed and the possibility that 

another NFT constituent, like NF protein, may initiate the process has not been excluded. In 

this regard, Morrison and colleagues reported that, certain populations of cortico-cortical 

pyramidal neurons that contain abundant perikaryal NF in relatively low states of 

phosphorylation are highly vulnerable to neurodegeneration through NFT formation [82, 83, 
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121, 178, 179]. More recent studies have provided independent evidence for loss of SMI32 

immunopositive neurons in temporal cortical areas of AD brain [170]. The loss of SMI32 

immunoreactivity on cortical regions of AD brain is often paralleled by increase in NFTs 

and AT8-positive tau immunoreactivity in neurons [121], indicating nonphosphorylated NF 

proteins may play a protective role in preventing the formation of NFTs. In fact, it is 

suggested that the development of neurofibrillary pathology may begin with abnormal NF 

accumulations in damaged distal processes followed by reactive perikaryal cytoskeletal 

changes that ultimately lead to tau hyperphosphorylation and NFT formation [178]. The co-

localization of caspase-3 cleaved spectrin with nonphosphorylated NF-immunoreactive 

neurons in AD suggests that caspase-3 activation may be a pathological event responsible 

for the loss of these vulnerable neurons [6].

NFL mRNA is significantly reduced in AD cortex [38, 114] [97] and CA1 and CA2 regions 

of hippocampus [159]. Like NFL, NFM mRNA was also significantly decreased while NFH 

mRNA was unaltered in AD temporal cortex as compared to controls [97]. Also significantly 

increased in AD are NFH (by 1.7-fold), NFM (by 1.5-fold) and NFL proteins (by 1.6-fold) 

and the degree of phosphorylation of NFH (by 1.6–2.7-fold) and NFM (by 1.3–1.9-fold) as 

compared to Huntington disease [182]. Proteomic studies revealed increases of alpha-

internexin and NFM proteins in the postsynaptic densities isolated from AD cortex as 

compared to controls with the increase of alpha-internexin being validated by Western blots 

[197]. Using quantitative phosphoproteomic methodology, Pant and colleagues recently 

reported 13 hyperphosphorylated sites in the C-terminal domain of NFM and 10 

hyperphosphorylated sites of that of NFH in the frontal cortex of AD brain and all of these 

sites are in a higher state of phosphorylation in AD (4–8-fold higher) compared with control 

brains [146]. Surprisingly, the abundance and number of KSP repeat hyperphosphorylation 

of NFM are significantly higher compared with NFH, even though potential phosphorylation 

sites in NFH are more numerous. Based on the NF stoichiometry [4:2:2:1 (NFL:alpha-

internexin:NFM:NFH)] [187], there are 2-fold more KSP repeat sites hyperphosphorylated 

in NFM compared with NFH, indicating that NFM might contribute more to aberrant NF 

phosphorylation in AD compared with NFH.

Additional abnormalities of NF have also been observed in AD. Significantly decreased O-

GlcNAcylation of NFM was observed in AD cortex as compared to controls [51] while 

carbonyl-related posttranslational modification of NFH protein was also present in the AD 

NFTs [158]. Chapman et al. showed that sera of AD patients contain antibodies that bind 

specifically to NFH of Torpedo cholinergic neurons [35]. AD patients also have elevated 

intrathecal synthesis of anti-NFH antibody [12]. Behavioral tests revealed that rats 

immunized with cholinergic NFH for 12 month performed significantly worse than controls 

in in T-maze alternation test [34]. This prolonged immunization of rats with NFH results in 

cognitive impairment, IgG accumulation in the septum, hippocampus and entorhinal cortex 

with marked loss of neurons in the septum [130]. Interestingly, this cognitive impairment 

can be reversed by the acetylcholinesterase inhibitor physostigmine administered 30 min 

prior to testing [116]. These findings suggest that NFH may play a role in the pathogenesis 

of AD neurons.
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Further support for NF protein involvement in AD pathogenesis comes from genetic studies. 

Deletion of NFL or NFH subunits in T44 mice overexpressing htau resulted in a dramatic 

decrease in the total number of tau-positive spheroids in the spinal cord and brainstem, 

indicating a role of NF proteins in the pathogenesis of neurofibrillary tau pathology [89]. 

Deletion of NFL in APP/PS1 transgenic mice, unexpectedly, increased neocortical β-

amyloid deposition, synapse vulnerability and microgliosis surrounding β-amyloid plaques, 

suggesting a protective role of this NF subunit in AD [60].

The abundance of NFs in axons and the frequency of axonal injury in neurodegenerative 

disease has led to the use of NF protein measurements as a clinical index of brain injury in 

various neurological disorders. Higher than normal levels of NFL and NFH in CSF have 

been reported in AD [24, 87] and correlate with disease severity in a recent study of 

frontotemporal dementia [153]. CSF NFL concentration is increased by the early clinical 

stage of AD, correlates with cognitive deterioration and structural changes over time [194] 

and may be a useful marker of disease progression in AD [7].

Although amyloid plaques and tau tangles are two hallmarks of Alzheimer’s disease, 

synaptic loss is more robustly correlated than these pathological lesions with cognitive 

deficits [50, 167]. Synaptic loss is more pronounced in the hippocampus [152] than in 

temporal and frontal cortex [48] and disturbance of synaptic integrity occurs very early on in 

the process of AD [111]. Ultrastructural stereological studies on rapid postmortem autopsy 

samples showed an 18% synapse loss in the hippocampal CA1 region of MCI patients that 

progressed to a 55% synapse loss in mild AD [151]. Since oligomeric NF proteins are 

present in synapses where they interact with synaptic proteins, loss of synapses in early AD 

could affect the level of this synaptic NF pool and may thus contribute to the increased NF 

protein levels in CSF and blood [7]. Alterations of NF proteins in early AD could also 

reflect synaptic reorganization while changes of NF subunits in late AD may suggest 

reorganization of both synaptic and axonal pools.

5. Conclusion

The etiology of major neuropsychiatric disorders critically involves dysfunction of synapses 

and, in late-onset dementias, the ultimate loss of synapses early in the disease. Relatively 

little attention, however, has been paid to the dynamics of cytoskeletal proteins at synaptic 

terminals and particularly the possible synaptic involvement of NF proteins. Until recently, 

the functioning of NF protein assemblies within synapses has been unappreciated and the 

focus has been on their axonal roles (eg. radial growth) and disruption in axonopathies 

involving mainly neurons with long myelinated axons that contain abundant NFs. In the 

CNS, however, even axons in major fiber tracts like the corpus callosum change minimally 

in caliber in NF triple knockout mice nearly completely lacking all 4 CNS NF subunits. This 

finding underscores growing evidence that NF proteins in the CNS have important functions 

beyond caliber expansion. Emerging evidence shows that NF proteins are present and 

functional in synapses. The synaptic population of NF proteins is distinctive in 

phosphorylation state, likely present in unconventional stoichiometries and assembly forms 

including oligomeric structures, and possibly more plastic in exchanging subunits and 

altering form in response to signals. Further evidence that individual subunits differentially 
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modulate neurotransmission and behavior through interactions with specific 

neurotransmitter receptors heightens expectations that alterations of NF proteins could 

influence synaptic function in psychiatric disorders and dementias. Despite the very frequent 

occurrence of NF protein changes in multiple major psychiatric states, most of the analyses 

have been on white matter tracts and the changes seen, often involving levels of only one or 

two subunit, have been difficult to interpret mechanistically from a perspective of changes in 

the axonal NF cytoskeleton. The newly uncovered sizable population of synaptic NF 

proteins should encourage more directed attention to regional analyses that interrogate this 

synaptic NF protein pool and will potentially yield valuable new insights into the 

significance of NF subunits in neuropsychiatric disease.
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Highlights

• Distinctive assemblies of neurofilament subunits are integral 

components of synapses

• Synaptic neurofilament proteins are a sizable population in the CNS

• NF subunits modulate neurotransmission and behavior via interactions 

with receptors

• Alterations of NF subunits may contribute to neuropsychiatric 

dysfunction
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Figure 1. Functional NF subunit assemblies in synapses
Left panel: Immunogold labeled antibodies against the NFM subunit decorating synaptic 

structures in a linear pattern (immunogold particles outlined in blue) suggesting the presence 

of short NFs and protofilament /protofibril or unit length filament assemblies. In the upper 

inset, a filament within a postsynaptic bouton is decorated by immunogold antibodies to 

both NFL (large gold dots) and NFH (small gold dots). Morphometric analysis indicates a 

higher density of immunogold labeling in postsynaptic boutons than in preterminal dendrites 

or presynaptic terminals (graph inset). Middle panel: Ultrastructural image of a human 

synapse depicts membranous vesicles, many of which appear to be associated with a loose 

network of short 10nm filaments in the post-synaptic region. Right panel: Evidence supports 

a biological mechanism whereby D1 dopamine receptors internalized on endosomes from 

the postsynaptic surface (red asterisks) dock on synaptic NF subunit assemblies (outlined in 

blue) where they are readily available to recycle on endosomes to the surface in response to 

ligand stimulation (adapted from Yuan et al. Mol Psychiatry 2015; 20:915 with permission).
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Figure 2. Model of D1R–containing endosomes anchored on NFM-containing cytoskeletal 
assemblies
Based on collective findings on NF scaffolding functions and our D1R data on NF subunit 

null mice, we propose a model by which NFM acts in synaptic terminals to anchor D1R–

containing endosomes formed after agonist-induced internalization of membrane D1R. 

Retention of D1R in a readily available internal pool within the synapse would favor 

desensitization to D1R stimulation: in the absence of NFM, the greater recycling back to the 

plasma membrane surface would favor hypersensitivity to D1R agonists, as observed in our 

in vivo studies (adapted from Yuan et al. Mol Psychiatry 2016; 20:986–994 with 

permission).
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