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Abstract Thallium is released into the biosphere from
both natural and anthropogenic sources. It is generally
present in the environment at low levels; however, hu-
man activity has greatly increased its content.
Atmospheric emission and deposition from industrial
sources have resulted in increased concentrations of
thallium in the vicinity of mineral smelters and coal-
burning facilities. Increased levels of thallium are found
in vegetables, fruit and farm animals. Thallium is toxic
even at very low concentrations and tends to accumulate
in the environment once it enters the food chain.
Thallium and thallium-based compounds exhibit higher
water solubility compared to other heavy metals. They
are therefore also more mobile (e.g. in soil), generally
more bioavailable and tend to bioaccumulate in living
organisms. The main aim of this review was to summa-
rize the recent data regarding the actual level of thallium

Reviewing method

The data for this review was collected from the available literature
including reports, scientific articles, books, book chapters and
databases. The reviewing method was focused on data regarding
determination of thallium in environmental samples as well as the
employed analytical methods, which were obtained from the
following databases: Scopus, Elsevier, Wiley, Springer and Web of
Knowledge. The search was conducted using the keywords listed
above. After the initial search, the gathered data was further
checked in order to evaluate its relevance to the topic and matching
positions were selected for review.
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content in environmental niches and to elucidate the
most significant sources of thallium in the environment.
The review also includes an overview of analytical
methods, which are commonly applied for determina-
tion of thallium in fly ash originating from industrial
combustion of coal, in surface and underground waters,
in soils and sediments (including soil derived from
different parent materials), in plant and animal tissues
as well as in human organisms.
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fluorescence spectrometry (LEAFS) - Inductively
coupled plasma mass spectrometry (ICP-MS) -
High-resolution inductively coupled plasma mass
spectrometry (HR-ICP-MS) - Electrothermal
vaporization inductively coupled plasma mass
spectrometry (ETV-ICP-MS) - Atomic absorption
spectrometry (FAAS and GFAAS) - Zeeman effect
electrothermal absorption spectrometry (ZEETAS) -
Differential pulse anodic stripping voltammetry
(DPASV)

Introduction

Contamination with heavy metals is considered as a
major environmental issue and threat to human health.
Thallium-based compounds exhibit a high tendency to
accumulate in the environment. Alleviated level of thal-
lium emissions as well as its deposition over time may
lead to major environmental pollution. Prolonged
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presence of thallium in terrestrial, aerial and aquatic
systems may notably increase the exposure risks.

Thallium is considered as toxic for human and animal
organisms, microorganisms and plants (Nriagu 1998;
Peter and Viraraghavan 2005; Kazantzis 2000). The
toxicity of this element is higher compared to mercury,
cadmium and lead (maximum admissible concentration
at 0.1 mg mL™") (Repetto et al. 1998; Peter and
Viraraghavan, 2005). The toxicity of thallium-based
compounds is mainly caused by the similarity between
thallium (I) ions and potassium ions (Groesslova et al.
2015), which results in the disorder of potassium-
associated metabolic processes due to thallium interfer-
ence (Sager 1998; Wojtkowiak et al. 2016). Human
exposure to thallium is mainly associated with the con-
sumption of contaminated food or drinking water.
Thallium rapidly enters the bloodstream and is
transported across the whole organism, which leads to
accumulation in bones, kidneys and the nervous system.
In consequence, the functioning of several relevant en-
zymes is disrupted. Stomach and intestinal ulcers, alo-
pecia and polyneuropathy are considered as classic syn-
dromes of thallium poisoning. Other symptoms include
astral disorders, insomnia, paralysis, loss of body mass,
internal bleeding, myocardial injury and, in conse-
quence, death (Peter and Viraraghavan 2005;
Kazantzis 2000; Galvan-Arzate and Santamaria 1998).
Ingestion of more than 1.5 mg of thallium per 1 kg of
body mass may be fatal. Recent studies also indicate that
high levels of Tl may be associated with an increased
risk of low birth weight (Xia et al. 2016). Due to the
abovementioned reasons, the concentration of thallium
in the environment should be strictly monitored.

The aim of this review was to integrate the results of
literature reports regarding the contents of thallium in
various environmental samples and to highlight the
most common analytical methods, which are used for
determination of thallium at trace levels. The obtained
data was used for assessment of thallium concentrations,
which may be valuable during research focused on new
sources of contamination with this toxic metal.

Distribution of thallium in the environment
The first part of this review is focused on the distribution
of thallium in the environment. This section covers the

possible emission sources, aspects associated with trans-
port of thallium-based contaminants throughout
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different environmental niches as well as their uptake
by living organisms.

Thallium is naturally present in the environment,
most notably in its terrestrial elements, although usually
at low concentrations. Enrichment of specific niches
with thallium-based compounds is a direct result of a
specific transport pattern, which is shown in Fig. 1.

Emissions, which lead to increased concentrations of
thallium in the environment, may be natural or associ-
ated with anthropogenic activity. The resulting air pol-
lution (thallium ash) allows thallium contaminations to
spread across wide distances and to enter other environ-
mental niches as well as organisms (uptake by lungs). In
the terrestrial environment, thallium is usually bound
with the soil matrix, which considerably limits its trans-
port, although dissolved thallium (soluble thallium salts)
are susceptible to flushing and may be introduced to the
aquatic environment. Such compounds may also leak
into underground water streams and increase the risks of
chronic exposure. On the other hand, high concentration
of thallium in shallow soil also poses a notable threat
due to possible uptake by plant roots and storage in plant
biomass. As a result, thallium may enter the food chain
and accumulate in living organisms, causing severe
disorders and ultimately becoming fatal. In order to
prevent thallium poisoning, its content must not exceed
the environmentally safe limits, which are presented in
Table 1.

Thallium in fly ash originating from industrial
combustion of coal

The rapid technological and industrial expansion result-
ed in increased risk of environmental contamination
with thallium. It is estimated that approx. 5000 t of
thallium is released into the environment every year
due to industrial activity (Dmowski et al. 2002), with
approx. 1000 t originating from combustion of coal
(Galvan-Arzate and Santamaria 1998; Querol et al.
1995). A considerable amount of thallium is bound with
sulphides (approx. 70 %), and the remaining content is
bound with aluminosilicates and organic compounds
(Querol et al. 1995). The products of coal combus-
tion—slag and ash—contain higher concentrations of
thallium. During combustion of coal and production of
cement, thallium becomes oxidized at higher tempera-
ture and then condenses on the surface of ash particles,
in low-temperature areas. Prolonged contact time be-
tween the ash and exhaust fumes leads to a notable
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Fig. 1 Idea scheme which
presents the transport of thallium
in the environment (based on
Savariar 2014)
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concentration of thallium in fly ash, which is 2 to 10
times higher compared to the state prior to combustion
(Cvjetko et al. 2010; Finkelman 1999). Global resources
of thallium in coal amount to 630,000 t. In 2004, the
production of thallium reached 12 t; however as of the
beginning of 2005, it remains at a relatively stable level
of 10 t per annum (Finkelman 1999).

The content of thallium in fly ash originating from a
Polish cement plant ranged from 18 to 40 mg kg '
(Kabata Pendias and Pendias 1999). The ash samples
collected from filters installed in the chimneys of fur-
naces in the mining-metallurgical plant ‘Bolestaw’

in human organisms >

contained an average of 882 mg kg ' of thallium (ash
originating from a rotary furnace filter) and up to 5 % of
thallium in ash from a sintering furnace (Kicinska
2009).

Furthermore, thallium is emitted to the atmosphere in
the form of dust, vapours or liquids during industrial
processing. This statement is consistent with the results
of studies regarding the content of thallium in aerosols
near Katowice city (Poland), as well as the amount of
thallium determined in ashes and soils originating from
national parks located at southern Poland. The content
of thallium in aerosols from the downtown district of

Table 1 Environmentally safe
limits for thallium

Thallium limits Sources

Drinking water
Arable soils

World land plants
World edible plants

World average daily intake

Oral reference dose

2ugL™!
1 mgkg '

0.008-1.0 mg kg ™'
0.03-0.3 mg kg '

2 ug day !
0.056 mg day '

USEPA (2015), Xiao et al. (2004)
CCME (2003), Xiao et al. (2004)
Kabata Pendias and Pendias (1992)

Sabbioni et al. (1984), Xiao et al. (2004)
RAIS (2003), Xiao et al. (2004)
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Katowice city was at 66 ug m ; however, the value was
much higher in the vicinity of metal smelters (Manecki
et al. 1988; Schejbal-Chwastek and Tarkowski 1988;
Tomza 1987). It should be noted that the amount of
thallium in air cannot exceed the limit of 0.1 mg m >
(OSHA 2015).

Thallium in surface and underground waters

The content of thallium in river waters in Poland ranged
from 5 to 17 ng L™'. Sea waters usually contain 10—
15ng L ! of thallium (Lukaszewski et al. 1996; Lis et al.
2003; Kabata Pendias and Pendias 1999; Matuszynski
2009). Analysis of water samples collected from Ohrid
Lake near Labino (Macedonia coordinates 41° 07’ 01"
N, 20° 48" 06" E) revealed that the concentration of
thallium was at 0.5 ug L™', whereas samples collected
near Ljubanista contained approx. 0.3 pg L™ (Stafilov
and Cundeva 1998). The concentration of thallium in
tap water from Skopje (Macedonia) amounted to
0.18 pg L', The contaminated waters of Huron and
Raisin rivers in Michigan contained 21 and 2621 ng L™
of thallium, accordingly (Garbai et al. 2000; Karlsson
2006). The water samples collected from the Silesian-
Cracow region (Poland) were characterized by a higher
thallium content, which ranged from 0.16 t0 3.24 ug L™
(Paulo et al. 2002). Compared to the average thallium
content in three main rivers in Poland, the concentration
of thallium in the analyzed samples was two to three
times higher (Lukaszewski et al. 1996). This suggests
that thallium is released from river sediments.

The content of thallium in underground water sam-
ples typically amounts to 20-24 ug L™'; however, in
deep groundwater samples, it ranges from 13 to
1100 ug L™". The contents of thallium dissolved in
groundwater samples from the Miocene level collected
near Poznan city (western Poland) ranged from 0.005 to
0.47 ug L™". The samples were collected from layers of
fine-grained sand and silt divided by layers of brown
coals. The concentration of thallium present in Warta
River varied from 0.15 to 0.47 ug L™". Total content of
thallium in underground water samples ranged from
0.24 to 26 pg L. In case of suspensions of the under-
ground brown water, the median amount of thallium
reached 40-60 pug g ' (Wojtkowiak et al. 2016;
Lukaszewski et al. 2010).

Samples of water, bottom sediment and floodplain
terrace soil of the Wodna and Luszowka rivulets, located
in Trzebinia (Poland), were investigated in terms of
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thallium concentration. The obtained results are shown
in Table 2. It can be observed that the thallium concen-
tration in the water of both rivulets is significantly
higher (20-30 times) than a typical level in surface
water in Poland (Lukaszewski et al. 2010).

Thallium in soils and sediments

Thallium participates in the formation of certain min-
erals, such as lorandite TIASS, (59 % TI), hutchinsonite
(PbTI1AssSy), crookesite (Cu, Tl, Ag),Se (17 % TI),
urbaite TIAs,SbSs (30 % TI) or thallium (I) sulphide.
Poorly soluble TL,S is strongly bound by clay materials,
manganese or iron compounds, including pyrites
(Matuszynski 2009; Kabata Pendias and Pendias,
1999; Galvan-Arzate and Santamaria 1998). High thal-
lium content may be found in meteorites, granite and
volcano rocks. It is ranked 67 in terms of distribution in
the earth crust (amounting to approx. 3 x 10™* of total
mass %). The concentration of thallium in the litho-
sphere ranges from 0.3 to 0.6 mg kg ' (Kabata
Pendias and Pendias 1999). Thallium content in soils
is strictly associated with the presence of thallium (I)
ions in source rocks, which were formed due to soil-
forming processes. Thallium in hydrothermal systems is
bound with sulphides, such as pyrite, sphalerite or mar-
casite. The ventilation of such sulphides results in the

Table 2 Thallium concentration in bottom sediments, floodplain
soil and water of the Wodna and Luszowka rivulets (Lukaszewski
etal. 2010)

Level (m) Thallium concentration SD (mg g71
(mg g{l or mg L or mg L
Wodna rivulet
Bottom sediment 74 0.7
Floodplain soil
0-0.2 1.0 0.1
0.4-0.6 1.9 0.3
0.8-1.0 1.8 0.04
Rivulet water 0.32 0.04
Luszowka rivulet
Bottom sediment 1.7 0.3
Floodplain soil
0-0.2 0.11 0.03
0.4-0.6 0.20 0.05
0.8-1.0 0.08 0.01
Rivulet water 0.21 0.01
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dissemination of thallium in sedimentary rocks and
organic compounds.

The concentration of thallium in igneous rocks
ranges from 0.05 to 1.7 mg kg ' (Lin and Nriagu
1998). Notably higher thallium content, ranging from
1.7 to 55 mg kg ', was found in soils formed from
limestone, marl or granite (Tremel et al. 1997).
Extreme contents of thallium at a level of 1000 mg kg™
were found in organic slates and carbon originating
from the Jurassic period (Yang et al. 2005).

High concentration of this metal is associated with
thallium-based sulfur salts: jordanite, gratonite,
dufrenoisite and sphalerites (Vanek et al. 2015). These
minerals were found in the ores from the mine in Bytom
(Haranczyk 1965). In sphalerites, the concentrations of
thallium amount to 500 mg kg ' (Gorecka 1996). In the
Pomerania ores, the concentration of thallium may reach
from 100 to 1000 mg kg in dark, colloidal variations of
sphalerites (Viets et al. 1996; Mayer and Sass-
Gustkiewicz, 1998). In marcasite ores, the content of
thallium may even exceed 1000 mg kg '. More than
ten times lower concentrations of thallium (up to
90 mg kg ') are found in sphaleritic variations of most
commonly exploited ores of Zn-Pb-Fe. The concentra-
tion of this element ranging from 36 to 70 mg kg ' was
found in rich sphaleritic ores from the Pomaranian mine,
in the area of Olkusz (Cabata 2009; Gdrecka et al. 1996).

The concentration of thallium in iron sulphides from
the eastern part of the Silesian-Cracow region ranged
from 80 to 10,000 mg kgfl, whereas in case of zinc
sulphides, the concentration ranged from 60 to
280 mg kg '. Higher thallium content was found in
pyrites from the western part of Silesian-Cracow ores
(800-1200 mg kg ). Post-flotation wastes may contain
up to 5000 mg kg " of thallium (Karbowska 2004). The
studies conducted by Karbowska (2004) indicate that
there is a strong geochemical correlation between thalli-
um and iron sulphides, as confirmed for zinc—lead ores,
which were formed 150-200 millions of years ago
(Sutkowska 2005; Jacher—Sliwczyﬁska and Schneider
2004).

Karbowska described the study of 120 soil samples of
different geological origin (from the upper and lower
level) from the Silesian-Cracow delves of zinc—lead ores
(Karbowska 2004). The content of thallium determined
in the upper level was higher by approx. 65 % compared
to the lower layer and ranged from 0.04 to 29.8 mg kg .
The lower concentration of thallium was noted for soils
originating from quaternary fluvioglacial sands and

gravels, with an average content in the lower and higher
level at 0.1 and 0.18 mg kg ', accordingly. The highest
thallium content was found in ore-bearing formations of
limestone from the middle Trias, which ranged from 0.45
to 4.66 mg kg ' for the lower level (Lis et al. 2003).
Samples collected from sand, gravel and sludge originat-
ing from river terraces contained from 0.13 to
1.87 mg kg ' of thallium. The concentration of thallium
in lower clay levels ranged from 0.14 to 35.1 mg kg .
Samples collected from quaternary loess rocks contained
0.20-1.03 mg kg ' of thallium. Notably high concentra-
tions of thallium with a median value of 22.9 mg kg '
were determined in samples of topsoil from waste heaps.

Sludge samples from streams flowing through
fluvioglacial sands and gravel in the southern part of the
studied area were characterized by low thallium concen-
trations (0.02-0.17 mg kg ). Bottom sediments from
streams flowing though Pleistocene loess and formations
from middle Trias, in the northern part of the area,
contained 0.8-3.1 mg kg " of thallium. In case of bottom
sediments originating from small rivers (Sztota, Baba,
Biata Przemsza, Dabrowka), which often receive discharge
streams from zinc—lead ore mines (including the Pomarian
ore mine) as well as the local zinc smelter and flow through
exposed ore-rich dolomites, the content of thallium
reached 12.9 to 23.5 mg kg . The mean content of total
thallium in soils and sediments of the Silesian-Cracow
delves of zinc—lead ores is shown in Fig. 2 (Lis et al. 2003).

Thallium concentrations in the Lanmuchang area in
southwestern Guizhou Province, China ranged from
100 to 35,000 mg kg in sulphide ores and from 12 to
46 mg kg ! in coals. Secondary minerals, produced by
weathering, contain 25-1100 mg kg™ ', with 32—
2600 mg kg ' in mine wasters. Altered host rocks
contain 39-490 mg kg ', with 6-330 mg kg ' in out-
cropping rocks. Thallium levels in soils of the
Lanmuchang area were at 40—124 mg kg ' in soils from
the mining area, 20-28 mg kg ' in natural slope wash
materials and 14-62 mg kg " in alluvial deposits down-
stream and ranged from 1.5 to 6.9 mg kg ' in undis-
turbed natural soils (Xiao et al. 2004). Thallium concen-
trations in Korean soils near cement plants were distrib-
uted between 1.20 and 12.91 mg kg '. However, soils
near mines and smelters contained relatively low thalli-
um concentrations ranging from 0.18 to 1.09 mg kg
(Jin-Ho Lee et al. 2015). Ores in western Matopolska
contain up to 90 mg kg ' (Zn sphalerite ores) and up to
1000 mg kgfl of thallium (Fe marcasite ores) (Cabata
2009). High thallium concentrations were also found in
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Fig. 2 Content of total thallium
(mg kg ") in soils and sediments
of the Silesian-Cracow delves of
zinc—lead ores
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soil from 100-year-old waste heap near Olkusz in
Poland. Average thallium concentration reached
43 mg kg ', while the highest thallium concentration
equaled to 78 mg kg ' (Wierzbicka et al. 2004). In turn,
in Wiesloch (Germany), soils collected nearby a closed
Pb and Zn mine contained 8.8-27.8 mg kg ' (Schoer
and Nagel 1980).

Soil samples collected from forest and grassland soils
in Czech Republic by Vanek et al. (2009) contained
0.56-1.65 and 1.1-2.06 mg kg ', respectively.

Due to the toxicity of thallium and its compounds, it
is important to determine the concentration of this ele-
ment in environmental and biological samples.
Numerous researchers all over the world study this topic
with the use of various analytical methods.
Determination of the concentration of trace elements in
different matrices requires the use of appropriate analyt-
ical techniques. The results of studies conducted by
several authors are presented in Table 3. The following
analytical techniques were used: laser excited atomic
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fluorescence spectrometry (LEAFS), inductively
coupled plasma mass spectrometry (ICP-MS), differen-
tial pulse anodic stripping voltammetry (DPASV), high-
resolution inductively coupled plasma mass spectrome-
try (HR-ICP-MS), electrothermal vaporization induc-
tively coupled plasma mass spectrometry (ETV-ICP-
MS) as well as atomic absorption spectrometry (flame
atomic absorption spectrometry (FAAS) and graphite
furnace atomic absorption spectrometry (GFAAS)).
The analysis of the gathered data was conducted with
respect to the type of the studied material, the sampling
site, the employed analytical technique and the deter-
mined concentrations of thallium.

Thallium in plants

The presence of contaminants comprising thallium in air
results in its absorption by plants—a process, which is
further enhanced by high thallium content in soil
(Groesslova et al. 2015; Matuszynski 2009).
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Table 3 Comparison of results of thallium content determination in various environmental samples with the use of different analytical

techniques
Sample Sampling site Concentration range Analytical Reference
technique

Sediment Arnous River (downstream), France 1-10 nmol L™ ICP-MS Casiot et al. (2011)
Arnous River (downstream), France 0.2-26.6 nmol L™ ICP-MS Casiot et al. (2011)
Arnous River (upstream), France 0.05-0.78 nmol L™! ICP-MS Casiot et al. (2011)
Arnous River (upstream), France 0.05-0.83 nmol L ! ICP-MS Casiot et al. (2011)
Deule Channel (France)—contaminated  1.8-1111 pumol kg71 LEAFS Boughriet et al. (2007)

sediments near a metal smelter

Gardon River, France 0.15-0.63 nmol L™! ICP-MS Casiot et al. (2011)
Reigous Bay, France 20-235 nmol L' ICP-MS Casiot et al. (2011)
Reigous Bay, France 0.0001-2.6 pmol L™ ICP-MS Casiot et al. (2011)
Biwa Lake (Japan) 7.4 + 0.7 nmol gfl LEAFS Cheam et al. (1998)
Buffalo River (USA) 55+0.5nmol g ' LEAFS Cheam et al. (1998)
Winter Green Lake (USA) 0.01-0.11 mmol gl AAS Cheam (2000)
Indiana Harbor artificial channel (USA) 6.3 + 0.4 nmol gﬁl LEAFS Cheam et al. (1998)
Erie Lake (Canada) 0.014-0.053 nmol L™! GFAAS Lin and Nriagu (1999)
Humber River (Canada) 23 +0.4nmol g LEAFS Cheam et al. (1998)
Huron Lake (Canada) 0.013-0.088 nmol L™! GFAAS Lin and Nriagu (1999)
Lakes near a coal mine (western Canada) 0.001-0.02 umol g ' LEAFS Cheam (2000)
Michigan Lake (Canada) 0.047-0.094 nmol L™! GFAAS Lin and Nriagu (1999)
Mine water (western Canada) 0.001-6.5 nmol L™! LEAFS Cheam (2000)
Niagara River (Canada) 52+0.4nmol g’ LEAFS Cheam et al. (1998)
Ontario Lake (Canada) 0.53-4.2 nmol g7l LEAFS Borgmann et al. (1998)
Ontario Lake (Canada) 4.5 + 0.4 nmol gﬁl LEAFS Cheam et al. (1998)
Ontario Lake (Canada) 0.024-0.034 nmol L™! LEAFS Cheam et al. (1995)
Ontario Lake (Canada) 0.026-0.040 nmol L ™! LEAFS Cheam et al. (1995)
Port Hamilton (Canada) 12.6 + 1.4 nmol g~ LEAFS Cheam et al. (1998)
Port Hamilton (Canada) 0.11-0.18 nmol L LEAFS Cheam et al. (1995)
Port in Toronto (Canada) 3.0 £ 0.3 nmol gf' LEAFS Cheam et al. (1998)
Saint Clair Lake (Canada) 3.1£0.6nmol g’ LEAFS Cheam et al. (1998)
Sudbury (Canada) 2.4 + 0.1 nmol gﬁl LEAFS Cheam et al. (1998)
Superior Lake (Canada) 4.4-6.8 pmol L™ LEAFS Cheam et al. (1995)
Superior Lake (Canada) 0.007 + 0.001 nmol L™* HR-ICP-MS Field and Sherrell (2003)
Tantare Lake (Canada) 38 + 0.3 pmol L ICP-MS Laforte et al. (2005)
The Great Lakes (Canada) 0.5-1043 pmol L™! LEAFS Cheam et al. (1998)
Vose Lake (Canada) 0.59-1.53 nmol g71 ICP-MS Laforte et al. (2005)
Vose Lake (Canada) 55+0.4 pmol L' ICP-MS Laforte et al. (2005)
Ovre Skarsion Lake (Sweden) 3644 pmol Lt ICP-MS Grahn et al. (2006)
Listresjon Lake (Sweden) 59 pmol L™ ICP-MS Grahn et al. (20006)
Stensjon Lake (Sweden) 22-39 pmol L™! ICP-MS Grahn et al. (2006)
Remmarsjon Lake (Sweden) 32-39 pmol Lt ICP-MS Grahn et al. (2006)
Tvaringen Lake (Sweden) 24-31 pmol L™ ICP-MS Grahn et al. (2006)
Rivers and streams (Poland) 0.0077-0.72 mmol g71 DPASV Lis et al. (2003)
Surface waters (Taiwan) 117+ 1 pmol L™ ICP-MS Meeravali and Jiang (2011)
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Table 3 (continued)

Sample Sampling site Concentration range Analytical Reference
technique
Deep-sea water (Lanmuchang, China) 0.064-5.382 pmol L™ ICP-MS Xiao et al. (2004)
Ground water (Lanmuchang, China) <0.0024 pmol L™ ICP-MS Xiao et al. (2004)
Surface water (Yanshang, China) 0.03-0.47 pmol L ICP-MS Xiao et al. (2004)
Surface water (Lanmuchang, China) 0.24-3.67 umol L™ ICP-MS Xiao et al. (2004)
Spring water (Lanmuchang, China) 0.4-151.7 nmol L™! ICP-MS Xiao et al. (2004)
Well water (Lanmuchang, China) 0.049—-1.859 pmol L™! ICP-MS Xiao et al. (2004)
Pearl River (China) 0.0061-0.0935 pmol g71 ICP-MS Liu et al. (2010)
North River (China) 0.0045-0.0158 wmol g ! ICP-MS Liu et al. (2010)
Elbe (Germany) 0.0041-0.0095 pmol g~ ICP-MS Liu et al. (2010)
Streams sediments (Zn—Pb processing 0.0077-0.7193 pmol g~ DPASV Lis et al. (2003)
area, Poland)
Rivulet sediment (Zn—Pb processing 0.0367 pmol g DPASV Jakubowska et al. (2007)
area, Poland)
Stream sediment (Zn—Pb processing 0.0073-0.0323 pmol g~ DPASV Karbowska et al. (2014)
area, Poland)
Bolestaw-Bukowno, mining area 0.0016-0.0685 pmol g~ ICP-MS, ASV  Ospina-Alvarez
(Upper Silesia, Poland) etal. (2014)
Tamar estuarine sediments (England) 0.0004-0.0011 wmol g ICP-MS Anagboso et al. (2013)
Tsunami sediments (Thailand) 0.0019-0.0053 pmol g71 DPASV Lukaszewski et al. (2012)
Snow and ice Snow (arctic areas of Canada) 0.015-0.0044 pmol g LEAFS Cheam et al. (1998)
Surface ice (arctic areas of Canada) 0.0015-0.0055 pmol g71 LEAFS Cheam et al. (1998)
Deep-sea ice (arctic areas of Canada) 0.0001-0.0045 pmol g LEAFS Cheam et al. (1998)
Ellesmere island (arctic areas of 0.0064-0.0108 pmol g " ETV-ICP-MS Baiocchi et al. (1994)
Canada)
Antarctica (Terra Nova) 0.0009-0.0022 pmol g ETV-ICP-MS Baiocchi et al. (1994)
Sea water Pacific Ocean 5877 pmol kg ' ETV-ICP-MS Baiocchi et al. (1994)
Atlantic Ocean 59-80 pmol kg’ ETV-ICP-MS Baiocchi et al. (1994)
Ross Sea (Antarctica) 22-25 pmol L! HR-ICP-MS Baiocchi et al. (1994)
Air City center (Zagreb)
1998 0-0.09 nmol m > FAAS Hrsak et al. (2003)
1999 0-0.01 nmol m™> FAAS Hrsak et al. (2003)
2000 0-0.01 nmol m™> FAAS Hrsak et al. (2003)
Residential districts
1998 0-0.02 nmol m™> FAAS Hrsak et al. (2003)
1999 0-0.03 nmol m™? FAAS Hrsak et al. (2003)
2000 0-0.04 nmol m > FAAS Hrsak et al. (2003)
Soil Surface soil (Poland) 0.2-145.8 pumol kgfl DPASV Lis et al. (2003)
Deep soil (Poland) 0.1-171.7 pmol kg7l DPASV Lis et al. (2003)
Soil contaminated by zinc smelter 0.0171-0.1468 pmol g~ ICP-MS Vangk et al. (2013)
(Poland)
Soil reference area (Poland) 0.0010-0.0137 pmol g71 ICP-MS Vangk et al. (2013)
Soil floodplain terraces (Poland) 0.0019-0.0022 pmol g DPASV Jakubowska et al. (2007)
Mine area (Lanmuchang, China) 0.2-0.6 mmol kg71 ICP-MS Xiao et al. (2004)
Alluvial soil (Lanmuchang, China) 0.07-0.3 mmol kg™’ ICP-MS Xiao et al. (2004)
Intact natural soil (Lanmuchang, China) ~ 7-34 pmol kg71 ICP-MS Xiao et al. (2004)
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Table 3 (continued)
Sample Sampling site Concentration range Analytical Reference
technique
Intact natural soil (Yanshang, China) 4.4-6.8 pmol kg7l ICP-MS Xiao et al. (2004)
Soil contaminated with pyrite slag 0.0245-0.0734 pmol g~ ICP-MS Yang et al. (2005)
(China)
Soil background (China) 0.0079-0.0099 pmol gfl ICP-MS Yang et al. (2005)
Arable soils (France) Median 0.0014 pmol g71 GFAAS Tremel et al. (1997)
Czech soil 0.0021-0.0039 pmol g* ICP-MS Vangk et al. (2010a, b)
Czech sandy soil 0.0029-0.0039 pmol g~ ICP-MS Vangk et al. (2015)
Korean soil—near cement plants 0.0059-0.0632 wmol g’ ICP-OES Lee et al. (2015)
Korean soil—near mines 0.0009-0.0053 pmol gfl ICP-OES Lee et al. (2015)
Iranian soil, Chelpu catchment area 0.0108-0.0264 umol g ICP-ES Taheri et al. (2015)
Ores and rocks Sulfide ores (Lanmuchang, China) 0.5-171.2 mmol kg™ ICP-MS Xiao et al. (2004)
Coal (Lanmuchang, China) 0.06-0.22 mmol kg71 ICP-MS Xiao et al. (2004)
Secondary materials 0.12-5.38 mmol kg ICP-MS Xiao et al. (2004)
(Lanmuchang, China)
Mine waste (Lanmuchang, China) 0.16-12.72 mmol kg71 ICP-MS Xiao et al. (2004)
Crushed field stone 0.19-2.40 mmol kg7l ICP-MS Xiao et al. (2004)
(Lanmuchang, China)
Gold ores (Yanshang, China) 1-78 umol kg7l ICP-MS Xiao et al. (2004)
Coal (Yanshang, China) 1.5-41.1 pmol kg71 ICP-MS Xiao et al. (2004)
Magmatic rock (France) 0.0016-0.0083 pmol gfl GFAAS Tremel et al. (1997)
Metamorphic rock (France) 0.0013-0.0049 pmol g71 GFAAS Tremel et al. (1997)
Clastic rock (France) 0.0002-0.0043 pmol gfl GFAAS Tremel et al. (1997)
Calcareous rock (France) 0.0005-0.1057 pmol gfl GFAAS Tremel et al. (1997)
Sinemurian limestone (France) 0.0362-0.2691 pmol g71 GFAAS Tremel et al. (1997)
Carixian marls (France) 0.0147-0.0167 pmol g GFAAS Tremel et al. (1997)
Composite rock (France) 0.0002-0.0025 pmol g71 GFAAS Tremel et al. (1997)
Alluvial rock (France) 0.0017-0.0036 pmol g_] GFAAS Tremel et al. (1997)
Floodplain sands, gravel, 0.0022-0.0092 pmol g DPASV Lis et al. (2003)
and silt (Poland)
Slope wash sands and loams 0.0007-0.1717 pmol gfl DPASV Lis et al. (2003)
(Poland)
Loesses (Poland) 0.0009—0.0049 pmol gfl DPASV Lis et al. (2003)
Glaciofluvial sands and gravel 0.0001-0.0113 wmol g DPASV Lis et al. (2003)
(Poland)
Dolomites, ore-bearing dolomites, 0.0021-0.0298 pmol g71 DPASV Lis et al. (2003)
limestones, and marls (Poland)
Dolomites (Poland) 0.0014-0.0092 pmol g DPASV Karbowska et al. (2014)
Ore-bearing dolomites (Poland) 0.0057-0.0396 pmol g71 DPASV Karbowska et al. (2014)
Belgian Zn—Pb vein deposits 0.1468-30.8264 umol g ' X-ray Duchesne et al. (1983)
fluorescence,
XRF
Dumps of Zn—Pb processing 0.0338-0.1458 pmol g~ DPASV Lis et al. (2003)
(Poland)
Galena concentrate (Poland) 0.0308-0.0357 umol g ' DPASV Karbowska et al. (2014)
Blende concentrate (Poland) 0.0298-0.0494 pumol g71 DPASV Karbowska et al. (2014)
Crude Zn—Pb ores (Poland) 0.0091-0.0100 pmol g~ DPASV Karbowska et al. (2014)
Carbonate rock (Erzmatt, 0.4893-4.8931 pumol g71 ICP-MS Voegelin et al. (2015)

Switzerland)
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Table 3 (continued)

Sample Sampling site Concentration range Analytical Reference
technique
Wastewater Bolestaw-Bukowno, mining 0.2447 + 0.0098 pmol L™ HPLC with Ospina-Alvarez
area (Upper Silesia, Poland) 9+ 1 % as TI1II) ICP-MS et al. (2015)
91 % as T1 )
Volcanic ashes Iceland (2010) Eruption of 0.0023 + 0.0002 pmol g~ DPASV Karbowska and
Eyjafjallajokull Zembrzuski (2016)
‘White mustard Czech Republic (central part) 0.1908 pmol g (in stem) ICP-MS Groesslova et al. (2015)
(Sinapis alba) 0.1028 umol g (in leaf)
0.0636 pmol f{l (in root), DW
Green cabbage Guizhou, China 0.4942-0.9395 pumol g ' in ICP-MS Ning et al. (2015)
(Brassica oleracea the leaves, DW
L. var. capitata L.)
Urine Population: pregnant woman Median 0.0016 wmol L™ ICP-MS Xia et al. (2016)
Location: Hubei, China (0.0027 umol g ' in creatinine)
Population: pregnant woman Median 0.0009 pmol g ' ICP-MS Fort et al. (2014)
Location: Spain in creatinine
Population: opioid addicts 0.0-1.693 pumol L™ GFAAS Ghaderi et al. (2015)

Location: Mashhad, Iran

Median 0.0685 pmol L'

The natural content of thallium in plants is usually at
approx. 0.05 mg kg ' (Krasnodebska Ostrega and
Golimowski 2008). Samples of clovers collected from
uncontaminated regions of Poland contained from 0.008
to 0.01 mg kg ' of thallium, in case of grasses the
concentration ranged from 0.02 to 0.6 mg kg ', for
vegetables the values reached 0.02-0.3 mg kg ', where-
as fungi contained up to 5.5 mg kg ' of thallium
(Kicinska 2009; Kabata Pendias and Pendias 1999;
Maluszynski 2009). In Poland, the highest emissions
of thallium have been recorded in the vicinity of a Zn—
Pb smelting and mining complex in the Bukowno-
Olkusz region between the towns of Katowice and
Cracow. Plant samples (plant foliage) of birch originat-
ing from this region contained from 9.4 to 12.6 mg kg '
of thallium in buds and approx. 18.5 mg kg ' in the
leaves. Grasses contained 25.5 mg kg™ of thallium on
the average. Juices collected from birch trunks
contained from 89 to 145 ug L' of thallium. Plants of
the Brassica genus display a notable tendency to accu-
mulate thallium. Alleviated levels of this element were
found in cabbage, curly kale and oilseed rape (Asami
et al. 1996). It was established that the concentration of
thallium in cabbage plants is increased with the decrease
of soil pH value (Dmowski et al. 2002).

Thallium in aquatic and terrestrial animals

Thallium concentrations measured in phytoplankton and
macrophytes span a large range of values and depend on
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the type of organism (Twiss et al. 2004), the exposure
duration (Kwan and Smith 1991), the aqueous concen-
tration of T1 (Kwan and Smith 1988) and the concentra-
tion of K" in the exposure medium (Twiss et al. 2004;
Hassler et al. 2007), as well as ambient pH.

Studies regarding sea fish belonging to the salmon
family (Salvelinus namaycush) from central Pacific
Ocean revealed that the concentration of thallium in
their body reached 0.2—12 nmol g~ (Lin et al. 2001;
Couture et al. 2011). Analysis of alpine trout (Salvelinus
alpinus) tissues originating from Lake Hazen (Ellesmere
Island, Nunavut, Kanada) showed a broad range of
thallium concentrations in its muscle tissue (0.07 to
0.61 nmol gfl) (Gantner et al. 2009). Thallium concen-
trations in muscle tissue of northern pike (Esox lucius)
originating from lakes subjected to uranium milling
wastewater discharge were four to five times higher
compared to concentrations of thallium in tissues of fish
originating from non-contaminated lakes in the same
area (Kelly and Janz 2009; Gantner et al. 2009). The
highest thallium concentrations were found in muscle
tissue of fish collected from aqueous environments in
the vicinity of contaminated areas, reaching from 470
(Palermo et al. 1983) to 575 nmol g*1 (Zitko etal. 1975).
The lowest dissolved thallium concentration for which
toxic effects have been reported is 0.15 pmol L™ for
juvenile Atlantic salmon (Zitko et al. 1975). Lethal
thallium concentrations for 50 % mortality ranging from
20.9 to 294 umol L' were reported for fish species such
as roach, perch and rainbow trout (Pickard et al. 2001).
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Studies regarding animals in the Bukowno-Olkusz
region between the towns of Katowice and Cracow
(Poland) indicate that the spawn of amphibians may be
a very important source of thallium contamination for
predators. From among all tissues of the Bukowno adult
toads, the livers have shown the highest accumulation of
thallium (mean 3.98 mg kg ' dw and maximum value
18.63 mg kg' dw). For as many as 96.5 % of livers,
concentrations exceeded 1.0 mg kg ™' dw which is treat-
ed as indicative of poisoning (Dmowski et al. 2015).

Thallium accumulation was examined in the liver
and kidney of five species of dabbling ducks and three
species of diving ducks in Japan (Mochizuki et al.
2005). Organ concentrations ranged between 0.0049
and 0.14 umol g~ dry weight and were about four times
higher in dabbling compared to diving ducks. This
difference in Tl concentrations could be due to differ-
ences in Tl concentrations in their prey (invertebrates
and small fish) since dabbling 11 ducks feeding in
shallow areas whereas diving ducks collect food in
deeper parts of the same water bodies. (Couture et al.
2011).

Typical concentrations in animal muscle tissue
amount to 0.74-110.5ng g ' (fish), 0.84 ng g ' (rabbit),
1.7ng g ' (pig) and 0.74 ng g ' (cattle) (Engstrom et al.
2004; Das et al. 2006; Maluszynski 2009).

Thallium in human organisms

Increased content of thallium in the human body mainly
results from the consumption of contaminated food
(vegetables, fish, meat-based products) and drinking
water. In case of exposure to air-borne contamination
(fly ash), thallium may also enter the human body via
lungs. Recent reports indicate that high thallium con-
centrations may be found in green vegetables, such as
cabbage (Ning et al. 2015) or kale (Wallace 2015). A
significant increase in thallium content was also ob-
served in case of opioid abusers with mean level of
21 ug L', compared to 1 pg L' in the control group
(Ghaderi et al. 2015).

In general, it is estimated that a daily diet contains
2 ppb thallium (Wallace 2015). The average content of
thallium in the human body measured in US population
was approx. 0.1 mg (Lansdown 2013). The concentra-
tions in blood reached 3 pg L_l, with reference values
being calculated as 0.15-0.63 pg L™ in blood and 0.02—
0.34 ug L' in serum. Fingernails from non-exposed
persons showed a threefold higher level of thallium than

hair and averaged 0.051 mg kg '. The normal total
blood thallium concentration is under 2 pg L_l, and
concentrations greater than 100 pg L™ are toxic
(Lansdown 2013).

Concentration of thallium in human body organs
increases in the following order: 0.42-1.5 ng g '
(brain) < 1.5 ng g{1 (liver) < 6.1 ng g{1 (kidney) < 7—
650 ng g ' (hair), <0.6 ug g ' (bone) < 1.2 pg g ' (nail)
(Maluszynski 2009). This indicates that T1 accumulates
preferentially in peripheral organs, for example nails
(Engstrom et al. 2004; Das et al. 2006).

The majority of thallium, which is not accumulated
in the human body, is secreted in urine and, to a lesser
extent, in faeces. Therefore, urine tests are considered as
the most reliable and accurate ways to measure thallium
in human body. Under normal circumstances, thallium
in human urine usually does not exceed 1 pg/g of
creatinine (Wallace 2015). Thallium can be detected in
urine after 1 h and up to 2 months following exposure
(Wallace 2015). The measurement is usually based on
the addition of a chelating agent or a reagent, which
allows for spectrophotometric determination. For exam-
ple, Nagaraja et al. (2009) described a method which is
focused on the oxidation of 3-methyl-2-
benzothiazolinone hydrazone hydrochloride (MBTH)
by thallium (IIT) to diazonium cation, which is then
treated with imipramine hydrochloride (IPH) in a phos-
phoric acid medium at room temperature in order to
yield a blue-colored product with a maximum absorp-
tion at 635 nm.

Overview of analytical techniques
used for determination of thallium in environmental
samples

Determination of thallium is a challenging task due to
the fact that its concentration in environmental samples
may be at a nanogram per gram level or below. Apart
from a number of analytical methods used for quantita-
tive determination of the total content of this element, a
speciation analysis of different oxidation states for thal-
lium (I) and thallium (III) should also be considered.

Mass spectrometry-based techniques
Inductively coupled plasma mass spectrometry (ICP-
MYS) is currently considered as one of the most novel

techniques for trace analysis, which is characterized by
high sensitivity, precision and selectivity. This technique
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allows for simultaneous determination of several ele-
ments as well as determination of specific isotopes of a
given element in complex matrices with a low detection
limit (at a pg L' level) (Szczepaniak 2002). Cao and
Xia-jun (2012) determined the concentration of thallium
in samples of drinking water and spring water. The
detection limit was at 7.0 - 10 ug L™, and the recovery
value ranged from 95 to 102 % with a relative standard
deviation value of 0.6 % (Cao and Xia-jun 2012).

Hung-Wei and Shiuh-Jen (2000) used ETV-ICP-MS
technique for determination of thallium in sea water
samples collected from the area of Kaohsiung (located
in southern-western Taiwan). The detection limits were
at 0.4-0.5 ng-L™" for all studied samples (Hung-Wei and
Shiuh-Jen 2000).

Escudero et al. (2013) developed a rapid and simple
method of dispersive liquid-liquid microextraction
(DLLME). Initially, a complex of thallium and chloride
ions was formed. Tetradecyl(trihexyl)phosphonium
chloride (CYPHOS® IL 101) was used in order to
obtain an ion pair with the [TICly,] , which was later
subjected to extraction. In the next step, the phase which
contained thallium ions was separated and analyzed
with the use of ICP-MS. The dependence of analyte
calibration was linear with a correlation coefficient of
0.9989. Under optimal conditions, the detection limit
was at 0.4 ng L !. Relative standard deviation (7 = 10)
was at 1 ng mL ", Escudero et al. (2013) confirmed that
the method may also be successfully used for a rapid
analysis of different thallium forms in water samples
(Escudero et al. 2013).

Atomic absorption spectrometry-based techniques

The FAAS technique is also often employed for the
determination of thallium in environmental samples
(Griepink et al. 1998; Li et al. 2009). The comparison
of results obtained after determination of thallium in
different samples with the use of FAAS and ICP-MS
techniques is presented in Table 4.

Electrothermal atomic absorption spectrometry
(ETAAS) is a well-established technique for monitoring
trace amounts of elements in nearly all types of matrices.
Zeeman effect electrothermal absorption spectrometry
(ZEETAS) was used for determination of thallium in
water samples with the use of flotation as a concentra-
tion procedure. The detection limit of thallium was at
0.031 pg L ! (Bundalevska et al. 2005).

@ Springer

Cvetkovic et al. (2002) described a simple extraction
method during determination of thallium in wine sam-
ples with the use of ETAAS. The developed analytical
procedure allowed for a 50-fold enrichment and deter-
mination of 0.05 ug L™ of thallium in wine. The
ETAAS method was also employed for determination
of thallium in hair and nails (Asadoulahi et al. 2007) as
well as spring water with a detection limit of0.08 g L™
(Stafilov and Cundeva 1998).

The GFAAS technique was used for a quantitative
analysis of thallium at a nanogram-per gram level in
geological materials. The detection limit was at2 ng g ",
the precision of the method ranged from 3.03 to 10.5 %
and the relative standard deviation oscillated between
2.1 and 6.7 % (Guo et al. 1992). The results of thallium
determination in different environmental samples with
the use of GFAAS are presented in Table 5.

GFAAS was considered as a technique free of inter-
ference and was widely used for determination of thal-
lium in biological samples (Mulkey 1993). Chandler
and Scott (1986) conducted studies focused on the de-
termination of thallium in urine samples and achieved a
detection limit of 0.1 pg L™ with a relative standard
deviation value of 3.5-4.4 %, whereas Schaller et al.
(1980) achieved a sensitivity of 0.3 ug L™ for the same
matrix. Delves and Shuttler (1991) studied the content
of thallium in urine, blood and faecal samples with a
detection limit of 5 ug L™ for urine and faecal samples
and 10 pg L™ for blood samples.

The hydride generation atomic absorption spectrom-
etry (HGAAS) is characterized by high selectivity
(Kumar and Riyazuddin 2010). The detection limit for
thallium was at 0.8 ng mL ™", which indicates a notable
improvement compared to conventional chemical tech-
niques of hydride generation. The proposed method was
employed for determination of thallium in a standard
solution. The linear range was at 1-250 ng mL ™', and
relative standard deviation for the method reached a
value of 4.2 % (Arbab-Zavar et al. 2009).

The majority of studies focused on the determination
of thallium were conducted in water matrices. The re-
sults of thallium determination in environmental sam-
ples conducted with the use of atomic spectrometry,
fluorescent atomic spectrometry and inductively
coupled plasma atomic emission spectrometry (ICP-
AES) are compared in Table 6.

The use of LEAFS for determination of thallium in
water originating from port Hamilton (Ontario, Canada)
allowed to achieve a detection limit of 0.1 ng L'
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Table 4 Use of FAAS and ICP-

MS techniques for determination Sample ICP-MS technique FAAS technique Relative standard Recovery [%]

of thallium in water and biologi- deviation [%]

cal material samples (Li et al.

2009) Tap water 0.260 pg L™ 0.240 pg L' 32 88-102
River water 1220 ug L™ 1340 pg L' 34 91-106
Human hair ~ 0.384 mg kg 0395 mg kg ! 3.0 90-98
Human nail ~ 0.675 mg kg ™' 0.668 mg kg ' 32 88-97

(Cheam et al. 1996), whereas samples of spring water
collected by Miyazaki et al. contained approx.
1.3 ng mL™" of thallium, as determined by the use of
ICP-AES.

Voltammetry-based techniques

The majority of researchers use the inversion voltamm-
etry techniques (stripping methods) for analysis of thal-
lium content. These techniques offer the best combina-
tion of sensitivity and selectivity compared to the
abovementioned methods. Voltammetric stripping
methods are among the most efficient electrochemical
techniques used for trace and speciation analysis. The
exceptionally high sensitivity and selectivity of these
methods result from the fact that the studied analyte is
concentrated prior to determination. The concentration
of the analyzed compound is conducted with the use of
electrolysis or adsorption on the stationary working
electrode. The ‘stripping’ term has been adapted since
the concentrated substance is removed from the working
electrode (Henze 2003). Compared to conventional po-
larographic and voltammetric methods, the stripping
techniques are superior in terms of sensitivity and their
detection limit ranges from 10~ to 10" mol L™ ,and in
some cases it even reaches 10 ' mol L™ (Henze 2003).

The DPASV technique coupled with the flow-
injection measuring system (FIA-DPASV), with a de-
tection limit of 0.25 pM, was employed for determina-
tion of thallium in soil. The content of thallium in the

studied soil samples ranged from 100 to 350 ng g’
(Lukaszewski et al. 2010; Lis et al. 2003).

The results of thallium determination in a wide spec-
trum of different environmental samples with the use of
inversion voltammetry techniques are presented in Table 7.

Speciation of thallium

Thallium occurs in two oxidation states in the environ-
ment: monovalent TI(I) and trivalent TI(III). The oxida-
tion state directly influenced the toxicity of thallium—
trivalent Tl is approximately 50,000 times more toxic
compared to monovalent Tl. Furthermore, TI(T) may be
oxidized to TI(IIT) due to the activity of the phytoplank-
ton (Twining et al. 2003). As a result, the toxicity of both
species is influenced by their stability, which is associated
with the type of sample matrix and the corresponding
environmental conditions. It is important to determine the
concentration of specific Tl species in environmental and
biological samples to properly evaluate the exposure
risks. However, the speciation of Tl may be challenging,
due to the fact that the species are present at trace con-
centrations. Hence, the methods used for speciation of Tl
should be characterized by very high sensitivity.
Determination of TI(I) and TI(III) species was may be
carried out in soil samples (Voegelin et al. 2015), waste-
water samples (Ospina-Alvarez et al. 2015), plant tissues
(Sadowska et al. 2016) and cells (Nowicka et al. 2014).
Several reports indicate that the use of ICP-MS allows for
credible speciation of TI. Szopa and Michalski (2015)

Table 5 Use of the GFAAS

technique for determination of Sample Separation method ~ Detection limit [ng g ']Jor  Interference

thallium in environmental sam- [ng mL ']

ples (Asami et al. 1996; Griepink

et al. 1988) Surface water Extraction 5 Cu
Sea sediments Extraction 10 Fe, Mo, Re, Au, Sb, Ta
Soil Extraction 20 Cu, Zn, Pb
Particulate matter ~ Extraction 33 HBr
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Table 6 Comparison of thallium determination results in environmental samples using different atomic spectrometry techniques

Sample Preparative method Analytical method Detection limit Reference

Air Separated in a filter, dissolved in acid ICP-AES lugg Sitting (1985)
Water Treated with HNO; AAS 0.1mgL™! NIOSH (1984)
Water Treated with HNO; AAS 0.1 mg L! APHA (1985)
Water Treated with HNO; GFAAS 0.1 ug L EPA (1983)
Wastewater Acid digestion ICP-AES 40 pg L EPA (1983)
Solid waste Acid digestion AAS 0.1mgL™" EPA (1983)
Solid waste Acid digestion GFAAS lugL™ EPA (1983)
Solid waste Acid digestion ICP-AES 40 pg L! EPA (1983)

established that the advantages of this technique include
extremely low detection and quantification limits, insig-
nificant interference influence and high precision and re-
peatability of the determinations. Prior to determination,
the separation of TI(I) and TI(II) may be achieved by
employing a cation exchange guard, ion exchange resins,
anion exchange chromatography and size exclusion chro-
matography (Nolan et al. 2004). A recent study also
suggests that the use of anionic surfactants, such as sodium
dodecyl sulfate (SDS), may facilitate the separation of
thallium species during solid-phase extraction (Biadun
et al. 2016). Yun-Ling et al. (2012) also employed RP-
HPLC coupled with ICP-MS for speciation of TL

Summary

Generally, thallium is present in the natural environment
at low concentrations. Thallium enters the environment

primarily as a result of coal burning and smelting. Air
emissions and subsequent depositions of thallium from
anthropogenic sources resulted in the increase of its
concentrations in areas near industrially relevant objects
(smelters, coal combustion power plants, cement plants,
etc.). In the vicinity of contaminated areas, elevated
concentrations of thallium were found in edible re-
sources, such as vegetables, fruit and tissues of farm
animals. This is an issue of major concern, since thalli-
um salts are now considered to be among the most toxic
known compounds.

Further studies are required in order to determine
other potential sources of thallium in order to limit the
negative impact of such contaminants on the environ-
ment and human health. Living near hazardous waste
sites containing thallium may result in considerably
higher exposures. It should also be emphasized that
the effects of chronic exposure to low concentrations
of thallium are currently unknown. The concentration of

Table 7 Comparison of thallium determination results in different environmental samples with the use of inversion voltammetry techniques

(Griepink et al. 1998)

Sample Electrolyte Type of electrode used in the Electrolysis Interference Detection limit
voltammetric technique parameters [ng.L™"]
Natural water ~ pH 4.8; EDTA ~ HMDE—hanging mercury drop ~ —0.9 V/SCE Bi, Cu, Sb 0.5
electrode

Natural water ~ pH 4.5; octane ~ MFE—mercury-film electrode —0.8 V/Ag/AgCl  Cd, Pb, Cu 0.011
EDTA

Sea water EDTA MFE—mercury-film electrode -1.1V Cd, Pb 40

Sea water pH 3.5; KNO; MFE—mercury-film electrode —0.9 V/SCE Pb, Cu 0.6

Sea water KNOs/EDTA MFE—mercury-film electrode —1.2 V/Ag/AgCl Cu, Pb, Cd, Zn, Bi, Co, -

Ni, Sn, Fe

Rocks pH 7-8; citrate =~ HMDE—hanging mercury drop ~ —0.75/SCE Requires separation -
EDTA electrode

Salts pH4.5; EDTA  HMDE—hanging mercury drop  —0.6/SCE Cu, Pb, Cd, Bi, Sb, Sn 200

electrode
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Fig. 3 Comparison of thallium
LOD values for different
analytical methods
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thallium in industrial waste, sediments and wastewaters
should be strictly monitored, and any by-products con-
taining thallium oxides should be properly secured and
labelled.

A summary of analytical techniques is presented in
Fig. 3.

The main benefits of MS-based techniques (e.g. ICP-
MS) include the possibility to conduct single and multi-
element analyses, a broad range of linearity (which
usually covers 4 or 5 orders of magnitude of concentra-
tions of analytes in the sample), no contaminations, high
sensitivity and selectivity, simple and rapid analysis and
low interference due to matrix effects; their general
disadvantages are associated with high analysis cost,
the use high purity reagents and the necessity to dilute
the samples or digest the matrix.

The main benefits of AAS-based techniques (e.g.
FAAS, ETAAS) include an easy and direct method of
determination (no pre-treatment is necessary), relatively
low analysis costs and low analysis time; their general
disadvantages are associated with the susceptibility to
matrix effects and the fact that only single elements may
be determined. The sensitivity and reproducibility vary
between specific methods.

The main benefits of AFS-based techniques (e.g.
LEAFS) include the possibility to perform multi-
element analyses, high selectivity and sensitivity, a
broad range of linearity and low level of interference;
their general disadvantages are associated with high
costs and analysis time, susceptibility to matrix effects
and the fact that the method used for sample preparation
or mineralization may notably influence the results.

The main benefits of combined techniques (e.g. FIA-
DPASV) include extremely low detection and quantifi-
cation limits, a marginal influence of interference on the
results as well as a notably high precision and repeat-
ability of measurements; their general disadvantages are
associated with high apparatus cost and complexity of

10* 10° 10% 10" 10° 10' 10° 10° 10° 10° 10°
Detection Limit Range [pg/I]

their operation, which make them less widely available
for use in laboratories, and the fact that their use requires
a high proficiency with analytical methods and detailed
knowledge of instruments.

Selection of an appropriate analytical technique for
quantitative and qualitative analysis of thallium depends
on the physical state of the sample, its volume, possible
decomposition and processing options. However, the
sensitivity, detection and quantification range, selectiv-
ity and precision should be treated as the main criteria.
Selection of an appropriate method for routine analyses
should always be based on the analysis of all possible
operational factors associated with their use (perfor-
mance, complexity, time and reagent consumption, type
of analyzed sample matrices, etc.).
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