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Abstract Proteus spp. bacteria were first described in 1885
by Gustav Hauser, who had revealed their feature of intensive
swarming growth. Currently, the genus is divided into Proteus
mirabilis, Proteus vulgaris, Proteus penneri, Proteus hauseri,
and three unnamed genomospecies 4, 5, and 6 and consists of
80 O-antigenic serogroups. The bacteria are known to be hu-
man opportunistic pathogens, isolated from urine, wounds,
and other clinical sources. It is postulated that intestines are
a reservoir of these proteolytic organisms. Many wild and
domestic animals may be hosts ofProteus spp. bacteria, which
are commonly known to play a role of parasites or commen-
sals. However, interesting examples of their symbiotic rela-
tionships with higher organisms have also been described.
Proteus spp. bacteria present in soil or water habitats are often
regarded as indicators of fecal pollution, posing a threat of
poisoning when the contaminated water or seafood is con-
sumed. The health risk may also be connected with drug-
resistant strains sourcing from intestines. Positive aspects of
the bacteria presence in water and soil are connected with
exceptional features displayed by autochthonic Proteus spp.
strains detected in these environments. These rods acquire
various metabolic abilities allowing their adaptation to differ-
ent environmental conditions, such as high concentrations of
heavy metals or toxic substances, which may be exploited as
sources of energy and nutrition by the bacteria. The Proteus
spp. abilities to tolerate or utilize polluting compounds as well
as promote plant growth provide a possibility of employing

these microorganisms in bioremediation and environmental
protection.
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Introduction

Proteus Like in Homer’s Poem…

Microorganisms belonging to the genus Proteus were first
described in 1885 by a Germanmicrobiologist Gustav Hauser,
who had revealed their ability to swarm on solid surfaces. The
name Proteus came from Homer’s BOdyssey^ and its charac-
ter Proteus, who could change his shape and had an ability of
endless transformation. Hauser described two species of the
genus: Proteus vulgaris and Proteus mirabilis [81]. The
swarming ability, connected with a change of short swimmer
cells into long, poli-nucleous and hyper-flagellated swarmer
cells, is especially visible in the second species. This is a
possible source of the name of P. mirabilis, which in Latin
means amazing, marvelous, splendid. Hauser might have con-
sidered P. vulgaris to be more common and ordinary; there-
fore, he gave it the Latin name meaning widespread, usual.
The ability of swarming growth is used in a simple and effec-
tive Dienes test to differentiate Proteus spp. strains with dis-
criminatory power comparable to ribotyping [114]. The phe-
nomenon described by Dienes in 1946 consists in forming
boundaries between the swarming growth of different strains,
while isogenic strains merge with each other (Fig. 1). Howev-
er, the background of the expression of the territorial compe-
tition between two swarming non-isogenic strains still remains
unclear [8, 48]. The formation of the boundaries (Dienes lines)
may depend on different profiles of produced proticines
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(Proteus bacteriocines) and different profiles of strain sensi-
tivity [129]. Budding et al. [19] suggested that one of the
meeting strains dominated over the other killing it in the
cell–cell contact because round dead cells were observed near
the border in the swarm of the dominated strain. The Dienes
reaction is connected with at least three recognized gene clus-
ters enabling the self-recognition of P. mirabilis bacteria. Two

of them (idr and tss) encode cytotoxins and a type VI secretion
system, respectively [151], while the third one (ids) encodes
the Ids proteins responsible for self-identification [21, 49].
However, the mutation in the ids genes does not provoke the
killing of parent or mutant strain cells, although the Dienes
line is visible between their swarms [48].

The genus Proteus includes Gram-negative, facultative an-
aerobic, heterotrophic, and proteolytic rods being human op-
portunistic pathogens. The taxonomic classification of these
bacteria has changed several times. Lately, the only Proteus
species with no clinical significance, Proteus myxofaciens, has
been postulated to be moved from the genus Proteus to a new
genus Cosenzaea [47]. Among other changes, the exclusion
from the genus Proteus of several species that created new
genera Providencia and Morganella is worth mentioning.
These three closely related genera have formed the tribe
Proteeae in the family Enterobacteriaceae [81]. Currently,
the genus Proteus consists of P. mirabilis, P. vulgaris, Proteus
penneri, Proteus hauseri, and three genomospecies 4, 5, and
6. P. hauseri as well as the genomospecies were separated
from P. vulgaris on the grounds of molecular studies and form
P. vulgaris group. The genomospecies 4, 5, and 6 are marked
only with numbers as there have been no metabolic properties
indicated to allow their full differentiation [104]. The main
biochemical features typical of the genus and distinguishing
Proteus species are summarized in Table 1.

Fig. 1 P. mirabilis strains swarming on the surface of an agar plate:
isogenic A and B (no line of demarcation is visible) versus unrelated C
(clear Dienes line of demarcation)

Table 1 The main metabolic
characteristics of Proteus spp.
[103, 104]: B+^positive in 100 %
strains; B−^negative in 100 %
strains; in the other cases, the
percentage of strains exhibiting
positive reaction is given in
parentheses

Feature P. mirabilis P. penneri P. vulgaris P. hauseri P. genomospecies 4, 5,
and 6

Typical of the genus and distinguishing it from the other Enterobacteriaceae

Phenylalanine deaminase

Lysine decarboxylation

Arginine hydrolysis

Urease production

Glucose fermentation

Mannose fermentation

Lactose fermentation

Methyl-red

Growth in KCN

Tyrosine clearing

+ (98 %)

−
−
+ (98 %)

+

−
− (2 %)

+ (97 %)

+ (98 %)

+ (91 %)

+ (99 %)

−
−
+

+

−
− (1 %)

+

+ (99 %)

+

+

−
−
+ (86 %)

+

−
−
+ (86 %)

+ (99 %)

+

+

−
−
+

+

−
−
+

+

+

+

−
−
+

+

−
−
+

+ (97 %)

+

Typical of the species and allowing their differentiation

Ornithine
decarboxylation

Indole production

Lipase production

DNase production

Maltose fermentation

Sucrose fermentation

Salicin fermentation

Esculin hydrolysis

Citrate utilization

+ (99 %)

− (2 %)

+ (92 %)

+/− (50 %)

−
− (15 %)

−
−
+ (65 %)

−
−
− (35 %)

− (12 %)

+ (96 %)

+

−
−
−

−
+

− (14 %)

+

+

+

+

+

− (29 %)

−
+

−
−
+

+

−
−
−

−
+

+ (97 %)

+ (85 %)

+

+

− (3 %)

− (3 %)

−
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Bacteria from the genus Proteus can also be differ-
entiated on the basis of their O-antigen variability, al-
though serotyping is not included in the routine diag-
nostics of these rods. So far, there have been established
80 O-antigenic serogroups in the genus, some of them
divided into subgroups [7, 67, 135], and many new O
serotypes are still being discovered (D. Drzewiecka, un-
published data). The chemical structure of the sugar part
of the lipopolysaccharide may play an important role in
the adaptation of Proteus spp. bacteria to environmental
conditions and enhancing their pathogenicity, as some O
serotypes are more prevalent and more frequently isolat-
ed from clinical sources than the others (Table 2) [7,
35, 37, 72, 111, 133].

Proteus spp. bacteria have been isolated from different hu-
man and non-human environments and their presence in
higher organisms, soil, and water is well documented. How-
ever, their specific features and roles played in their natural
habitats have not been summarized so far.

Human Beings and Proteus Bacteria—Commensals
and Parasites

Proteus spp. bacteria are mostly known as opportunistic
human pathogens. Their roles in the pathogenesis of
human beings as well as their virulence factors enabling
the bacteria to reach different niches of the host organ-
ism and survive have been extensively studied and
reviewed [8, 36, 81, 89, 103, 124, 125] and are sum-
marized in Table 2. The bacteria cause infections mainly
in people with an impaired immunity system, and most
all of them may be a source of complicated urinary tract
and wound infections as well as nosocomial infections.

Urinary tract infections are most frequently ascending,
often connected with the presence of urinary catheters.
It should be noticed that Proteus spp. are the most
prevalent bacteria, isolated from bladder and kidney
stones (70 % of cases). P. mirabilis is the main cause
of all Proteus spp. infections accounting for 80–90 % of
them.

It is postulated that human intestines are a reservoir of
Proteus bacteria, especially those belonging to prevailing
P. mirabilis species, and they are members of natural fecal
microflora of several percent of human population [124].
Lately, Porres-Osante et al. [118] reported the presence of
Proteus spp. bacteria (one P. mirabilis and one P. vulgaris
strain) in fecal samples from 4 % of healthy Spanish vol-
unteers. Zilberstein et al. [160], using cultivation methods
to study the microbiota in particular parts of the digestive
tract, stated that Proteus spp. bacteria were absent from
the mouth and the esophagus of healthy volunteers. How-
ever, the bacteria were present in comparatively high
mean concentrations in the stomach of 8.1 % of volun-
teers (105 colony forming units (CFU)/mL), the duodenum
(45.5 %, 102), the proximal jejunum (45.5 %, 104), the
proximal ileum (20 %, 106), the distal ileum (19 %, 103.5),
the cecum (12.5 %, 104), the colon (ascending, 33.3 %,
105; transverse, 37.5 %, 105; descending, 25 %, 105; and
sigmoid, 34.8 %, 107), and in the rectum (30 %, 107). The
other members of the family Enterobacteriaceae—
Escherichia coli, Enterobacter spp., and Klebsiella
spp.—were detected in the same places in the lower di-
gestive tract, but they were more prevalent.

Proteus spp. are regarded to be an undesired element of
intestinal microflora, as the bacteria may also become a
causative agent of diarrhea. Although Ikeobi et al. [59]
did not notice significant differences in the presence of

Table 2 Pathogenicity of Proteus spp. rods to humans [7, 8, 35, 37, 72, 81, 111, 125, 133, 148]

Infections Virulence factors Prevalent O-serotypes

• Urinary tract infections (cystitis, prostatitis,
pyelonephritis, kidney stone formation)

• Wounds and burns infections, abscesses
• Respiratory tract infections
• Bacteremia
• Meningitis
• Intestine colonization (diarrhea)
• Nosocomial infections
• Rheumatoid arthritis (?) – autoaggressive antibodies

may arise due to the molecular mimicry between
Proteus hemolysin and urease, and human white
blood cells

• Fimbriae – adhesion
• Flagella – swimming, swarming growth
• Urease – urine pH elevation, kidney stones

formation
• LPS – endotoxin
• O and capsular polysaccharides – swarming

facilitation, kidney stones and biofilm
formation, serospecificity

• Biofilm – protection
• Invasiveness – internalization into host cells
• Haemolysins – cytotoxicity
• Proteus toxic agglutinin – cell–cell aggregation,

cytotoxicity
• Proteases – antibodies degradation
• Deaminases – α-keto-acid siderophores

production and iron acquisition
• Zinc and phosphate transport systems – utilization

• O3, O6, O10, O11, O13, O23, O24, O27,
O28, O29, O30 – including P. mirabilis
and P. vulgaris strains

• O17, O61, O64, O65 – including
P. penneri strains mainly

• O78 – including P. mirabilis strains
(data only from Poland)

• O79 including P. genomospecies strains
(data only from Poland)
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Proteeae members in the intestines of healthy individuals
and diarrheal patients, Müller [91, 92] isolated P.
mirabilis strains statistically more frequently from feces
of patients suffering from diarrhea than from healthy in-
dividuals. The author suggested that the bacteria may be-
come opportunists when the illness is caused by other
intestinal pathogens or they may lead to intestinal disor-
ders independently. Also, P. penneri strains were more
frequently isolated from sick than from healthy people,
while P. vulgaris were present in almost the same number
of individuals in each group.

Thus, the presence of Proteus spp. bacteria in the gastroin-
testinal tract may also be treated as a carrier state, because in
some conditions, it may lead to cross-infections and autoin-
fections especially in the urinary tract, which was observed
many years ago by de Louvois [73] using serotyping as well
as the Dienes test and confirmed in other studies [8, 48]. Chow
et al. [26] emphasized the role of the intestinal tract as a res-
ervoir of P. mirabilis bacteria leading to person-to-person
transmitted nosocomial infection. Drzewiecka et al. [34, 35],
by the use of serological and molecular methods as well as the
Dienes test, proved that P. mirabilis strains isolated from feces
and urine of patients were in fact the same spreading clone
causing autoinfection and nosocomial infection. Wang et al.
[148] reported the case of food poisoning in a restaurant in
Beijing, China, caused by P. mirabilis. The same clone, iden-
tified by genotyping and the Dienes method, was detected in
the consumed food and in stools of consumers as well as the
cook handler and the waiter who, due to the lack of hygiene,
most probably had transported the bacteria to the meal. The
fact that dirty hands may be an important step in feces-to-
hand-to-mouth spread of Proteus spp. bacteria was also con-
firmed by other researchers. Smith et al. [136] found P.
vulgaris among the bacteria and yeasts isolated from roadside
telephone receivers in Lagos, Nigeria. Padaruth and Biranjia-
Hurdoyal [110] detected Proteus spp. on hands of primary
school pupils in Mauritius while Shojaei et al. [132] on hands
of food handlers in Iran (but simple washing resolved the
problem). Also, Qadripur et al. [119] found P. mirabilis to
colonize hand skin between nail plate and nail fold in motor
mechanics.

Peerbooms et al. [113] compared P. mirabilis strains isolat-
ed from urine and feces, and all the isolates seemed to display
similar virulence potential, which confirmed that the strains
attacking the urinary tract may come from the intestinal reser-
voir. Also, Senior and Leslie [130] concluded that frequent
isolation of P. mirabilis from feces and rare occurrence of P.
vulgaris in the intestines of healthy individuals and those suf-
fering from gastroenteritis may explain the fact that it is the
first species and not the second one that is strongly connected
with urinary tract infections.

The presence of P. mirabilis in the intestines may also be
connected with obesity. Lecomte et al. [74], conducting

research on an animal model, have recently reported on the
changes in gut microflora depending on diet. Studying the
intestinal microbiota of rats fed a high-fat diet (43 or 51 %
of fat), the authors noticed higher numbers of P. mirabilis as
compared to the control group (12 % fat diet). Moreover, a
significant positive correlation was found between the abun-
dance of P. mirabilis (as well as Phascolarctobacterium and
Veillonellaceae) and all ten analyzed metabolic parameters
associated with obesity.

Proteus spp. in Animals—Adverse and Friendly

Not only rats but also many wild and domestic animals (mam-
mals, birds, reptiles, amphibians, insects, and Bseafood^) are
the hosts of Proteus spp. bacteria. The relation of the bacteria
to their host organism is sometimes not determined; in some
cases, it may be symbiotic or change from neutral/commensal
to parasitic (Table 3). The microorganisms are an element of
animal pathogenic or physiological microflora, especially in
the intestines—a reservoir of the bacteria.

P. mirabilis and P. vulgaris were found in fecal samples of
western lowland gorillas (Gorilla gorilla gorilla), collected at
two locations in south-central Cameroon, proving to inhabit
the intestines of these great wild apes [15]. Like in humans,
the presence of Proteus spp. in animal intestines may pose a
threat of autoinfection and cross-infection. The example of
such autoinfection was described by Gaastra et al. [44], who
in the Netherlands isolated P. mirabilis strains from feces and
urine of dogs suffering from recurrent urinary tract infections.
It is probable that the intestine was a reservoir of the bacteria
infecting the urinary tract of the dogs, because P. mirabilis
strains were not isolated from feces of healthy controls. Also,
Kroemer et al. [69] reported P. mirabilis strains as a reason for
urinary tract infections in dogs and cats in European countries.
Normand et al. [99] indicated Proteus spp. isolated from dif-
ferent materials (mostly feces, urine, skin swabs, upper respi-
ratory tracks) as an important cause of illness in dogs and cats
examined in Glasgow, UK. Moreover, 26 % of the strains
were identified as multiple drug resistant. P. mirabilis was
isolated from the rectum, the vagina, the mouth, the nose,
and wound/abscess of feral cats analyzed in Grenada, West
Indies [54]. However, all the isolates were sensitive to most of
the used antibiotics, so it was concluded that feral cats did not
pose a risk to humans or other cats. Kitamikado and Lee [66]
isolated from feces of raccoon dog Nyctereutes procyonoides,
a P. vulgaris strain producing chondroitinase, which may be
regarded as one of the virulence factors produced by the mi-
croorganism because chondroitin sulfate is distributed in ani-
mal connective tissues.

On the other hand, there was no connection found between
Proteus spp. and ulcerative keratitis [146] or transmissible
venereal tumor [38] in dogs, as P. penneri and P. vulgaris
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strains were isolated from the eyes of healthy dogs in Beijing,
China, and, respectively, P. mirabilis from the vagina of a
healthy dog in Nigeria, but not from sick animals.

Proteus spp. bacteria may also be the members of natural
microflora of the esophagus [84] and the skin of horses, al-
though they were also isolated from wounds [152]. However,
the wound isolates displayed strong adherence and signifi-
cantly stronger attachment than skin isolates proving

enhanced virulence of pathogenic strains, as compared to nor-
mal skin isolates. The bacteria are virulent also to donkeys
causing urinary tract infections. They were found to account
for 6.7 % of donkey uropathogens isolated in Ethiopia, among
which Streptococcus spp. (43.3 % isolates) and E. coli (20 %)
were dominating [83].

P. mirabilis and P. vulgaris were also detected as the ele-
ments of the microbial community in pigs. Lowe et al. [75]

Table 3 Different kinds of
relationship between Proteus spp.
and other organisms (details in the
text): B+^ positive (beneficial),
B?^ neutral/commensal/not
determined, B−^ negative
(antagonistic, pathogenic)

organisms Proteus
sp.

P. mirabilis P. vulgaris
group

P. penneri selected references

Humans ? / − ? / − ? / − 8, 36, 81, 103, 124, 125, 148

Gorillas ? ? 15

Dogs − ? / − ? ? 38, 44, 69, 99, 144

Cats, feral cats − − 54, 69, 99

Pigs ? ? 68, 75, 147

Horses ? / − 84, 152

Donkeys − 83

Cow, cattle, calf ? ? / − ? 2, 56, 76, 123, 138

Raccoon dog ? 66

Flying fox + + 6

Rats ? 73

Birds, poultry − (eggs) ?/− ? / − ? / − 9, 43, 46, 61, 62, 68, 71, 123, 154,
155, 161

Snakes ? ? ? 16, 53, 131

Alligator − 101

Turtles − ? ? / − ? / − 5, 10, 42, 53, 102, 108, 127

Amphibians ? 53

Fishes + / ? + + / ? /− + 17, 66, 70, 97, 107, 141

Oysters ? 39

Shrimps + / ? + / ? + / ? + / ? / − 20, 82, 97, 98

Lobsters + + + + 97

Blue crab ? 109

Sponges +/? ? 50, 64

Millipede + 4

Lepidopteran − 85

Cockroaches ? ? 142, 145, 149

Honey bees ? 137

Flies ? ? / + ? 18, 51, 79, 80, 85, 87, 94, 134, 144,
150

Mites + 2

Nematodes − 76

Leguminous
plants

+ 12, 14, 120

Wild grass + 121

Tea + 12

Cabbage + 156

Maize + 60

Mould fungi − − 11, 12

C. albicans − 50

B. bacteriovorus − 20
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revealed that the family Enterobacteriaceae was a minor but
significant component of pig tonsil microflora in which P.
mirabilis or P. vulgaris clones dominated. Wang et al. [147]
reported a P. vulgaris strain isolated from nasal swab of a pig
from a food producing animal farm (sic!) that was carrying a
chromosomally located staphylococcal multiresistance cfr
gene encoding the resistance to linezolid, but also to other
chemically unrelated classes of antimicrobial agents. The gene
was for the first time reported in a naturally occurring Gram-
negative bacterium. Still Kobashi et al. [68] isolated P.
mirabilis strains from pig feces detecting the efflux genes
responsible for their resistance to tetracycline (tetH and tetJ).

All Proteus species were detected in the cow. Hawkey et al.
[56] revealed that P. vulgaris (including the strains currently
numbered among genomospecies) as well as P. mirabilis spe-
cies were, respectively, the first and the third species among
the tribe Proteeae most commonly isolated from beddings
contaminated with feces and urine in two calf farms in South
West England. The authors concluded that the high similarity
of the O-serotype profile of isolated strains (e.g., serotypes
O23 and O30) to those reported for human infections
(Table 2) suggests that food animals may be a source of
Proteeae strains carried in human gut. Lu et al. [76] reported
on the isolation from a cow dung in China of P. penneri strains
displaying strong nematicidal activity. P. vulgaris seems to
belong to normal skin microflora of cattle, but the involve-
ment of these bacteria in the damage to tissues around the skin
lesions caused by Demodex bovis mite and their synergistic
influence was also revealed [2]. The symbiosis between the
parasites relies on the fact that the mite introducing the bacte-
ria into the skin on the exoskeleton or in the gut receives
suitable microclimate for the establishment and replication
due to many virulence factors and enzymes produced by the
cooperating microorganisms.

Rogers [123] suggested a possibility of the transmission of
potentially pathogenic bacteria, including Proteus spp., be-
tween wild birds and cattle. The author stated the presence
of P. vulgaris in feces of 13 % dairy cattle in five studied
farms, and in fecal and cloacal samples from 7.8 % analyzed
birds (sparrows, blackbirds, cowbirds, but not starlings).

Other authors also emphasized the role of wild birds in the
transmission and spread of pathogenic bacteria to domestic
poultry, cattle, or humans, resulting in the change of their
status from bird fecal microflora members to the etiological
agent of pathogenesis. Yong et al. [155] found P. mirabilis to
be prevalent in feces of large-billed crows (Corvus spp.)
inhabiting the surroundings of a minimarket in Bangsar, Ma-
laysia, and becoming a health hazard due to their large num-
bers. However, no bacteria (with the exception of Klebsiella
spp.) were present in the air samples from the market place.
Winsor et al. [154] conducted studies on fecal microflora of
apparently healthy wild turkey vultures (Cathartes aura) in
Texas, USA, because the diet of these birds, which are carrion-

feeding animals, must include animals that have died of infec-
tious diseases. The content of the studied bird intestines was
dominated by E. coli but, in fact, P. mirabilis was the second
predominant species detected in 50 % birds and P. vulgaris
was isolated from one bird. Jahantigh [61, 62] stated that
Proteus spp. strains in 2010 accounted for 5 % and in 2012
for 12.5% isolates from eggs of the ostrich (Struthio camelus).
The authors indicated fecal contamination that may lead to the
penetration of the bacteria into the egg interior and the infec-
tion which may be a reason for a relatively high ratio of em-
bryonic mortality in ostrich eggs in Iran. Awad-Alla et al. [9]
suggested a possible role of white ibises (Nipponia nippon) in
Egypt in the transmission of some pathogens to poultry as in
the internal organs of apparently healthy birds they found
several strains classified as P. mirabilis (although the
indicated ability of indole production suggests that the
strains should be identified as P. vulgaris; see Table 1). Next,
Foti et al. [43] conducted studies on the health status of birds
belonging to several orders migrating to Africa through the
Ustica Island (Italy). From fecal swabs and internal organs of
birds found dead, they isolated only one P. mirabilis strain, so
the probability of dissemination of these bacteria was very
low. Kwiecińska-Piróg et al. [71] revealed that P. mirabilis
naturally occurring in the crop and the cloaca of white stork
(Ciconia ciconia) healthy nestlings in Poland were more sus-
ceptible to antibiotics than clinical strains isolated from human
beings and no ESBL production was detected.

The above data indicate that the presence of Proteus spp. in
birds does not pose a real risk of dissemination; moreover,
Proteus spp. bacteria seem to be a member of normal poultry
microflora. Among the bacteria inhabiting the beak cavity and
the cloaca of reproductive goose flocks (190–800 birds) from
17 farms in Poland,Proteus spp. colonized approximately 10–
25 % of birds [161], while E. coli, Enterococcus spp., and
Streptococcus spp. were found in approximately 60–70 % of
birds and coagulase-negative Staphylococcus was isolated
from 80–90% birds, independently of the sampling site. Other
bacteria were isolated sporadically. Also, Kobashi et al. [68]
isolated P. mirabilis and Proteus sp. strains from poultry feces,
detecting the tetM gene, encoding their resistance to tetracy-
cline. However, Giacopello et al. [46] recognized antibiotic-
resistant P. mirabilis, P. vulgaris, and P. penneri present in
feces of sick domestic canaries as pathogenic microflora.

Proteus spp. colonize also amphibians and reptiles, e.g., P.
vulgaris is reported as a common inhabitant both in the oral
cavity and in the cloaca of water amphibians (Lissotriton
vulgaris newts and Pelophylax ridibundus frogs) and reptiles
(Mauremys rivulata turtles and Natrix natrix grass snakes)
inhabiting the Kavak Delta, Turkey [53]. In the oral bacterial
flora of Chinese cobra, Naja atra, and bamboo pit vipers,
Thimeresurus albolabris, two snake species common in Hong
Kong [131], P. penneri, P. vulgaris, and P. mirabilis strains
were isolated among many other potentially pathogenic
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bacteria. Blaylock [16] reported on the common isolation of
Proteus sp., P. mirabilis, and P. vulgaris from oral swabs of
four different house snake species from southern Africa. There
is also a report on pathogenic Proteus sp. as a cause (together
with Morganella morganii) of the septicemia and death of a
captive alligator held in the Savannah River Ecology Labora-
tory in Aiken, SC, USA [101].

There are several reports available concerning the presence
of Proteus spp. bacteria in water turtles, sometimes connected
with illness. They were the fourth genus most frequently iso-
lated from lesions of sea turtles from the Canary Islands,
Spain, and were considered as one of the causes of their dis-
eases and mortality [108]. Al-Bahry et al. [5] interpreted the
presence of Proteus spp. and P. vulgaris (resistant to ampicil-
lin, streptomycin, and tetracycline) in oviductal fluids of
nesting sea green turtles (Chelonia mydas) as an indicator of
pollution in the surrounding areas between the Gulf of Oman
and the Arabian Sea (see the next paragraph). In contrast, in
nesting green turtles from Costa Rica, P. mirabilis and P.
vulgaris bacteria were recognized as a non-pathogenic con-
stituent of microflora. They were isolated from nasal and clo-
acal swabs from apparently healthy turtle females with no
signs of disease. There was no correlation observed between
the turtles and seawater bacteria composition, so it was sug-
gested that Proteus bacteria should be treated as the physio-
logical microflora of green turtles [127]. P. mirabilis was also
commonly found as inhabiting the cloaca of European pond
turtles (Emys orbicularis), especially captive ones, from Po-
land [102]. P. vulgariswas the predominant species, and some
P. mirabilis strains were also identified in cloacal and oral
swabs of loggerhead sea turtles (Caretta caretta) inhabiting
the Sicilian Channel, the South Tyrrhenian Sea, and the Ionian
Sea [42]. The loggerhead turtle is included in the Red List of
the world conservation union, and the microbial contamina-
tion of the turtle eggs is suspected to play a role in embryonic
death and a low loggerhead hatch success rate in Georgia,
USA. Indeed, among other Gram-negative isolates from un-
hatched eggs of the turtle on Jekyll Island, Georgia, P. penneri
and P. vulgaris strains were identified [10].

Although Proteus spp. bacteria are commonly known as
opportunistic pathogens, there can be found interesting exam-
ples of positive relations between the microorganisms and the
host animal (Table 3). P. mirabilis and P. vulgaris strains iso-
lated from the intestine of the Indian flying fox (Pteropus
giganteus) were recognized as the members of symbiotic
physiological microflora of this big fruit bat [6]. Although this
is unusual for the two species (Table 4), the isolates were able
to produce cellulolytic and xylanolytic enzymes just as three
other isolated species, Citrobacter freundii, Serratia
liquefaciens, and Klebsiella oxytoca, and contrary to the other
six gut isolates unable to digest cellulose. Fruits and leaves,
which are the animal’s main food, are built of up to 50 % of
cellulose, hemicellulose (xylan), lignocellulose, and pectin

cellulose, and because mammals do not possess proper en-
zymes to degrade the polymers, the symbiotic enterobacteria
play an essential role in their nourishment and digestion. An-
other example of a cellulolytic and xylanolytic P. mirabilis
strain isolated as a gut symbiont of millipede (Xenobolus
carnifex) was reported by Alagesan et al. [4].

Also, a symbiotic role has been suggested for P. mirabilis
and P. vulgaris isolated from hematophagous sand fly
Phlebotomus papatasi being a vector of Leishmania parasite,
as the bacteria were the most prevalent in larvae, pupae, and
mature male and female insects gut [80]. Another very inter-
esting hypothesis indicating a close relationship between P.
mirabilis and its blowfly host Lucilia sericata was formed
by Ma et al. [79]. These proteolytic microorganisms are able
to produce volatile components, for example, putrescine (from
ornithine) and ammonia (see Table 1), important for their
swarming ability and, at the same time, attracting flies to the
carcass. The authors stated that putrescine, which is an extra-
cellular signal required for the swarming phenomenon and
used by P. mirabilis in quorum sensing [89], may be an
interkingdom signal sensed by both the insects and the bacte-
ria. The same role was suggested for ammonia. Both com-
pounds as well as four other attractants (NaOH, KOH, phenol,
and lactic acid) restored the swarming motility in different
swarming-deficient mutants of the P. mirabilis strain isolated
from maggot salivary glands where they dominated, so the
researchers linked fly attraction with Proteus swarming. The
bacteria were detected also in adult L. sericata flies and in
Lucilia cuprina sister species [134]. The symbiosis between
blowflies and Proteus bacteria is also indicated by the fact that
P. mirabilis biofilm, contrary to biofilms constructed by
Staphylococcus aureus and Enterobacter cloacae, is not
disrupted or is even stimulated by L. sericata maggots used
in the debridement therapy. Simultaneously, P. mirabilis is
antagonistic to some bacteria eliminated by maggots from
wounds, protecting the larvae from harmful microorganisms
[18]. Complete sterility of L. cuprina maggots for wound
therapy was achieved in all cases except for P. mirabilis
[87]. Additionally, Wei et al. [150] revealed that both sensitive
and antibiotic-resistant P. mirabilis strains could persist for
several days among the gut microflora of the green bottle fly
(L. sericata) or the housefly (Musca domestica L.) when in-
troduced by feeding. It has been speculated that the mecha-
nisms stimulated by the fly host may contribute to the main-
taining of antibiotic-resistant strains in particular, and in that
way, their transmission is imminent. It was also suggested
[144] that flies, as the vectors of bacteria to raw meat devoted
to dog breeding, were responsible for a high percentage of
morbidity and mortality due to intestinal infections among
pups in greyhound dog kennels in Kansas, USA. A high per-
centage of bacterial contamination among blowflies (different
species) and domestic flies (M. domestica), stable flies
(Stomoxys calcitrans L.), flesh flies, and others was observed,
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while Proteus spp. were proved to be the most common bac-
teria among Gram-negative and lactose-negative ones isolated
from flies, followed by Providencia spp., Pseudomonas spp.,
and Salmonella spp. Nazni et al. [94] identified Proteus as the
second (after Enterobacter) dominating genus on the external
body surface, while in the fly gut, Proteus spp. dominated
among the bacteria isolated from the housefly (M. domestica)
on a poultry farm in Malaysia. P. mirabilis with Providencia
spp. was also prevalent in gut microflora of flies captured in
different public places in India [51].

Not only flies but also cockroaches are regarded as com-
mon vectors of different microorganisms, including P.
mirabilis and P. vulgaris strains, carrying them on their bodies

and posing a threat of their dissemination, food contamina-
tion, and spoiling as well as infection of humans. The bacteria
were found in Nigerian cockroaches in Ekpoma, a village
characterized by poor sanitary conditions [142], and in Iranian
brown-banded cockroaches collected in kitchens of Ahvaz
houses [145].Wannigama et al. [149] reported on the isolation
of P. mirabilis from 8.9 % cockroaches found in households
and food-handling establishments in Varanasi, India.

P. vulgaris was isolated from tissues of an American fly
Drosophila paulistorum [85], although it was not determined
if the microorganisms were parasitic, mutualistic, or symbiotic
to their host. However, they displayed strong pathogenicity
toward lepidopterans like Heliothis virescens. Other insects

Table 4 Unusual physiological
features displayed byProteus spp.
strains isolated from different
habitats (details in the text)

Feature Proteus sp. P. mirabilis P. vulgaris P. hauseri

Heterotrophic nitrification Coastal seawater

Cellulose digestion Flying fox, millipede Flying fox

Lipase production/
hydrocarbons utilization
(including aromatic ones)

Contaminated
soil; waste
sludge

Contaminated soil Contaminated
soil;
contaminated
fish

Phenol utilization Contaminated soil

Methyl tert-butyl ether (MTBE)
degradation

Contaminated soil

ɛ-Caprolactam utilization Contaminated soil

Hexachlorocyclohexane (HCH)
pesticide utilization

Contaminated
soil

Phorate pesticide utilization Contaminated
soil

Chlorpyrifos, methyl parathion,
and p-nitrophenol pesticides
degradation

Contaminated
soil (in
consortium)

Contaminated soil (in
consortium)

DDT reduction Mouse

Azo dyes decolorizing Waste site Contaminated soil;
wastewater sludge

Hot
spring

Phosphate solubilization Phorate
contaminated
soil

Wild grass
rhizosphere

Copper tolerance Wild grass
rhizosphere;
wastewater

Soil Hot
spring

Chromium,cobalt, cadmium,
zinc,mercury, nickel, lead,
arsenic tolerance

Wild grass
rhizosphere;
wastewater;
contaminated soil

Silver tolerance Wastewater

Chromate tolerance Contaminated
seawater

Thermotolerance Hot
spring

Halotolerance Salt lake Oysters Halophyte
glasswort
rhizosphere

Acidotolerance Soil
contaminated
by
hydrocarbons

Acidic soil Hot
spring
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which may carry Proteus spp. bacteria in the intestines are
bees [137]. It is suggested that the source of the bacteria is
pollen consumption and bees in the colony are infected one by
one during food exchange. Honey pollution by Proteus spp.
may pose a threat to consumers.

A similar situation may be observed in water animals,
so called Bseafood,^ where the presence of Proteus spp.
may result in food spoiling and poisoning, e.g., scombroid
poisoning of fish meat as a result of histidine decarboxyl-
ation leading to a rise in the level of toxic histamine
[100]. A source of bacteria, including antibiotic-resistant
ones, may be fecally contaminated water (see the next
paragraph), because P. vulgaris and P. mirabilis rods were
found as absorbed on body structures of the commercially
important sponge Spongia officinalis , an animal
inhabiting the Aegean Sea and feeding by the seawater
filtration [64]. Also, Graça et al. [50] reported on the
isolation of several Proteus sp. strains (closely related to
P. mirabilis) from the marine sponge (Erylus deficiens)
collected 150 km off the southwest coast of Portugal.
The authors revealed that Proteus sp. strains (together
with Pseudoalteromonas and Microbacterium spp. iso-
lates) presented the strongest bioactivity against pathogen-
ic bacteria and Candida albicans, thus protecting the host
animal and assisting its survival, also due to the fact that
the absorbed bacteria constitute 50–60 % of the sponge
biomass.

However, the occurrence of these opportunistic human
pathogens in oysters poses a health risk if the shellfish are
consumed raw. Fernandez-Delgado et al. [39] found hal-
ophilic (growth in saline concentrations from 3 to 8 %) P.
mirabilis as prevailing in the bodies of two oyster species
in Venezuela and resistant to several tested antibiotics
(mainly tetracycline, ampicillin and penicillin, and
cefoxitin and cefazolin). Also, Matyar et al. [82] isolated
several antibiotic-resistant P. vulgaris and P. penneri
strains from the intestines of shrimps inhabiting the Isken-
derun Bay, Turkey, which was most probably due to the
Iskedrun Bay contamination by industrial and domestic
wastes, including hospital ones. It is worth noting that
Proteus spp. strains were absent from seawater and sedi-
ments, although high amounts of fecal coliforms indicated
strong fecal contamination of the Bay. Nimrat et al. [98]
identified Proteus spp. and P. mirabilis among other bac-
teria detected in spermatophores from black tiger shrimps
(Penaeus monodon) collected from the Andaman Sea,
Thailand. Cao et al. [20] recognized P. penneri as an
agent causing red body disease of commercial white
shrimps Penaeus vannamei, cultivated in Xiaoshan,
Zheijang, China. Interestingly, the mortality of shrimps
was successfully inhibited by the predatory activity of
Bdellovibrio bacteriovorus against the P. penneri patho-
gen; thus, the authors propose this bacterial predator as a

potential biocontrol agent. P. penneri strain inter alia was
also detected on the body surface of the wild blue crab
(Callinectes sapidus) in the Akyatan Lagoon (the south of
the Mediterranean Sea) [109].

Proteus spp. rods are found in marine fishes. In Atlantic
mackerel (Scomber scombrus), P. vulgaris and Proteus sp.
were detected in gills, skin, and gut as the only members of
the family Enterobacteriaceae [141]. In Scomber japonicus
mackerel (the intestine and the stomach) or in Limanda
herzensteini flat fish (the gills), P. vulgaris was stated as pro-
ducing a big yield of intracellular and extracellular
chondroitinase, which may be directed against the host con-
nective tissues, containing mucopolysaccharide chondroitin
[66]. Also, freshwater Nile tilapias (Oreochromis niloticus)
from experimental freshwater aquaculture in Brazil [17] and
tilapias from Lake Victoria, Kenya [107], were sporadically
colonized by P. vulgaris or Proteus sp. Kumar et al. [70]
reported on P. hauseri as a causative agent of hemorrhage
and mortality in a koi carp (Cyprinus carpio) farm in India.
This is the first animal habitat reported for this poorly recog-
nized species, while the sources of isolation of two previously
described P. hauseri strains (one human) remain unknown
[104] and two other strains were isolated from human urine
[63].

The presence of Proteus spp. bacteria was also re-
vealed to have a surprisingly positive influence on water
animals. Many P. mirabilis, P. vulgaris, P. penneri, P.
genomospecies 4, and unidentified Proteus sp. strains iso-
lated from the intestines of black tiger shrimp, cobia ma-
rine fish, snubnose pompano marine fish, and ornate spiny
lobster in Vietnam demonstrated probiotic properties
linked to bacteriocin production and their antagonistic ac-
tivity towards many pathogenic bacteria [97].

Proteus as an Indicator of Fecal Pollution

The presence of Proteus spp. bacteria in water and soil may
indicate the fecal pollution of the environments where these
proteolytic bacteria are treated as allochthonic. Human and
animal feces are probably an important source of these rods
in natural environments. Water animals may absorb pollutant
microorganisms from water. There is a potential risk of their
spread in the marine food chain as well as dissemination dur-
ing the food processing and transmission to humans after con-
sumption. For instance, bacteria (in that number Proteus spp.)
associated with sponges (S. officinalis), which are the main
filter feeders in marine environment, were proposed to be
treated as indicators of fecal contamination of marine ecosys-
tems [64]. Other marine animals that are reported to accumu-
late Proteus spp. from water environment are oysters [39],
loggerhead turtles (C. caretta) [42], and green turtles (C.
mydas) [5], although Santoro et al. [127] did not find the
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correlation between green turtle microflora and seawater
microorganisms.

Also, antibiotic-resistant Proteus spp. strains may be re-
leased from the intestines which are a source of drug-
resistance genes [126]. Some authors [5, 39, 82] emphasize
the fact that marine environment seems to be a reservoir of
genes responsible for the antibiotic resistance of polluting
bacteria, as many antibiotic-resistant strains, including
Proteus spp., are isolated from water and sea animals (see
the previous paragraph). A good example is also the Jiaozhou
Bay on the western coast of the Yellow Sea, China, which is
highly contaminated due to intensive industrial development
and urbanization. Effluents from hospitals and wastewater
may be the sources of drug-resistant bacteria, allowing the
resistance genes transfer to environmental microflora. Many
bacterial strains resistant to tetracycline or chloramphenicol,
including P. mirabilis, were isolated from the seawater by
Dang et al. [28, 29]. Also, in Cameroon studies of water sam-
ples collected for a period of 8 months from Douala Lagoon,
contaminated by industrial and domestic wastes, resulted in
the isolation of P. vulgaris strains among other fecal bacteria
in each sample, which poses a serious health problem [3].

The fact of Proteus spp. survival in marine environments
indicates the ability of thesemicroorganisms to adapt to higher
salinity conditions, similarly to the strains from oysters, men-
tioned earlier. Indeed, several halotolerant Proteus spp. strains
were detected in water samples from El Golea Salt Lake, Al-
gerian Sahara, proving that domestic wastes from the El-
Goela oasis could be a source of the fecal microflora surviving
in these conditions [52].

Proteus spp. can also be found in freshwater, as an indica-
tor of its contamination by feces, even in unexpected habitats.
Microbiological investigation of water and sediments from the
Vrelo Cave, the Republic of Macedonia [33], revealed mostly
the presence of Bacillus spp. strains (83 %), but, additionally,
allochthonic strains were detected, including P. penneri, in a
water sample taken from a place located 400 m from the cave
entrance and 100m deep.Moreover, although physical, chem-
ical, and biochemical parameters indicated a high water qual-
ity, big numbers of total and fecal coliform bacteria were ob-
served both in water and in sediment samples, suggesting their
contamination from an animal source.

The detection of bacteria belonging to the genus Proteus in
drinking water disqualifies its suitability for consumption due
to its fecal pollution, which would threaten with waterborne
infections. The problem occurs in India. P. vulgaris was
claimed to be the main microbial pollutant of drinking water
in Rajasthan [140]. Then, in bore well waters in Mysore City,
P. mirabilis and P. vulgaris strains dominated over the other
H2S-producing strains (considered as associated to fecal coli-
forms in drinking water) [93]. Poonia et al. [117] reported on
the alarming presence of multidrug resistant P. mirabilis and P.
vulgaris strains among other bacteria in drinking water from

springs and streams in the rural areas of Sikkim. Also, in
Nigeria, Proteus spp. bacteria were detected in two of five
studied well waters, treated as a source of drinking water [1].

P. mirabilis, P. vulgaris, and P. penneri strains, in addition
to other members of Enterobacteriaceae, were recognized as
bacteria connected with an anthropic influence, indicating the
fecal contamination of rice field water from irrigation chan-
nels and rice field plots in Rio Grande do Sul, Brazil [122].

Also, in soil, the presence of Proteus spp. bacteria is
regarded as the evidence for its fecal contamination.
Srinivasan et al. [138] reported on the isolation of P. mirabilis
strains from the soil samples from a dairy farm area that was
regularly treated with cow manure, but not from the control
forest soil samples with no history of agriculture. Trawińska et
al. [143] detected both Proteus spp. and E. coli strains in soil
samples, collected near or 300 m from the reproductive layer
farm in Poland, although the grounds were not treated with
manure or exploited. Thus, it was suggested that the bacteria
associated with fecal contamination of soil may have come
from other animals, because the soil samples also contained
Toxocara spp. eggs, which are not found in birds.

Proteus in Bioremediation and Plant Growth
Promotion

Proteus spp. bacteria, as an element of intestinal microflora of
humans and animals, are often treated as zymogens in soil or
water. In fact, these proteolytic microorganisms come to these
environments with feces or waste, and after digestion of ap-
proachable organic matter, they decay due to the lack of
nutrients.

However, these microorganisms are also found in such
habitats as autochthones, well adapted to the environmental
conditions, exhibiting unusual and exceptional metabolic fea-
tures (Table 4), although this aspect of the genus Proteus life-
style is less known. An interesting example is a P. mirabilis
strain isolated from coastal seawater in China, which was
characterized as a heterotrophic nitrifier [158]. The strain ef-
fectively removed ammonia (NH4

+) ions by oxidation. More-
over, only trace amounts of NO2

− and NO3
− were detectable

after cultivation as the ions were simultaneously reduced by
the bacterium to gaseous nitrogen (N2) in the denitrification
processes. The processes and the cell growth were inhibited in
the absence of any organic source of carbon. The strain is
suggested to be used for toxic NH4

+-N removal, although its
activity in oligotrophic water was limited probably due to the
lack of carbon sources. Similar metabolic activity was
displayed by the Proteus sp. strain related to P. mirabilis,
isolated from effluents from a fish processing plant in India
[86]. Simultaneous aerobic nitrification and denitrification
leading to the efficient removal of nitrogen by this

750 D. Drzewiecka



heterotrophic bacterium are suggested to be applied in fish
waste treatment.

Proteus spp. bacteria, though well known as opportunistic
pathogens, in natural environments show more positive as-
pects of their existence. They may play a role of effective
and specialized plant-growth-promoting rhizobacteria
(PGRP) or bioremediators of hydrocarbons, pesticides, herbi-
cides, aromatic compounds, azo dyes, and heavy metals in
contaminated environments.

Lipase production is not typical of all Proteus species
(Table 1), but the rods in natural environments are able to
effectively degrade hydrocarbons, including oils, and to re-
move these hazardous substances efficiently and inexpensive-
ly. Kim et al. [65] reported on a P. vulgaris strain producing
extracellular alkaline lipase isolated from soil samples collect-
ed near a sewage disposal plant in South Korea. The lipase
was stable from pH 5 to 11 and had a maximum activity at pH
10. Lu et al. [77] isolated from soil in China a P. vulgaris strain
which produced alkaline non-position-specific lipase, whereas
Whangsuk et al. [153] found in a waste-sludge from beer
factory in Taiwan a Proteus sp. strain actively giving off
organic-solvent-tolerant lipase named LipA, which effectively
conversed palm oil into biodiesel.

The first report on a Proteus sp. strain which could be
useful as a sole degrader of oil hydrocarbons in soil was pre-
sented by Hernandez-Rivera et al. [57]. The strain may be
presumed to belong to P. vulgaris group due to indole produc-
tion and maltose fermentation abilities observed by the au-
thors (see Table 1). It was found in tropical soil containing
total petroleum hydrocarbons (TPHs) in the Tabasco region,
Mexico, highly contaminated by oil spills during 20 years of
pollution and was able to remove the superficial hydrocarbon
layer (the only carbon source) in the culture medium forming
a stable emulsion, most probably due to the production of
biosurfactants by the strain itself. The results were better than
in the medium containing urea (actively utilized by the
bacteria; see Table 1). Then, Ibrahim et al. [58] studying soil
samples collected from the rhizosphere of legumes planted on
crude-oil-contaminated soil in Kaduna, Nigeria, found P.
mirabilis and P. vulgaris strains as belonging to the most ac-
tive crude oil degraders among the several isolated species,
although not displaying biosurfactant production. Earlier, an-
other hydrocarbon degrading P. vulgaris strain had been iso-
lated from newly killed fish samples that were collected near
the point of spill in the Niger Delta, where most of the crude
oil in Nigeria is found. The isolated strain was able to utilize
Bonny light crude oil, diesel, and kerosene, generating organic
acids. The finding is promising for this region, where the oil
spills are a source of significant air, soil, and water pollution,
destroying biodiversity in the ecosystem [105]. Lutz et al. [78]
described a wild-type bacterial cocktail marketed as
Superbugs® and composed of bacteria belonging to genera
Proteus, Bacillus, Pseudomonas , Citrobacter, and

Enterobacter, as effective in the biodegradation of ethyl bio-
diesel made from palm triacylglycerols in Costa Rica.

There are several reports on Proteus spp. strains able to
biodegrade polyaromatic hydrocarbons (PAHs). The genus
Proteus dominated after E. coli in the group of 60 different
bacterial strains able to degrade hydrocarbons, classified as
hazardous waste in soil (benzene, toluene, octane, heptanes,
biphenyl, naphthalene, camphor, and phenanthrene), isolated
from soil samples near different petrol pumps of Karachi City,
Pakistan [139]. The genes responsible for the hydrocarbon
degradation ability were located either chromosomally or ex-
tra-chromosomally. The plasmid location is promising for bio-
remediation processes since the genes can be conjugated to
other microorganisms in polluted environments. Ceyhan [22]
reported on a P. vulgaris strain, isolated from biofilm in waste-
water of the petrochemical industry in Turkey, which was
effective in the degradation of pyrene (four-ring PAH) as a
sole source of carbon and energy. Moreover, the degradation
of this highly toxic and carcinogenic hydrocarbon resulted in
non-toxic and non-accumulating metabolites, proving a big
biodegradation potential of the strain.

Gasoline-contaminated soil from a gas station in Chihua-
hua, Mexico, was the habitat of a P. mirabilis strain degrading
with medium efficiency methyl tert-butyl ether (MTBE),
which is a toxic synthetic compound added to gasoline in a
high concentration of 15 %, as a blending component [90].
Next, a P. mirabilis strain was found, which was able to effi-
ciently degrade phenol as a sole carbon and energy source in
an oil-contaminated soil sample collected in India [88].
Sanuth et al. [128] identified a P. mirabilis strain which was
the most effective in ɛ-caprolactam degradation among the
bacteria isolated from soils collected from the major solid
waste dumpsites in Lagos State, Nigeria. ɛ-Caprolactam is a
monomer for nylon-6 production, found in wastewater efflu-
ents from nylon-producing factories, toxic to plants, animals,
and humans. The strain seems to be a potential candidate for
its bioremediation.

Bacteria from the genus Proteus solely or in consortia also
display an ability to neutralize different toxic herbicides and
pesticides that may cause heavy pollution in terrestrial and
aquatic ecosystems, especially when inappropriately used. P.
vulgaris from a mouse intestine was one of the first reported
bacteria solely able to reduce dichloro-diphenyl-
trichloroethane (DDT) pesticide to dichloro-diphenyl-
dichloroethane (DDD) [41]. Although DDD is also a toxic
pesticide, its production is the first step during the degradation
and mineralization of DDT, and it is utilized in further
transformations.

Correa and Steen [27] found a P. mirabilis strain to be the
fastest degrader of the propanil (a commonly used herbicide)
among the natural microflora inhabiting a pristine lake in
northeast Georgia, USA, followed by the bacteria belonging
to the genera Aeromonas, Aerobacter, and Acinetobacter.
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Proteus spp. bacteria isolated from the rhizosphere of rice
in West Bengal, India, used hexachlorocyclohexane (HCH)
pesticide [30] or phorate insecticide [31, 32] as a source of
carbon and energy, and the addition of these chemicals to soil
intensified the growth of bacteria. It is worth mentioning that
Proteus spp. were the only members of the family
Enterobacteriaceae isolated from these soil samples besides
typical soil bacteria, actinomycetes, and fungi. Another exam-
ple of autochthonous Proteus sp. strain, isolated from phorate-
contaminated soil in India and able to degrade this insecticide,
was described by Bano and Musarrat [11]. The strain exhibit-
ed also siderophore production, phosphate solubilizing capac-
ities, and strong antifungal effect on phytopathogen Fusarium
oxysporum, thus indicating the potential possibilities of its
exploitation as PGPR as well.

The presence of P. vulgaris and Proteus sp. strains in mi-
crobial consortia capable of pesticide degradation was detect-
ed in highly contaminated soils in Colombia [116]. From soil
samples exposed to different kinds of waste (including haz-
ardous ones), a microbial consortium was isolated composed
of ten strains, including P. vulgaris and Proteus sp. The con-
so r t ium was ab l e to deg rade two wide ly used
organophosphatic pesticides, chlorpyrifos and methyl parathi-
on, both in culture medium and in soil. A similar bacterial
consortium was found in highly contaminated soil samples
from Moravia, Medellin, an area that was used as a garbage
dump from 1974 to 1982 [115]. The consortium was able to
degrade methyl parathion and p-nitrophenol as the only source
of carbon and to decrease their toxicity in the medium and in
soil at different depths.

Azo dyes frequently used for textile dyeing and paper print-
ing and their metabolites present in effluents may be toxic,
mutagenic, or carcinogenic. Their physicochemical neutrali-
zation is costly, while biological degradation is cost-effective
and friendly to the environment, but difficult. For that reason,
identification of the effective Proteus spp. degraders is a
promising perspective for the environmental protection. Patil
et al. [112] have isolated a Proteus sp. strain (related to P.
vulgaris) from a waste site of the textile industry in India,
which was capable of degrading seven textile azo dyes, but
the most effective decolorization and detoxification of Navy
Blue Rx were observed due to the induction of laccase and
other enzymes. Chen et al. [25] isolated from sludge, obtained
from a dyeing wastewater treatment plant in Taiwan, a P.
mirabilis strain exhibiting a great capacity of efficient enzy-
matic reduction and decolorization associated with the
biosorption of deep red RED RBN as well as deep black
BK-5 azo dyes. Furthermore, Olukanni et al. [106] isolated
from municipal dump site soil near Lagos, Nigeria, a P.
mirabilis strain able to degrade a Reactive Blue 13 azo dye
to phyto-non-toxic products. However, its laccase (the azo-
dye-degrading oxidoreductase) activity was 70-fold lower
than that of another very effective strain, P. hauseri, isolated

from the Chiao-His hot spring in Taiwan [95, 157]. It effec-
tively decolorized several mono- and di-azo dyes [23, 24] and
was copper-tolerant as its laccase was a copper-induced en-
zyme with thermophilic and acidophilic properties [159].
However, the presence of copper in the environment reduced
the swarming activity of the bacterium [96]. The isolate is the
first reported non-pathogenic strain in the species P. hauseri,
coming from natural water habitat.

There are more reports on the high tolerance of Proteus
spp. bacteria to copper and other heavy metals. Ge et al.
[45], from the East Sea (China) contaminated by chromate,
isolated a Proteus sp. strain (related to P. penneri and P.
hauseri) which was highly tolerant to Cr (VI) and could sig-
nificantly reduce the amounts of this toxic metal in seawater.
Hassen et al. [55] in Tunisia isolated from wastewater many
Gram-negative bacteria with dominating Pseudomonas spp.
and P. mirabilis strains, highly tolerant especially to copper
and also to chromium, cobalt, cadmium, zinc, and mercury.
Also, a highly resistant to several heavy metals (including
mercury, copper, zinc, cadmium, cobalt, silver, and others) P.
mirabilis strain was identified in wastewater samples from
Casablanca City, Moroccco, also exhibiting resistance to
naphthalene, anthracene, and antibiotics [40]. Another strong-
ly copper resistant strain identified as P. vulgaris and isolated
from soil samples collected near the Panki power plant in
Kampur, India, was reported by Rani et al. [120]. The strain
used to inoculate pigeon pea (Cajanus cajan) seeds protected
the pea against the inhibitory effect of copper, reducing its
amounts both in soil and in the plant. Moreover, the bacterium
was able to produce siderophores providing pigeon pea with
iron and preventing chlorosis.

There are more examples of soil Proteus spp. strains ben-
eficial to plants (Table 3). Islam et al. [60] reported on a P.
mirabilis strain highly resistant to zinc, found in agricultural
field soil, irrigated with industrial effluents in Faisalabad City,
Pakistan. The strain was able to block zinc absorption by
maize (Zea mays) roots, reduce oxidative stress in the plant,
and increase its tolerance to zinc, promoting maize growth in
the presence of the heavy metal. Simultaneously, the bacteri-
um enhanced phytoremediation processes conducted by this
copper-resistant plant. Rau et al. [121] characterized a P.
mirabilis strain isolated from rhizosphere of wild grass
Saccharum ravennae colonizing fly ash dumps in Delhi, In-
dia. The strain displayed strong resistance to arsenic and was
medium resistant to copper, chromium, cobalt, cadmium, zinc,
mercury, nickel, and lead. Additionally, the strain produced
siderophores with great capacity and was an active phosphate
solubilizer, thus enhancing the growth of grass. Similarly, a
Proteus sp. strain from a rice field in Pakistan inoculated on
wheat seeds effectively solubilized rock phosphate composted
with poultry litter, stimulating the plant growth [14]. Yet,
rhizobacterial P. vulgaris strains, identified in acidic soil from
a tea (Camellia sinensis) plantation in India, expressed
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siderophore production and antifungal properties both in acid-
ic and in neutral pH conditions [12]. The strains successfully
protected three tested species of leguminous plants from the
pathogenic fungus Fusarium moniliformae; when the seeds
were bacterized during the sowing, they were able to colonize
roots and promote the growth of host plants. Lu et al. [76]
found in cow dung in China P. penneri strains which produced
volatile organic compounds killing within 1 h 98–100 % of
tested nematodes: soil Caenorhabditis elegans and plant-
pathogenicMeloidogyne incognita, thus expressing the possi-
bility of being used as a protecting plant biocontrol agent. Yu
and Lee [156] stated that indole production by the P. vulgaris
strain (Table 1) isolated from the rhizosphere of halophyte
glasswort (Salicornia herbacea L.) effectively promoted the
growth of Chinese cabbage seedling (Brassica campestris ssp.
pekinensis), while Bhattacharyya et al. [13] reported that the
same strain stimulated the growth of Arabidopsis thaliana (a
small flowering plant from the family Brassicacae) by indole
production influencing the auxin, cytokinin, and
brassinosteroid signaling pathways.

These promising results open wider possibilities of using
specialized Proteus spp. strains as bioremediators and PGPR.

Conclusion

Bacteria from the genus Proteus are well known as human
opportunistic pathogens and intestinal microorganisms indi-
cating fecal pollution of water or soil. Their presence in drink-
ing water poses a threat of infection. On the other hand, the
bacilli are believed to play an important role in removing
organic pollutants of animal origin, especially fecal ones, by
decomposing the dead organic matter in water or soil environ-
ments. Their proteolytic and ureolytic properties may place
the bacteria among the most efficient saprobes taking part in
the enrichment of manured soils in ammonia salts and there-
fore participating in the nitrogen cycle. However, the signifi-
cance of these microorganisms in the mineralization processes
of nitrogen-containing organic compounds is not obvious.
This aspect of their metabolism requires more research. It
would be reasonable to establish their exact contribution as
destruents to the circulation of matter in nature.

Proteus spp. strains are sometimes found to co-operate
with higher organisms, playing a role of animal and plant
symbionts. Their antagonistic or commensal relationships
with numerous animals have also been documented. Howev-
er, environments other than the human body are less recog-
nized as habitats of Proteus spp. rods. In the future, more
attention should be paid to the interdependences between
Proteus spp. and animals or plants coexisting with the bacteria
in the environment. Relatively little information is available
also about the mutual relations between Proteus spp. bacilli
and other bacteria in natural habitats. Establishing what kind

of relationships these are and which organisms benefit from
this system is the basis for determining the reasons why the
bacilli occur in a given ecosystem and the consequences of
their activity.

Nowadays, molecular techniques provide proper tools to
investigate the microorganisms in their natural habitats. The
differences in the biochemical features do not exclude the
strain from a genus as long as the similarities on the genome
level are big enough. It is important to employ molecular
techniques in the identification of Proteus spp. strains, espe-
cially those belonging to the new genomospecies, the bio-
chemical differentiation of which is impossible. Metagenomic
analysis of soil and water environments as well as of different
niches in human, animal, and plant organisms using proper
primer sequences may reveal the presence of Proteus spp.
strains in these habitats even if they exhibit atypical activities
and play unusual roles.

Proteus spp. bacteria often display exceptional metabolic
features, allowing them to adapt to various conditions and
reach distant niches in natural environments where they may
be recognized as autochthons. Although the genus is usually
not mentioned among PGPR or bioremediators, Proteus spp.
environmental strains possess the abilities of immobilization
of heavy metals, utilization of toxic pollutants, and plant
growth stimulation, as well as nematicidal and fungicidal
properties. Numerous examples suggest that the application
of these microorganisms may be an effective way of
protecting plants and groundwater. The biological treatment
of polluted natural environments is more efficient and cost-
effective than physicochemical methods and can be used in
large areas due to simple application and an ability to remove
pollution completely. Bioremediation could involve not only
the stimulation of the natural autochthonic Proteus spp. strains
but also introducing these microorganisms to the polluted
environment.

However, it is important to remember that the bacteria be-
longing to the genus Proteus are opportunistic human and
animal pathogens. It would be useful and interesting to com-
pare the features (especially virulence factors, serotypes, met-
abolic apparatus, and the antibiotic resistance) expressed by
Proteus spp. clinical isolates and by the strains existing in
animal, soil, and water ecosystems. Do environmental Proteus
spp. strains differ significantly from clinical ones? Do they
possess genes coding the factors of pathogenicity identified
in the strains isolated from patients? If so, do they express
these factors and how do they use them in non-pathogenic
conditions? What is the risk of transformation of a strain
which could be used in bioremediation and environmental
protection into a virulent one posing a threat to the animals
or humans inhabiting the area? Do the environmental strains
carry antibiotic resistance genes, which might lead to the
transfer of these genes into other microorganisms in the envi-
ronment? Answers to these questions could explain which
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factors contribute to and in what way they are important in
different lifestyles presented by Proteus spp. bacteria in vari-
ous environments.
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