Skip to main content
. 2016 Oct 26;188(11):640. doi: 10.1007/s10661-016-5647-y

Table 3.

Comparison of results of thallium content determination in various environmental samples with the use of different analytical techniques

Sample Sampling site Concentration range Analytical technique Reference
Sediment Arnous River (downstream), France 1–10 nmol L−1 ICP-MS Casiot et al. (2011)
Arnous River (downstream), France 0.2–26.6 nmol L−1 ICP-MS Casiot et al. (2011)
Arnous River (upstream), France 0.05–0.78 nmol L−1 ICP-MS Casiot et al. (2011)
Arnous River (upstream), France 0.05–0.83 nmol L−1 ICP-MS Casiot et al. (2011)
Deule Channel (France)—contaminated sediments near a metal smelter 1.8–1111 μmol kg−1 LEAFS Boughriet et al. (2007)
Gardon River, France 0.15–0.63 nmol L−1 ICP-MS Casiot et al. (2011)
Reigous Bay, France 20–235 nmol L−1 ICP-MS Casiot et al. (2011)
Reigous Bay, France 0.0001–2.6 μmol L−1 ICP-MS Casiot et al. (2011)
Biwa Lake (Japan) 7.4 ± 0.7 nmol g−1 LEAFS Cheam et al. (1998)
Buffalo River (USA) 5.5 ± 0.5 nmol g−1 LEAFS Cheam et al. (1998)
Winter Green Lake (USA) 0.01–0.11 mmol g−1 AAS Cheam (2000)
Indiana Harbor artificial channel (USA) 6.3 ± 0.4 nmol g−1 LEAFS Cheam et al. (1998)
Erie Lake (Canada) 0.014–0.053 nmol L−1 GFAAS Lin and Nriagu (1999)
Humber River (Canada) 2.3 ± 0.4 nmol g−1 LEAFS Cheam et al. (1998)
Huron Lake (Canada) 0.013–0.088 nmol L−1 GFAAS Lin and Nriagu (1999)
Lakes near a coal mine (western Canada) 0.001–0.02 μmol g−1 LEAFS Cheam (2000)
Michigan Lake (Canada) 0.047–0.094 nmol L−1 GFAAS Lin and Nriagu (1999)
Mine water (western Canada) 0.001–6.5 nmol L−1 LEAFS Cheam (2000)
Niagara River (Canada) 5.2 ± 0.4 nmol g−1 LEAFS Cheam et al. (1998)
Ontario Lake (Canada) 0.53–4.2 nmol g−1 LEAFS Borgmann et al. (1998)
Ontario Lake (Canada) 4.5 ± 0.4 nmol g−1 LEAFS Cheam et al. (1998)
Ontario Lake (Canada) 0.024–0.034 nmol L−1 LEAFS Cheam et al. (1995)
Ontario Lake (Canada) 0.026–0.040 nmol L−1 LEAFS Cheam et al. (1995)
Port Hamilton (Canada) 12.6 ± 1.4 nmol g−1 LEAFS Cheam et al. (1998)
Port Hamilton (Canada) 0.11–0.18 nmol L−1 LEAFS Cheam et al. (1995)
Port in Toronto (Canada) 3.0 ± 0.3 nmol g−1 LEAFS Cheam et al. (1998)
Saint Clair Lake (Canada) 3.1 ± 0.6 nmol g−1 LEAFS Cheam et al. (1998)
Sudbury (Canada) 2.4 ± 0.1 nmol g−1 LEAFS Cheam et al. (1998)
Superior Lake (Canada) 4.4–6.8 pmol L−1 LEAFS Cheam et al. (1995)
Superior Lake (Canada) 0.007 ± 0.001 nmol L−1 HR-ICP-MS Field and Sherrell (2003)
Tantare Lake (Canada) 38 ± 0.3 pmol L−1 ICP-MS Laforte et al. (2005)
The Great Lakes (Canada) 0.5–1043 pmol L−1 LEAFS Cheam et al. (1998)
Vose Lake (Canada) 0.59–1.53 nmol g−1 ICP-MS Laforte et al. (2005)
Vose Lake (Canada) 5.5 ± 0.4 pmol L−1 ICP-MS Laforte et al. (2005)
Ovre Skarsion Lake (Sweden) 36–44 pmol L−1 ICP-MS Grahn et al. (2006)
Listresjon Lake (Sweden) 59 pmol L−1 ICP-MS Grahn et al. (2006)
Stensjon Lake (Sweden) 22–39 pmol L−1 ICP-MS Grahn et al. (2006)
Remmarsjon Lake (Sweden) 32–39 pmol L−1 ICP-MS Grahn et al. (2006)
Tvaringen Lake (Sweden) 24–31 pmol L−1 ICP-MS Grahn et al. (2006)
Rivers and streams (Poland) 0.0077–0.72 mmol g−1 DPASV Lis et al. (2003)
Surface waters (Taiwan) 117 ± 1 pmol L−1 ICP-MS Meeravali and Jiang (2011)
Deep-sea water (Lanmuchang, China) 0.064–5.382 μmol L−1 ICP-MS Xiao et al. (2004)
Ground water (Lanmuchang, China) <0.0024 μmol L−1 ICP-MS Xiao et al. (2004)
Surface water (Yanshang, China) 0.03–0.47 pmol L−1 ICP-MS Xiao et al. (2004)
Surface water (Lanmuchang, China) 0.24–3.67 μmol L−1 ICP-MS Xiao et al. (2004)
Spring water (Lanmuchang, China) 0.4–151.7 nmol L−1 ICP-MS Xiao et al. (2004)
Well water (Lanmuchang, China) 0.049–1.859 μmol L−1 ICP-MS Xiao et al. (2004)
Pearl River (China) 0.0061–0.0935 μmol g−1 ICP-MS Liu et al. (2010)
North River (China) 0.0045–0.0158 μmol g−1 ICP-MS Liu et al. (2010)
Elbe (Germany) 0.0041–0.0095 μmol g−1 ICP-MS Liu et al. (2010)
Streams sediments (Zn–Pb processing area, Poland) 0.0077–0.7193 μmol g−1 DPASV Lis et al. (2003)
Rivulet sediment (Zn–Pb processing area, Poland) 0.0367 μmol g−1 DPASV Jakubowska et al. (2007)
Stream sediment (Zn–Pb processing area, Poland) 0.0073–0.0323 μmol g−1 DPASV Karbowska et al. (2014)
Bolesław-Bukowno, mining area (Upper Silesia, Poland) 0.0016–0.0685 μmol g−1 ICP-MS, ASV Ospina-Alvarez et al. (2014)
Tamar estuarine sediments (England) 0.0004–0.0011 μmol g−1 ICP-MS Anagboso et al. (2013)
Tsunami sediments (Thailand) 0.0019–0.0053 μmol g−1 DPASV Lukaszewski et al. (2012)
Snow and ice Snow (arctic areas of Canada) 0.015–0.0044 pmol g−1 LEAFS Cheam et al. (1998)
Surface ice (arctic areas of Canada) 0.0015–0.0055 pmol g−1 LEAFS Cheam et al. (1998)
Deep-sea ice (arctic areas of Canada) 0.0001–0.0045 pmol g−1 LEAFS Cheam et al. (1998)
Ellesmere island (arctic areas of Canada) 0.0064–0.0108 pmol g−1 ETV-ICP-MS Baiocchi et al. (1994)
Antarctica (Terra Nova) 0.0009–0.0022 pmol g−1 ETV-ICP-MS Baiocchi et al. (1994)
Sea water Pacific Ocean 58–77 pmol kg−1 ETV-ICP-MS Baiocchi et al. (1994)
Atlantic Ocean 59–80 pmol kg−1 ETV-ICP-MS Baiocchi et al. (1994)
Ross Sea (Antarctica) 22–25 pmol L−1 HR-ICP-MS Baiocchi et al. (1994)
Air City center (Zagreb)
 1998 0–0.09 nmol m−3 FAAS Hrsak et al. (2003)
 1999 0–0.01 nmol m−3 FAAS Hrsak et al. (2003)
 2000 0–0.01 nmol m−3 FAAS Hrsak et al. (2003)
Residential districts
 1998 0–0.02 nmol m−3 FAAS Hrsak et al. (2003)
 1999 0–0.03 nmol m−3 FAAS Hrsak et al. (2003)
 2000 0–0.04 nmol m−3 FAAS Hrsak et al. (2003)
Soil Surface soil (Poland) 0.2–145.8 μmol kg−1 DPASV Lis et al. (2003)
Deep soil (Poland) 0.1–171.7 μmol kg−1 DPASV Lis et al. (2003)
Soil contaminated by zinc smelter (Poland) 0.0171–0.1468 μmol g−1 ICP-MS Vaněk et al. (2013)
Soil reference area (Poland) 0.0010–0.0137 μmol g−1 ICP-MS Vaněk et al. (2013)
Soil floodplain terraces (Poland) 0.0019–0.0022 μmol g−1 DPASV Jakubowska et al. (2007)
Mine area (Lanmuchang, China) 0.2–0.6 mmol kg−1 ICP-MS Xiao et al. (2004)
Alluvial soil (Lanmuchang, China) 0.07–0.3 mmol kg−1 ICP-MS Xiao et al. (2004)
Intact natural soil (Lanmuchang, China) 7–34 μmol kg−1 ICP-MS Xiao et al. (2004)
Intact natural soil (Yanshang, China) 4.4–6.8 μmol kg−1 ICP-MS Xiao et al. (2004)
Soil contaminated with pyrite slag (China) 0.0245–0.0734 μmol g−1 ICP-MS Yang et al. (2005)
Soil background (China) 0.0079–0.0099 μmol g−1 ICP-MS Yang et al. (2005)
Arable soils (France) Median 0.0014 μmol g−1 GFAAS Tremel et al. (1997)
Czech soil 0.0021–0.0039 μmol g−1 ICP-MS Vaněk et al. (2010a, b)
Czech sandy soil 0.0029–0.0039 μmol g−1 ICP-MS Vaněk et al. (2015)
Korean soil—near cement plants 0.0059–0.0632 μmol g−1 ICP-OES Lee et al. (2015)
Korean soil—near mines 0.0009–0.0053 μmol g−1 ICP-OES Lee et al. (2015)
Iranian soil, Chelpu catchment area 0.0108–0.0264 μmol g−1 ICP-ES Taheri et al. (2015)
Ores and rocks Sulfide ores (Lanmuchang, China) 0.5–171.2 mmol kg−1 ICP-MS Xiao et al. (2004)
Coal (Lanmuchang, China) 0.06–0.22 mmol kg−1 ICP-MS Xiao et al. (2004)
Secondary materials (Lanmuchang, China) 0.12–5.38 mmol kg−1 ICP-MS Xiao et al. (2004)
Mine waste (Lanmuchang, China) 0.16–12.72 mmol kg−1 ICP-MS Xiao et al. (2004)
Crushed field stone (Lanmuchang, China) 0.19–2.40 mmol kg−1 ICP-MS Xiao et al. (2004)
Gold ores (Yanshang, China) 1–78 μmol kg−1 ICP-MS Xiao et al. (2004)
Coal (Yanshang, China) 1.5–41.1 μmol kg−1 ICP-MS Xiao et al. (2004)
Magmatic rock (France) 0.0016–0.0083 μmol g−1 GFAAS Tremel et al. (1997)
Metamorphic rock (France) 0.0013–0.0049 μmol g−1 GFAAS Tremel et al. (1997)
Clastic rock (France) 0.0002–0.0043 μmol g−1 GFAAS Tremel et al. (1997)
Calcareous rock (France) 0.0005–0.1057 μmol g−1 GFAAS Tremel et al. (1997)
Sinemurian limestone (France) 0.0362–0.2691 μmol g−1 GFAAS Tremel et al. (1997)
Carixian marls (France) 0.0147–0.0167 μmol g−1 GFAAS Tremel et al. (1997)
Composite rock (France) 0.0002–0.0025 μmol g−1 GFAAS Tremel et al. (1997)
Alluvial rock (France) 0.0017–0.0036 μmol g−1 GFAAS Tremel et al. (1997)
Floodplain sands, gravel, and silt (Poland) 0.0022–0.0092 μmol g−1 DPASV Lis et al. (2003)
Slope wash sands and loams (Poland) 0.0007–0.1717 μmol g−1 DPASV Lis et al. (2003)
Loesses (Poland) 0.0009–0.0049 μmol g−1 DPASV Lis et al. (2003)
Glaciofluvial sands and gravel (Poland) 0.0001–0.0113 μmol g−1 DPASV Lis et al. (2003)
Dolomites, ore-bearing dolomites, limestones, and marls (Poland) 0.0021–0.0298 μmol g−1 DPASV Lis et al. (2003)
Dolomites (Poland) 0.0014–0.0092 μmol g−1 DPASV Karbowska et al. (2014)
Ore-bearing dolomites (Poland) 0.0057–0.0396 μmol g−1 DPASV Karbowska et al. (2014)
Belgian Zn–Pb vein deposits 0.1468–30.8264 μmol g−1 X-ray fluorescence, XRF Duchesne et al. (1983)
Dumps of Zn–Pb processing (Poland) 0.0338–0.1458 μmol g−1 DPASV Lis et al. (2003)
Galena concentrate (Poland) 0.0308–0.0357 μmol g−1 DPASV Karbowska et al. (2014)
Blende concentrate (Poland) 0.0298–0.0494 μmol g−1 DPASV Karbowska et al. (2014)
Crude Zn–Pb ores (Poland) 0.0091–0.0100 μmol g−1 DPASV Karbowska et al. (2014)
Carbonate rock (Erzmatt, Switzerland) 0.4893–4.8931 μmol g−1 ICP-MS Voegelin et al. (2015)
Wastewater Bolesław-Bukowno, mining area (Upper Silesia, Poland) 0.2447 ± 0.0098 μmol L−1 (9 ± 1 % as Tl III) (91 % as Tl I) HPLC with ICP-MS Ospina-Alvarez et al. (2015)
Volcanic ashes Iceland (2010) Eruption of Eyjafjallajökull 0.0023 ± 0.0002 μmol g−1 DPASV Karbowska and Zembrzuski (2016)
White mustard (Sinapis alba) Czech Republic (central part) 0.1908 μmol g−1 (in stem)
0.1028 μmol g−1 (in leaf)
0.0636 μmol g−1 (in root), DW
ICP-MS Groesslova et al. (2015)
Green cabbage (Brassica oleracea L. var. capitata L.) Guizhou, China 0.4942–0.9395 μmol g−1 in the leaves, DW ICP-MS Ning et al. (2015)
Urine Population: pregnant woman
Location: Hubei, China
Median 0.0016 μmol L−1
(0.0027 μmol g−1 in creatinine)
ICP-MS Xia et al. (2016)
Population: pregnant woman
Location: Spain
Median 0.0009 μmol g−1 in creatinine ICP-MS Fort et al. (2014)
Population: opioid addicts
Location: Mashhad, Iran
0.0–1.693 μmol L−1
Median 0.0685 μmol L−1
GFAAS Ghaderi et al. (2015)