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Summary

Protein-peptide interactions play an important role in many cellular processes. In silico prediction 

of protein-peptide complex structure is highly desirable for mechanistic investigation of these 

processes and for therapeutic design. However, predicting all-atom structures of protein-peptide 

complexes without any knowledge about the peptide binding site and the bound peptide 

conformation remains a big challenge. Here, we present a docking-based method for predicting 

protein-peptide complex structures, referred to as MDockPeP, which starts with the peptide 

sequence and globally docks the all-atom, flexible peptide onto the protein structure. MDockPeP 

was tested on the peptiDB benchmarking database, using both bound and unbound protein 

structures. The results show that MDockPeP successfully generated near-native peptide binding 

modes in 95.0% of the bound docking cases and in 92.2% of the unbound docking cases, 

respectively. The performance is significantly better than other existing docking methods. 

MDockPeP is computationally efficient and suitable for large-scale applications.
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2 Introduction

Up to 40% of protein-protein interactions are estimated to be mediated by short peptides, 

which are involved in a variety of cellular processes such as signal transduction, immune 

responses and transcriptional regulation (Petsalaki and Russell, 2008). Peptides are also 

attractive candidates for drug development (Wells and McClendon, 2007; Craik et al., 2013; 

Fosgerau and Hoffmann, 2015). Therefore, studying protein-peptide interactions is of great 

significance for mechanistic investigation of many biological processes and for development 

of peptide therapeutics. However, there are only a limited number of protein-peptide 

complex structures in the Protein Data Bank (PDB) (Berman et al., 2000), because of the 

difficulties and cost for determining such structures by X-ray crystallography and NMR 

spectroscopy. By contrast, in silico methods provide a much cheaper and faster alternative. 

Numerous efforts have been devoted to predicting protein-peptide interactions, ranging from 

the prediction of peptide binding sites (Singh and Raghava, 2001, 2003; Petsalaki et al., 

2009; Trabuco et al., 2012; Lavi et al., 2013; Saladin et al., 2014; Yan and Zou, 2015) to the 

much more challenging prediction of protein-peptide complex structures (Verschueren et al., 

2013; Lee et al., 2015; Hetényi and van der Spoel, 2002; Niv and Weinstein, 2005; Liu et al., 

2004; Huang and Wong, 2009; Dagliyan et al., 2011; Antes, 2010; Raveh et al., 2011, 2010; 

Trellet et al., 2013; Kurcinski et al., 2015; Blaszczyk et al., 2016; Schindler et al., 2015; 

Ben-Shimon and Niv, 2015).

The existing methods for predicting protein-peptide complex structures can be roughly 

classified into three categories: template-based modeling (Verschueren et al., 2013; Lee et 

al., 2015), molecular docking (Hetényi and van der Spoel, 2002; Liu et al., 2004; Raveh et 

al., 2011, 2010; Trellet et al., 2013; Kurcinski et al., 2015; Blaszczyk et al., 2016; Schindler 

et al., 2015) and molecular dynamics (MD) simulation (Niv and Weinstein, 2005; Huang and 

Wong, 2009; Dagliyan et al., 2011; Antes, 2010; Ben-Shimon and Niv, 2015). Template-

based modeling is computationally efficient. However, due to the very limited number of 
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protein-peptide complexes in the PDB, a high-quality template is often unavailable. MD 

simulation is the most rigorous method, which uses physically-based force field parameters 

to simulate the dynamics of the protein-peptide complex to reach a state of equilibrium. 

However, the extremely intensive computational requirement hinders large-scale 

applications of this kind of methods. Molecular docking, which employs simplified scoring 

functions and (fully or partially) restricts the protein structure to reduce the computational 

time, is the most commonly-used method for protein-peptide complex structure prediction. 

Yet, most docking studies before Year 2010 focused either on very short peptides (fewer 

than 5 amino acids) (Hetényi and van der Spoel, 2002) or on specific systems (Liu et al., 

2004; Niv and Weinstein, 2005). Recently, a few docking methods have been developed for 

longer peptides (i.e., 5 to 15 amino acids) (Raveh et al., 2011, 2010; Trellet et al., 2013; 

Kurcinski et al., 2015; Blaszczyk et al., 2016; Schindler et al., 2015). For example, the 

FlexPepDock ab initio (Raveh et al., 2011) flexibly docks the coarse-grained model of a 

peptide to a protein by sampling peptide backbone conformations and rigid-body 

orientations in the given binding site; the generated coarse-grained protein-peptide 

complexes are then converted to all-atom models through all-atom refinement. This method 

is computationally expensive and takes about 24 hours on a cluster of 120 processors for 

each prediction (Raveh et al., 2011). HADDOCK (Trellet et al., 2013) rigidly docks three 

pregenerated peptide conformers (extended, alpha-helix, and polyproline-II) to the given 

peptide binding site; the top 400 rigid complexes are flexibly refined by using simulated 

annealing in the torsional angle space followed by MD simulations in explicit solvent 

(Trellet et al., 2013). An improved method, pepATTRACT (Schindler et al., 2015), rigidly 

docks the same three peptide conformers onto the whole surface of the protein, followed by 

the refinements of the top 1000 generated complex structures with a flexible interface 

refinement method and then MD simulations in implicit solvent (Schindler et al., 2015). 

Similar to HADDOCK, pepATTRACT is time-consuming because of the MD-based 

refinement step for a large number of complex structures. CABS-dock (Kurcinski et al., 

2015; Blaszczyk et al., 2016) flexibly docks the coarse-grained model of the peptide; the 

secondary structure of the peptide is either provided by the user or predicted by PSI-PRED 

(McGuffin et al., 2000), a secondary structure prediction tool for proteins. CABS-dock is 

computational efficient, and a typical run takes about 3 hours on the CABS-server. However, 

the secondary structure of the bound peptide is often unknown, and it is unclear whether the 

protein-based PSI-PRED is suitable for predicting secondary structures of bound peptides. 

In summary, to our best knowledge, the existing global docking methods are restricted either 

by the time-consuming MD-based refinements or by the inaccurate coarsegrained models. A 

docking strategy with a good balance between the accuracy and the computational efficiency 

is highly desired.

Here, we present an all-atom and blind docking strategy for protein-peptide complex 

structure prediction. The method, referred to as MDockPeP, requires only the peptide 

sequence and the 3D structure of the protein. MDockPeP consists of three stages. In Stage 1, 

peptide conformers are constructed. In Stage 2, putative protein-peptide binding modes are 

globally sampled on the whole surface of the protein. In Stage 3, the sampled binding modes 

are scored and ranked. The flowchart of MDockPeP is summarized in Figure 1.
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Specifically, given the sequence of a peptide and the 3D structure of a protein, the 

conformations of the peptide are modeled based on the template fragments of monomeric 

proteins that have similar sequences. This modeling effort is based on 1) the argument that 

peptide binding is similar to protein folding except that the peptide is not covalently 

connected to the protein (Kippen et al., 1994; Zhang et al., 1997), and 2) the finding that 

peptide binding interfaces share striking similarities to the folds in single protein chains 

(Vanhee et al., 2009). Up to 3 non-redundant peptide conformers are kept, and each 

conformer is individually docked to the whole surface of the protein. During each docking 

process, to reduce the configurational space for sampling, a restrictive sampling approach is 

employed that effectively integrates global rigid sampling and local flexible sampling, 

eliminating the binding modes in which their peptide conformations are significantly 

different from the initially modeled peptide conformations (with backbone root-mean-square 

deviation (bRMSD) larger than 5.5 Å). The resulting binding modes based on different 

starting peptide conformers are combined, followed by scoring and ranking with our 

statistical potential-based scoring function, ITScorePeP. ITScorePeP is derived based on the 

crystal structures of protein-peptide complexes, using our previous iterative approach 

(Huang and Zou, 2006, 2008, 2011, 2014).

In the present study, MDockPeP has been systematically assessed on the peptiDB 

benchmarking database (London et al., 2010; Trellet et al., 2013), using both bound and 

unbound protein structures. In the stage of peptide modeling, for 95.1% of the cases, at least 

one of the top three models produced a prediction with a RMSD < 4.0Å. In the sampling 

stage, our sampling method produced near-native peptide binding modes (high or medium 

quality based on ligand RMSD (Lrms) for 95.0% of the bound docking cases (i.e., using 

bound protein structures), and 92.2% of the unbound docking cases (i.e., using unbound 

protein structures). In the scoring stage, at least one near-native peptide binding mode was 

ranked among the top 10 predictions (or the top 100 predictions) for 54.0% (81.0%) of the 

bound docking cases, and for 37.5% (59.4%) of the unbound docking cases. Compared with 

the existing methods for protein-peptide complex structure prediction, MDockPeP is 

computationally efficient and performs very well particularly on sampling near-native 

binding modes. Each docking calculation normally takes a few hours on a computational 

node of 24 processors. The details of the methods and results are described in the following 

sections.

3 Results

3.1 The criteria for assessment

The method of peptide structure modeling was evaluated by calculating both backbone 

RMSD (bRMSD) and heavy-atom RMSD (hRMSD) between the constructed peptide 

structures and the corresponding bound peptide structures in the peptiDB database. The 

sampling and scoring methods are assessed in terms of the three parameters defined by 

CAPRI for protein-protein and protein-peptide docking analysis (Méndez et al., 2003), 

ligand RMSD (Lrms), interface RMSD (Irms) and fraction of native contact (fnc). Notably, 

Lrms and Irms have been used in previous studies on protein-peptide docking assessment 

(Raveh et al., 2011, 2010; Trellet et al., 2013; Kurcinski et al., 2015; Blaszczyk et al., 2016; 

Yan et al. Page 4

Structure. Author manuscript; available in PMC 2017 October 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Schindler et al., 2015). However, these two parameters cannot reflect the side chain quality 

of the predicted peptide binding modes. In addition, the RMSD values are often dependent 

on the structural sizes (Irving et al., 2001). Therefore, in this work, besides Lrms and Irms, the 

fraction of native contacts (fnc) was also employed for peptide binding mode assessment. 

Lrms was calculated based on the backbone atoms of the peptide between the predicted 

binding mode and the native binding mode after the optimal superimposition of the protein 

structures. The unbound protein structure was matched onto the bound protein structure 

using the MatchMaker tool of UCSF Chimera (Pettersen et al., 2004). Irms was calculated 

based on the backbone atoms of the interface residues that are within 10.0Å of its binding 

partner. The interface residues were defined based on the experimental structure of the 

protein-peptide complex. fnc is the fraction of the correctly identified residue contacts 

between the protein and the peptide. A pair of residues were defined as a contact if any two 

heavy atoms in the two residues are within 5.0Å. The criteria for assessment are summarized 

in Table 1.

3.2 The Construction of the Initial Peptide Conformers

The 3D structures of the 103 peptides in the peptiDB database were constructed based on 

their sequences. Figure 2A shows bRMSD and hRMSD between the top model (i.e., the 

peptide conformer built based on the template with the highest sequence similarity to the 

query peptide) and the corresponding experimental bound structure for each peptide, and 

Figure 2B shows bRMSD and hRMSD of the best conformer (i.e., the conformer with the 

lowest bRMSD) among the top 3 models for each peptide. For 79.6% of the 103 peptides, 

bRMSD of the top model was below 4.0Å. The median value of the bRMSD for all the 

peptides equals 2.6Å. In 95.1% of the cases, bRMSD of the best peptide conformer among 

the top 3 models was below 4.0Å; the median value of bRMSD for all the cases was 1.9Å. 

The median values of hRMSD for the top model and top 3 models were 4.8Å and 4.3Å, 

respectively. Remarkably, in all the 103 cases, bRMSD of the best conformer among the top 

3 peptide models was below 5.3 Å compared to the corresponding experimental bound 

peptide structure, as shown in Table S2.

It is also noticed that our peptide modeling method was more accurate on modeling 

backbone conformations than on side chain conformations (see Figure 2A and Figure 2B), 

probably because the side chains of the template protein fragments are more sensitive to the 

surrounding environment than the backbone atoms. For this reason, bRMSD rather than 

hRMSD was used in this study to control the switch between global rigid sampling and local 

flexible sampling.

For example, Figure 2C shows the top template used in our prediction (amino acids 450 – 

463 in PDB entry 3SAM, chain A) for the bound peptide in the protein-peptide complex 

2BBA. The backbone of the template fragment in 3SAM is displayed in ribbon 

representation (colored black), and its side chains are displayed in stick mode. The sequence 

similarity and sequence identity between the template fragment and the peptide are 78.6% 

and 50.0%, respectively. Figure 2D shows the superimposition between the modeled peptide 

conformer (black) and the corresponding experimental bound structure (light gray). bRMSD 
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and hRMSD between the modeled conformer and the experimental bound structure are 3.1Å 

and 6.1Å, respectively.

3.3 The Sampling of the Peptide Binding Modes

As described in the EXPERIMENTAL PROCEDURES section, the top three modeled 

peptide conformers are individually docked to the whole protein by switching between 

global rigid sampling and local flexible sampling. Taking the protein-peptide complex 2BBA 

as an example, Figure 3A shows the three initial conformations of this 14-mer peptide to be 

used for docking. Putative peptide binding modes are sampled over the whole surface of the 

bound protein structure, as shown in Figure 3B. The binding modes with Lrms < 5.5Å are 

displayed in ribbon diagram and the remaining modes are represented by the 7th alpha 

carbon atom of the peptide. Figure 3C shows a comparison between the best sampled 

binding mode (colored red) and the native binding mode (cyan). This mode is considered to 

be high quality for Lrms (2.97Å), and medium quality for Irms (1.20Å) and fnc (67.3%), 

respectively.

Our sampling strategy was systematically assessed using the 100 bound docking cases (i.e., 

bound protein and unbound peptide, denoted as bpro-upep) and 64 unbound docking cases 

(i.e., unbound protein and unbound peptide, denoted as upro-upep) in peptiDB. The sampled 

peptide binding modes were evaluated using Lrms, Irms and fnc, respectively (see Tables S3–

S5). Figure 4A shows the success rates of peptide binding mode sampling for bound docking 

(bproupep) and unbound docking (upro-upep), using different values of Lrms as the 

respective thresholds for successful predictions. For each docking calculation, the binding 

mode sampling was defined to be a success if the Lrms of at least one sampled mode was less 

than the threshold value. MDockPeP successfully generated high-quality binding modes for 

78.0% of the bound docking cases and medium-quality binding modes for 17.0% of the 

bound docking cases. Thus, the total success rate (high quality + medium quality) of peptide 

binding mode sampling is 95.0% for bound docking (bpro-upep). Remarkably, for the more 

challenging unbound docking cases in which the unbound protein structures were used, a 

high success rate (92.2%) was also achieved. The success rates for generation of high-

quality binding modes and for generation of medium-quality binding modes were 59.4% and 

32.8%, respectively, as shown in Figure 4B.

The sampling performance based on Irms and fnc are plotted in Figure S1. If Irms was used 

for the evaluation of the success rates, MDockPeP generated near-native binding modes for 

94.0% of the bound docking cases (77.0% for high quality, and 17.0% for medium quality), 

and for 85.9% of the unbound docking cases (high quality: 46.9%; medium quality: 39.0%). 

If fnc was used as the criterion, MDockPeP achieved a total success rate of 96% for the 

bound docking cases (high quality: 77%; medium quality: 19%) and 95.3% for the unbound 

docking cases (high quality: 40.6%; medium quality: 54.7%).

In summary, comparable success rates for both bound docking and unbound docking were 

achieved when different criteria (Lrms, Irms and fnc) were employed. Therefore, Lrms would 

be used as the primary criterion for the following analyses.
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When Lrms was set as the criterion, MDockPeP failed to yield near-native binding modes 

(i.e., Lrms < 5.5Å) for 5 bound docking cases, 1YUC, 2A3I, 2FGR, 2O4J, and 2P0W. 

Interestingly, the proteins in 1YUC, 2A3I, and 2O4J belong to the same superfamily (i.e., 

nuclear receptors) and the bound peptides share the LXXLL binding motif (L is leucine and 

X stands for any residues). The protein-peptide interaction is mainly contributed by the 

interactions between the three leucine residues in the peptide and a small hydro phobic 

region on the protein surface. Relatively few contacts in these crystal structures could be the 

reason for the sampling failures. A similar reason could be responsible for the failure of 

2FGR. For the case of 2P0W, the lowest Lrms of the sampled models was 6.7Å. The 

challenge on sampling in this case resulted from the facts that the number of residues in the 

peptide was 15 and that the lowest bRMSD of the initial peptide conformers was 4.2Å. The 

sampled modes with the lowest Lrms for 2A3I, 2FGR and 2P0W, are shown in Figure S2. It 

is noted that 2A3I was selected as a representative of the aforementioned three failed nuclear 

receptors.

Furthermore, the relationship between bRMSD of the best modeled peptide conformer and 

Lrms of the best sampled binding mode (the mode with the lowest Lrms) are plotted in Figure 

4C and Figure 4D for bound docking and unbound docking, respectively. As seen in both 

panels, bRMSD and Lrms show very weak correlations, with the Pearson correlation 

coefficients of 0.197 (for bpro-upep) and 0.094 (for upro-upep), respectively. Encouragingly, 

in several cases, modeling of the peptide structures failed to generate high-quality 

conformers (bRMSD < 4.0Å), however, our sampling method still successfully produced 

medium-quality or even high-quality peptide binding modes (based on the Lrms criterion). 

The dependency of the sampling performance on the peptide size is also studied in Figure 

S3. Specifically, panel A and panel B in Figure S3 show the distribution of the Lrms of the 

best sampled binding mode as a function of the peptide length for the bound docking cases 

and the unbound docking cases, respectively; panel C and panel D show the distribution of 

the fnc of the best sampled binding mode (the mode with the highest fnc) as a function of the 

peptide length for the bound docking cases and the unbound docking cases, respectively. As 

we can see from Figure S3, the two metrics produce consistent result. Overall speaking, it is 

more difficult to generate high quality modes for long peptides. The finding is reasonable, 

because long peptides typically contain many rotatable bonds and thus require large 

configuration spaces for sampling.

3.4 Rescoring of the Sampled Peptide Binding Modes

The sampled peptide binding modes were ranked by the scoring function ITScorePeP as 

described in EXPERIMENTAL PROCEDURES. For any two modes with Lrms<4.0Å, only 

the mode with the lower score was kept. The success rates based on the Lrms, Irms, and fnc 

criteria, respectively, are plotted in Figure 5. Panels 5A–C show the rates for successfully 

ranking at least one near-native (i.e., medium-quality or high-quality) mode among the top N 

models, with respective to each criterion. Noticeably, bound docking (bpro-upep) achieved 

high success rates, namely, over 80% for all the three criteria when top 100 models were 

considered. The success rate decreased to around 60% for more challenging cases, unbound 

docking (upro-upep). The scoring results for considering only the top 10 models for each 

protein-peptide complex are shown in panels 5D–F. If using the criterion of Lrms, 
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MDockPeP successfully predicted at least one near-native binding mode in the top 10 

models for 54.0% of the bound docking cases (high quality: 21.0%; medium quality: 

33.0%), and 37.5% of the unbound docking cases (high quality: 7.8%; medium quality: 

29.7%), as shown in Figure 5D. Figure 5E and 5F show similar performances with the Irms 

criterion and the fnc criterion, respectively.

Figure 6 presents six examples for bound docking cases (A–C) and unbound docking cases 

(D–F). The experimental peptide bound structures are colored cyan, and the predicted 

peptide binding modes are colored red. The proteins in the bound docking cases (A–C) are 

represented by their molecular surfaces. For each unbound docking case (D–F), the unbound 

protein structure (shown in ribbon and colored light blue) is matched to the bound protein 

structure (shown in ribbon and colored light gray) using the MatchMaker tool of UCSF 

Chimera. Panel A shows a high-quality prediction of 1D4T (being ranked #1), with Lrms = 

2.38Å, Irms = 0.89Å and fnc = 91.2%. Panel B shows a medium-quality model of 1MFG 

(#12), with Lrms=5.10Å, Irms = 1.81Å and fnc = 76.5%. Interestingly, in panel C for 1YMT, 

the predicted model (#4) is assessed with different qualities if different criteria are used. This 

peptide binding mode is considered as medium quality with the Irms criterion (1.11Å), but 

high quality for the Lrms criterion (2.52Å) and the fnc criterion (87.5%), respectively.

Figure 6D shows the top predicted binding mode for the protein-peptide complex 1D4T 

when the unbound protein structure (1D1Z:C) was used. This prediction is a low-quality 

model, with Lrms = 7.68Å, Irms = 2.89Å and fnc = 49.1%. The failure results from a large 

conformational change of a loop in the binding site (colored green for the bound protein and 

magenta for the unbound protein). Still, our predicted binding mode successfully captures 

the interactions exhibited in the experimental complex structure that are not near this loop. 

Panel E shows the 2nd ranked binding mode calculated with the unbound protein structure, 

1I2H:A, of the protein-peptide complex 1DDV. This mode is a medium-quality prediction, 

with Lrms = 3.59Å, Irms = 1.23Å and fnc = 50.0%. Panel F shows the 6th ranked binding 

mode, using the unbound protein structure, 2J2I:B, for the protein-peptide complex 2C3I. 

This model is medium quality, with Lrms = 3.97Å, Irms = 1.15Å and fnc = 57.5%. The “score 
vs Lrms” relationships for these six examples are plotted in Figure S4.

4 Discussion

MDockPeP is an effective integration of peptide modeling and flexible docking. Based on 

the fact that the structure of the bound peptide can often be estimated by our peptide 

modeling method, the peptide conformation during flexible sampling is restricted to be close 

to the modeled peptide conformer (with bRMSD<5.5Å) by switching between global rigid 

sampling and local flexible sampling. The restriction of the peptide conformations 

significantly reduces the configuration space for docking, allowing flexible sampling of the 

peptide binding modes over the whole surface of the protein at the all-atom level. This 

strategy can be generalized to other docking studies such as protein-nucleic acid docking.

It is notable that only up to 3 peptide conformations are used for docking in MDockPeP. 

There are two reasons. First, at least one of these 3 conformations is not very far from the 

bound peptide conformation. Specifically, for 95.1% of the test cases, at least one of the top 
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three models produced a prediction with bRMSD<4.0Å. Second, our docking procedure 

allows for peptide conformational flexibility (with bRMSD from the initially modeled 

peptide conformations up to 5.5Å).

It is also noticed that in the sampling stage (Stage 2) the Vina scoring function was used for 

scoring, whereas ITscorePeP is only used in the rescoring/ranking stage (Stage 3). 

ITScorePeP is different from our published statistical potential-based scoring functions in 

two aspects. First, the training set for ITScorePeP was changed to the flexible decoys that 

were sampled through our integrated global/flexible docking method for the protein-peptide 

complexes. Previously, the training sets were rigid decoys, for protein-ligand complexes 

(Huang and Zou, 2006), protein-protein complexes (Huang and Zou, 2008) or protein-RNA 

complexes (Huang and Zou, 2014), respectively. Second, the intramolecular energy of the 

peptide was included, in addition to the inter-molecular energy, due to the large peptide 

flexibility.

Unlike FlexPepDock and HADDOCK, MDockPeP does not require any knowledge about 

the peptide binding site. Certainly, the performance of MDockPeP will be improved if the 

binding site is specified. Figure S5 shows the scoring results that were re-calculated by 

keeping only the sampled binding modes having at least one heavy atom within 6.0 Å from 

the geometric center of the native binding mode. The success rates for the top 10 predictions 

were improved by 10% on average. However, in practice, it is usually difficult to define the 

boundary of the peptide binding site for docking. Even if a few residues on the protein are 

known to be involved in binding, the boundary may remain unclear because a peptide often 

binds to a protein in an extended conformation, forming a slender and tortuous interface that 

is challenging to predict a priori. Therefore, global docking is a big advantage of 

MDockPeP.

Compared with pepATTRACT, MDockPeP is more computationally efficient and easier to 

use. pepATTRACT consists of three stages of sampling including MD simulation-based 

refinement for 1000 protein-peptide complex models; this refinement stage typically takes 

16 hours on a GPU unit (Schindler et al., 2015). MDockPeP involves only one sampling 

stage, which generally takes several hours on a computational node of 24 processors.

MDockPeP requires slightly more powerful computational resource than CABS-dock, 

however, CABS-dock samples the peptide binding modes based on coarse-grained peptide 

models (i.e., no side chains). The side chains of the anchor residues in a peptide play an 

important role in protein-peptide association. Furthermore, CABS-dock requires the 

secondary structure of the bound peptide for docking; if not known, the peptide secondary 

structure is predicted using PSI-PRED (Kurcinski et al., 2015; Blaszczyk et al., 2016). It is 

unclear whether PSI-PRED, a protein secondary structure prediction tool can be directly 

used for the secondary structure prediction for the bound peptide.

The sampling effectiveness of HADDOCK, CABS-dock and MDockPeP were assessed 

using similar databases that were prepared based on peptiDB. Although these databases are 

slightly different because of a few technical concerns (see EXPERIMENTAL 

PROCEDURES), they overlap for more than 95% of the cases. Specifically, using 97 bound 
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docking cases and 62 unbound docking cases, HADDOCK generated near-native binding 

modes for 79.4% of the bound docking cases (high quality: 23.7%; medium quality: 55.7%), 

and 69.4% for unbound docking cases (high quality: 16.1%; medium quality: 53.3%), based 

on the Irms criterion (Trellet et al., 2013). CABS-dock generated near-native binding modes 

for 84% of the 103 bound docking cases (high quality: 50%; medium quality: 34%), and 

85% of the 68 unbound docking cases (high quality: 35%; medium quality 50%), assessed 

with the Lrms criterion (Kurcinski et al., 2015; Blaszczyk et al., 2016), pepATTRACT was 

evaluated using the 103 bound docking cases and 80 unbound docking cases from a 

modified version of peptiDB. With the Irms criterion, pepATTRACT yielded near-native 

binding modes for 70% of the cases (high quality: 20%; medium: quality 50%). For the 62 

unbound docking cases that overlap with the test set of HADDOCK, the corresponding 

success rate was 73%(Schindler et al., 2015). Compared with HADDOCK, CABS-dock and 

pep-ATTRACT, MDockPeP showed a much better performance. For the 100 bound docking 

cases and 64 unbound docking cases, based on the Lrms criterion, MDockPeP generated 

near-native binding modes for 95.0% of the bound docking cases (high quality: 78.0%; 

medium quality: 17.0%), and for 92.2% of the unbound docking cases (high quality: 59.4%; 

medium quality: 32.8%). Based on the Irms criterion, the success rates were 94% for the 

bound docking cases (high quality: 77.0%; medium quality: 17.0%), and 85.9% for the 

unbound docking cases (high: 46.9%; medium: 39.0%).

The direct comparisons of the scoring performances among MDockPeP, HADDOCK and 

pep-ATTRACT are difficult, because HADDOCK and pepATTRACT use cluster-based 

ranking (Trellet et al., 2013; Schindler et al., 2015). Here, the scoring performances on the 

top 10 predictions were compared between MDockPeP and CABS-dock. Specifically, using 

the Lrms criterion, CABS-dock predicted near-native modes among the top 10 models for 

53% of the 103 bound docking cases (high quality: 13%; medium quality 40%), and 37% of 

the 68 unbound docking cases (high quality: 10%; medium quality 27%) (Kurcinski et al., 

2015). MDockPeP achieved a slightly better performance than CABS-dock, with 54.0% for 

the 100 bound docking cases (high quality: 21.0%; medium quality: 33.0%), and 37.5% for 

the 64 unbound docking cases (high quality: 7.8% and medium quality: 29.7%). 

Furthermore, unlike CABS-dock, which provides only a few scoring modes because these 

modes correspond to the centroids of the clusters from K-means clustering, MDockPeP 

ranks modes based on ITScorePeP, which can output many ranked modes. For example, if 

the top 100 modes were considered, the success rates of MDockPeP increased to 81.0% and 

59.4% for the bound docking cases and unbound docking cases, respectively. These modes 

can be further refined and re-scored by computationally intensive methods such as MD 

simulations.

5 Conclusion

We have developed a blind docking method for protein-peptide complex structure 

prediction, referred to as MDockPeP. MDockPeP requires the sequence of a peptide and the 

3D structure of a protein. Starting with the given peptide sequence, MDockPeP globally 

searches for all-atom, flexible peptide binding modes. The method consists of three stages: 

(1) Modeling peptide conformers based on the sequence; (2) Sampling flexible peptide 

binding modes on the whole protein surface; (3) Ranking the sampled binding modes 
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according to their energy scores based on the iterative knowledge-based scoring functions 

(ITScorePeP). MDockPeP was extensively tested on both bound docking cases and unbound 

docking cases. Compared with the existing methods for protein-peptide complex structure 

prediction, MDockPeP is computationally efficient and performed very well particularly on 

sampling near-native binding modes. MDockPeP can be used as a standing-alone tool for 

protein-peptide complex structure prediction or as an initial-stage sampling tool for protein-

peptide structure refinement programs.

6 Experimental Procedures

6.1 The Construction of the Peptide Conformers

The non-redundant protein database provided by MODELLER (Webb and Sali, 2014) (pdb 

95.pir.gz, updated on September 17, 2015) is used for template search for a given peptide 

sequence. Specifically, proteins with sequence lengths ≤ 50 are removed from the database 

in order to ensure that the template is a protein fragment rather than a peptide. Next, fastm36 

(Mackey et al., 2002) is employed to scan the protein database to search for fragments with 

high sequence similarity to the query peptide. The E-value cutoff is set to 10000 to warrant 

sufficient fragment hits. The sequence similarity and sequence identity between the query 

peptide and each fragment hit are then calculated using the global sequence alignment 

program, EMBOSS Needle (Rice et al., 2000). Fragments with sequence identities lower 

than 50% are discarded. The remaining fragments are re-ranked by the sequence similarity. 

The fragments with the same sequence similarity are ordered according to their sequence 

identities. The resulting global alignments are used as the input for MODELLER to 

construct peptide conformers based on the structures of the template fragments. The 

generated peptide models are clustered with a bRMSD cutoff. Namely, for any two peptide 

conformers with their bRMSD smaller than the specified cutoff, only the peptide conformer 

having a higher sequence similarity with its template fragment is kept. The cutoff is set to 

3.0Å if the peptide sequence length is shorter than 11, and to 4.0Å otherwise. The top 3 

peptide conformers are saved for docking.

In a few cases, the program outputs fewer than 3 peptide conformers because of clustering. 

In summary, up to 3 peptide conformers are used as the input for the next sampling stage.

6.2 The Global, Flexible Sampling of the Peptide Binding Modes

Up to 3 peptide conformers built from Stage 1 are independently docked onto the whole 

surface of the protein, using a protocol modified from the protein-ligand docking software 

AutoDock Vina (Trott and Olson, 2010). AutoDock Vina cannot be directly applied to 

protein-peptide docking, because peptides normally contain many more rotatable bonds than 

typical ligand molecules and because Vina’s scoring function (Vina score) is not sufficiently 

accurate to distinguish the native binding modes from nonnative binding modes for even 

short peptides (Rentzsch and Renard, 2015). Therefore, in our docking protocol, instead of 

docking the peptide to a local pocket of the protein and exporting only a few top binding 

modes ranked by Vina score, each initial peptide conformer is docked to the whole protein 

by switching between global rigid sampling and local flexible sampling. Up to 20,000 

modes ranked by Vina score are outputted as the putative binding modes. The respective 
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modes generated from the 3 initial peptide conformers are then combined for further scoring 

and ranking. The details of this sampling procedure are described as follows.

6.2.1 The basic settings for AutoDock Vina

1. The protein and the peptide: The protein is treated as a rigid molecule. The peptide is 

set as a flexible molecule and the torsion tree is built with AutoDockTools using the default 

parameters (Morris et al., 2009). Given a peptide conformer with n rotatable bonds, a 

peptide binding mode is uniquely determined by n+6 variables: {x, y, z, ψ, θ, φ}, which 

determine the location and orientation of the peptide, and {χ1, χ2, …, χn}, which determine 

the conformation of the peptide. The bond angles and bond lengths are fixed during docking 

calculations.

2. The grid box: The center of the grid box is set to ((xmin + xmax)/2, (ymin + ymax)/2, (zmin 

+ zmax)/2). The box dimensions are set to {xmax − xmin + 40, ymax − ymin + 40, zmax − zmin 

+ 40}. Here, {xmin, xmax, ymin, ymax, zmin, zmax} represent the minimum and maximum 

values of the atomic coordinates of the protein in the three dimensions, respectively. The 

grid box covers the whole protein structure and an extension of 20 Å in each dimension so as 

to also cover the peptide.

3. The exhaustiveness: The value of exhaustiveness is set to 500 for protein-peptide 

docking, namely, each docking calculation contains 500 independent runs. For each run, the 

number of steps (N) for the iterated local search (ILS) global optimizer (Baxter, 1981) is 

determined by the number of torsional angles n and the number of movable atoms m. The 

default parameters of AutoDock Vina are used in this study:

(1)

6.2.2 The sampling procedure—Each independent docking run is performed based on a 

protocol modified from AutoDock Vina. The details are described as follows.

1. Rigid sampling: The initial peptide conformer is rigidly docked onto the whole surface of 

the protein by randomly generating up to 100,000 orientations, with each orientation 

characterized by {x, y, z, ψ, θ, φ}. Specifically, the positional variables {x, y, z} are 

randomly and equally sampled in the grid box, and the Euler angles ψ, θ, φ are randomly 

and equally sampled in the angular space. Among these 100, 000 randomly sampled binding 

modes, the mode with the lowest Vina score is saved as the initial mode for flexible 

sampling in the next step.

2. Flexible sampling: In this step, starting with the binding mode generated from rigid 

docking, flexible sampling is performed by successively searching the configuration space of 

the peptide, {x, y, z, ψ, θ, φ, χ1, χ2, …, χn}, using the ILS global optimizer in AutoDock 

Vina guided by Vina score. When each configurational change is accepted, the peptide 

conformation is compared with the initial peptide conformation. If bRMSD is larger than 

5.5Å, the peptide conformation is restored to the initial peptide conformation and Step 1 
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(rigid sampling) is repeated. Otherwise, the ILS-based flexible sampling is continued until 

this run is completed (i.e., when the number of ILS steps reaches N). Up to top 20,000 non-

redundant modes ranked by Vina score are kept for each run. Here, the definition of non-

redundancy is that for any two modes with heavy atom RMSD (hRMSD) less than 2.0Å, 

only the mode with a more negative score is kept.

To restrict the amount of peptide conformational change generated in each flexible sampling 

step, if the operation is to rotate a rotatable bond, the torsional angle of this bond is set to 

within 30° around the corresponding value in the initial peptide conformation. This 

restriction does not prevent other peptide torsional angles from large changes, because the 

local refinement algorithm of AutoDock Vina can dramatically change the peptide torsional 

angles.

3. Merging the results: The binding modes generated from different docking runs are 

merged. For any two modes with hRMSD < 2.0Å, only the mode with a more negative Vina 

score is kept. Up to 20, 000 merged binding modes based on each initial peptide 

conformation are kept for rescoring.

6.3 The rescoring of the sampled binding modes

The sampled modes based on up to 3 initial peptide conformations are merged, resulting in 

up to 60, 000 putative binding modes. These putative binding modes are then rescored with 

ITScorePeP, based on the following equation:

(2)

Here, Einter stands for the inter-energy score, which equals the sum of the atomic pairwise 

potentials between the protein and the peptide. Eintra stands for the intra-energy score of the 

peptide, which is the sum of the atomic pairwise potentials among the non-neighboring 

residues in the peptide. i and j represent the atom types of an atom pair. A total of 20 atom 

types are defined by classifying the atoms in the standard 20 amino acids based on their 

covalent connections (see Table 1 in (Huang and Zou, 2011)). r is the distance between the 

atom pair. rcut is the cutoff distance for atomic pairwise interactions, which is set to 8.0Å. 

uij(r) is the statistical potential for atom pair ij at distance r. The statistical potentials are 

symmetric for atom pairs, namely, uij(r) equals uji(r) The details of the derivation of 

ITScorePeP are described in the Appendix.

6.4 The peptiDB benchmarking database

Our docking strategy was assessed using the protein-peptide benchmarking database, 

peptiDB. This database was originally developed by Schueler-Furman and co-workers 

(London et al., 2010) and was later updated by Bonvin and colleagues (Trellet et al., 2013). 

The database consists of 103 non-redundant protein-peptide complexes. Among them, 

unbound protein structures are available for 69 complexes. Following these authors’ 

definition, a bound protein structure refers to the conformation of the protein bound with the 
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specified peptide. An unbound protein structure refers to the conformation of the same 

protein in the absence of a peptide.

All the peptides in the peptiDB database (a total of 103) were used to assess our method on 

construction of initial peptide structures. However, for the assessment of our docking and 

scoring methods, three bound cases that are inappropriate for blind docking (1H6W, 1SFI, 

and 2D5W) were removed from the database. Specifically, 1H6W and 2D5W were 

discarded because their peptide binding sites are inaccessible. 1SFI was discarded because 

its bound peptide is cyclic. Thus, the unbound protein structure of 1SFI (i.e., 1UTN chain A) 

was also removed. (It is noted that 1H6W and 2D5W do not have unboud protein structures 

in the database.) In addition, four unbound protein structures were removed from the 

database in our docking study. Specifically, the unbound protein structure 1JWT for the 

protein-peptide complex 1VZQ was removed because the pdb file of 1JWT contains 

problematic coordinates. The unbound protein structure 3NSQ for 2P1T was removed 

because the C-terminus of this protein experiences a huge conformational change, switching 

from being far apart from the binding site (in 3NSQ) to being part of the binding site in the 

bound structure. The unbound protein structures 2YQL and 1QBH of 2PUY and 3D9T, 

respectively, were removed because 2YQL and 1QBH are NMR structures. In summary, a 

total of 100 bound cases and 64 unbound cases were used to assess our sampling strategy 

and scoring function.

Because our statistical potential-based scoring function requires a training set of protein-

peptide structures, a 3-fold cross-validation was used to assess the scoring function in order 

to avoid overlap between the training set and the test set. Specifically, the above 100 bound 

cases were randomly grouped into three subsets and listed in Table S1. Any two of these 

three subsets were combined into a training set, and the remaining subset was treated as a 

test set (Efron and Stein, 1981).
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Appendix

9.1 The derivation of ITScorePeP

The main idea for deriving ITScorePeP is to iteratively adjust the pairwise statistical 

potentials by comparing the observed pair distribution functions  calculated from 

the native binding modes and the predicted pair distribution functions  calculated 

from the decoys (including the native binding modes) for each iterative step, with each 

decoy carrying a Boltzmann weight calculated based on the statistical potentials of the 

current step. The iteration is terminated when the native binding mode of every complex has 

the lowest score compared with its decoys. The idea is described by the following equation:
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(3)

Here,  is the pairwise statistical potential of atom pair ij in the k-th step, and  is 

the updated interaction potential in the next step. λ is a parameter that controls the speed of 

convergence and is set to 0.5 in the present study.

Given a set of initial potentials , the potentials are updated based on the above 

equation until all the native binding modes have the lowest scores compared with their 

decoys. Here, the energy score associated with a putative binding mode is calculated by

(4)

To account for the fluctuations in the pairwise potentials caused by sparse data and 

inaccuracies in the atomic coordinates of the experimental structures, the final potentials for 

the i-th bin in distance are smoothed by the weighted average of 1 : 2 : 4 : 2 : 1 of the 

potentials from bins (i − 2) to (i + 2).

9.2 The calculation of {gijExp(r)} and {uij0(r)} 

 is calculated from the experimental protein-peptide complex structures by the 

following equation:

(5)

where  is the number density of atom pair ij in a spherical shell of radius r − Δr/2 to r 

+ Δr/2, and  is the number density in a reference sphere with a radius of Rmax. Here, 

the bin size Δr is set as 0.1Å, and the radius of the reference sphere Rmax is set as 10Å. The 

atomic pair densities  and  are calculated as:

(6)

where M is the number of protein-peptide complexes in the training set, and  is the 

number of atom pair ij in the spherical shell for the m-th experimental protein-peptide 

complex structure. V(Rmax) equals , which is the volume of the reference sphere. 

 equals  which is the total number of atom pair ij in the reference sphere 

for the m-th experimental protein-peptide complex. To reduce the local correlation effects of 
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covalent bonds, the atom pairs between residue l and residue l + m of the peptide are not 

counted if m < 5. The atom pairs within a protein structure are not counted, because the 

protein structure is fixed in the present study. To ensure sufficient statistics, the interactions 

between atom pairs with fewer than 400 occurrences (i.e., ) are ignored.

The initial potential  is set as the combination of the potential mean force ωij(r) and the 

van der Waals (VDW) potential νij(r):

where ωij(r) equals , and νij(r) is the Lennard-Jones 6–12 potential with the 

VDW radii taken from the AMBER force field. The well depth of νij(r) is set to three times 

of the corresponding value given in the AMBER force field to make the potential minima of 

νij(r) and ωij(r) comparable. The maximum potential for  is set to 10.0 in the present 

study to provide clash penalty at short distances.

9.3 The calculation of gijk(r) 

 is calculated from the protein-peptide decoys by the following equation:

(8)

where  and  are the predicted number densities of atom pair ij in the spherical 

shell (with radius r and thickness Δr) and in the reference sphere (with radius Rmax), 

respectively.  and  are calculated as the Boltzmann-weighted pair frequencies 

over different binding modes in the k-th iterative cycle:

(9)

where  and  are the numbers of atom pair ij in the spherical shell and in the 

reference sphere for the l-th mode of the m-th complex, respectively. Lm is the total number 

of modes for the m-th complex.  is the probability for the m-th complex to occupy the l-
th state calculated with the potentials in the k-th step based on the Boltzmann distribution:

(10)
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where β = 1/KBT. β is set to 1 in this study.
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Highlights

1. MDockPeP docks the all-atom, flexible peptide onto the whole protein.

2. MDockPeP requires only the peptide sequence and the protein 

structure.

3. MDockPeP achieves significantly better performance than other 

existing docking methods.

4. It is suitable for large-scale applications.
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Figure 1. 
The flowchart for MDockPeP.
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Figure 2. 
Modeling peptide conformers based on the template fragments of monomeric proteins for 

103 bound peptides in peptiDB. Also see Table S2. A. The distributions of bRMSD and 

hRMSD between the top modeled conformer and the corresponding bound peptide structure 

for the 103 peptides. The horizontal axis shows individual peptide (ranging from 1 to 103). 

The black dashed line represents 4.0Å in bRMSD, the defined threshold for a successful 

prediction of the peptide conformation. B. The distributions of bRMSD and hRMSD 
between the best modeled conformer (i.e., the conformer with the lowest bRMSD) in the top 

3 models and the corresponding bound peptide structure for the 103 peptides. C. The top 

template (amino acids 450 – 463 in PDB entry 3SAM, chain A) for the bound peptide in the 

protein-peptide complex 2BBA. The protein 3SAM is shown in ribbon diagram and colored 

light gray. The template fragment is highlighted in black, with their side chains displayed in 

stick mode. D. The superimposed top modeled peptide conformer and its corresponding 

bound peptide structure in pdb entry 2BBA. The modeled peptide structure is colored black, 

and the bound peptide structure is colored light gray.
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Figure 3. 
An example of binding mode sampling. A. The three modeled peptide conformers based on 

the sequence of the peptide from the protein-peptide complex 2BBA. B. The sampled 

peptide binding modes on the whole surface of protein from complex 2BBA. The high-

quality and medium-quality binding modes (Lrms < 5.5Å) are shown in ribbon and colored 

cyan. The low-quality binding modes are represented by the 7th Cα atom of the peptide and 

colored blue. C. The comparison between the best sampled binding mode (with Lrms = 

2.97Å) and the native binding mode. The native binding mode is colored cyan and the 

sampled binding mode is colored red. Three representative failed cases are shown in Figure 

S2.
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Figure 4. 
The performance of binding mode sampling for both the bound docking cases and the 

unbound docking cases in peptiDB. Also see Tables S3–S5, Figure S1, and Figure S3. A. 

The success rates of peptide binding mode sampling using different values of Lrms as the 

thresholds for the bound docking cases (bpro-upep) and the unbound docking cases (upro-

upep), respectively. Lrms = 3.0Å is considered as the threshold for the high-quality sampled 

binding mode, shown in the black dashed line. Lrms = 5.5Å is considered as the threshold for 

the medium-quality sampled binding mode, shown in the light gray dashed line. B. The 

performance of peptide binding mode sampling based on the criterion of Lrms for the bound 

docking cases and unbound docking cases, respectively. C. The relationship between the 

bRMSD of the best peptide conformer and the Lrms of the best sampled binding mode for 

the bound docking cases. The threshold for the effective peptide modeling (bRMSD = 4.0Å) 
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is shown in the black vertical dashed line. The thresholds for the high-quality sampled 

binding mode (Lrms=3.0Å) and the medium-quality sampled binding mode (Lrms = 5.5Å) are 

shown in horizontal dashed lines and colored black and light gray, respectively. D. The 

relationship between the bRMSD of the best peptide conformer and the Lrms of the best 

sampled binding mode for the unbound docking cases.
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Figure 5. 
The performance of of ranking the sampled peptide binding modes for both the bound 

docking cases and the unbound docking cases in peptiDB. Also see Tables S3–S5 and Figure 

S5. A. The success rates of ranking at least one near-native (i.e., medium-quality or high-

quality) mode based on Lrms among the top N models for the bound docking cases (bpro-

upep) and the unbound docking cases (upro-upep), respectively. The black dashed line and 

the light gray dashed line correspond to N = 10 and N = 100, respectively. B. The success 

rates based on Irms among the top N models for the bound docking cases (bpro-upep) and 

unbound docking cases (upro-upep), respectively. C. The success rates of ranking at least 

one near-native mode based on fnc among the top N models for the bound docking cases 

(bpro-upep) and unbound docking cases (upro-upep), respectively. D. The scoring 

performance using the top 10 modes based on the criterion of Lrms for the bound docking 

cases (bpro-upep) and unbound docking cases (uproupep), respectively. E. The scoring 

performance using the top 10 modes based on the criterion of Irms for the bound docking 

cases (bpro-upep) and unbound docking cases (upro-upep), respectively. F. The scoring 

performance using the top 10 modes based on the criterion of fnc for the bound docking 

cases (bpro-upep) and unbound docking cases (upro-upep), respectively.
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Figure 6. 
Six examples for bound docking cases (A–C) and unbound docking cases (D–F). The 

experimental peptide bound structures are colored cyan, and the predicted peptide binding 

modes are colored red. Proteins in the bound docking cases (A–C) are represented by the 

surface and colored light gray. For each unbound docking case (D–F), the unbound protein 

structure (shown in ribbon and colored light blue) is matched to the bound protein structure 

(shown in ribbon and colored light gray) using UCSF Chimera’s MatchMaker tool. Also see 

Figure S4. A. The #1 predicted mode of 1D4T with Lrms = 2.38Å, Irms = 0.89Å and fnc = 

91.2%. B. The #12 predicted mode of 1MFG with Lrms = 5.10Å, Irms = 1.81Å and fnc = 

76.5%. C. The #4 predicted mode of 1YMT with Lrms = 2.52Å, Irms = 1.11Å and fnc = 

87.5%. D. The #1 predicted mode of 1D4T (using the unbound protein structure: 1D1Z:C) 

with Lrms = 7.68Å, Irms = 2.89Å and fnc = 49.1%. E. The #2 predicted mode of 1DDV (using 

the unbound protein structure: 1I2H:A) with Lrms = 3.59Å, Irms = 1.23Å and fnc = 50.0%. F. 

The #6 predicted mode of 2C3I (using the unbound protein structure: 2J2I:B) with Lrms = 

3.97Å, Irms = 1.15Å and fnc = 57.5%.
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Table 1

The criteria for the assessment of the predicted protein-peptide complex structures.

Parameters High quality Medium quality Low quality

Lrms Lrms ≤ 3.0Å 3.0Å < Lrms ≤ 5.5Å Lrms > 5.5Å

Irms Irms ≤ 1.0Å 1.0Å < Irms ≤ 2.0Å Irms > 2.0Å

fnc fnc ≥ 80% 50% ≤ fnc < 80% fnc < 50%
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