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ABSTRACT Primary human immunodeficiency virus (HIV-1) envelope glycoprotein (Env) trimers [(gp120/gp41)3] typically
exist in a metastable closed conformation (state 1). Binding the CD4 receptor triggers Env to undergo extensive conformational
changes to mediate virus entry. We identified specific gp120 residues that restrain Env in state 1. Alteration of these restraining
residues destabilized state 1, allowing Env to populate a functional conformation (state 2) intermediate between state 1 and the
full CD4-bound state (state 3). Increased state 2 occupancy was associated with lower energy barriers between the states. State 2
was an obligate intermediate for all transitions between state 1 and state 3. State 2-enriched Envs required lower CD4 concentra-
tions to trigger virus entry and more efficiently infected cells expressing low levels of CD4. These Envs were resistant to several
broadly neutralizing antibodies and small-molecule inhibitors. Thus, state 2 is an Env conformation on the virus entry pathway;
sampling state 2 increases the adaptability of HIV-1 to different host cell receptor levels and immune environments. Our results
provide new insights into the conformational regulation of HIV-1 entry.

IMPORTANCE The envelope glycoproteins (Env) of HIV-1 mediate virus entry and are the sole targets of neutralizing antibodies.
Understanding the way that Env promotes HIV-1 entry can expedite drug and vaccine development. By destabilizing Env, we
found that it assumes an intermediate state that is functional and obligate for transitions to entry-competent conformations.
Increased sampling of this state enhances the ability of HIV-1 to infect cells that express low levels of the CD4 receptor and al-
lows the virus to evade neutralizing antibodies and small-molecule inhibitors. These findings provide new mechanistic insights
into the function and inhibition of HIV-1 Env and will contribute to ongoing therapeutic and prevention efforts to combat
HIV-1.
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The entry of human immunodeficiency virus (HIV-1) into host
cells is mediated by the viral envelope glycoprotein (Env)

trimer. HIV-1 Env is composed of three gp120 exterior subunits
noncovalently associated with three gp41 transmembrane sub-
units (1–3). Binding of gp120 to the CD4 receptor triggers the
transition of Env from a metastable, high-potential energy state to
downstream conformations. CD4-induced (CD4i) gp120 transi-
tions include a repositioning of the V1/V2 and V3 loops and for-
mation of the bridging sheet and coreceptor binding site (4–12).
The heptad repeat (HR1) coiled coil in the gp41 ectodomain is
also formed and exposed after CD4 binding (13–16). Subsequent
binding to the CCR5 or CXCR4 coreceptor promotes the forma-
tion of a stable gp41 six-helix bundle, composed of the HR1 and
HR2 heptad repeats, that mediates the fusion of the viral and tar-
get cell membranes (17–21).

The mature, unliganded Env of most primary clinical HIV-1

isolates assumes a “closed” conformation of the gp120 subunits at
the trimer apex (22–27). Here, we refer to the native “closed” Env
conformation as state 1. CD4 binding rearranges the gp120 V1/V2
and V3 loops at the trimer apex, thus “opening” the HIV-1 Env
trimer to form the prehairpin intermediate (22), referred to here
as state 3. Env transitions between state 1 and state 3 must be
tightly regulated to allow entry into cells with different levels of
receptor, while sequestering conserved Env elements from host
neutralizing antibodies (NAbs). HIV-1 strains differ in the pro-
pensity of their Envs to make these transitions and sample down-
stream conformations; this property contributes to different re-
quirements for target cell CD4 levels and different sensitivities to
host neutralizing antibodies, small-molecule entry inhibitors, and
incubation in the cold (28–37). Information on the entry-related
transitions of HIV-1 Env can be obtained by identifying and
studying functional conformational intermediates.
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Here, starting with the difficult-to-neutralize primary HIV-
1JR-FL, we identify key residues in the gp120 V1/V2 elements
that restrain Env movement from state 1 and thus regulate Env
transitions to downstream conformations. Alteration of these re-
straining residues resulted in extensive conformational changes,
generating entry-competent Envs that sample an intermediate
conformation (state 2) between state 1 and the full CD4-bound
state (state 3). We determined the relative free energies of these
conformations and demonstrated that changes in the restraining
residues lowered the activation barriers separating these states.
Env variants in state 1 and state 2 exhibited distinct patterns of
susceptibility to inhibition by ligands that preferentially recognize
particular Env conformations. Lastly, modulating the continuous
range of transitions between Env states allowed us to evaluate the
conformational preferences of broadly neutralizing antibodies
(bNAbs); we then used selective bNAbs to study the functional
conservation of a restraining gp120 V2 residue among HIV-1 sub-
types.

RESULTS
Entry-competent intermediate states of HIV-1 Env. We identi-
fied two groups of HIV-1 entry inhibitors and used them as chem-
ical probes to study Env conformation: (i) CD4-mimetic com-
pounds (CD4MCs) such as DMJ-II-121 and (ii) blockers of
conformational change such as BMS-806 and 18A (16, 37, 38).
CD4MCs and blockers of conformational change bind to different
sites on HIV-1 gp120 (Fig. 1A) (38, 39). We found that these two
groups of compounds exert opposing effects on structural rear-
rangements of Env (Fig. 1B). The CD4MC DMJ-II-121 induced
the formation/exposure of the 17b epitope (near the coreceptor
binding site of gp120 [40]) and the gp41 HR1 (recognized by the
C34-Ig protein [16]). In contrast, the blocker of conformational
change BMS-806 decreased 17b binding and blocked soluble CD4
(sCD4)-induced formation/exposure of gp41 HR1 (16). Thus,
CD4MCs such as DMJ-II-121 induce an Env conformation simi-
lar to that induced by CD4 and therefore exhibit greater potency
against Envs in the CD4-bound conformation (state 3). In con-
trast, blockers of conformational change such as BMS-806 and
18A demonstrate increased potency against Envs in state 1 (37).

We next used our chemical probes to identify specific amino
acid changes that alter the conformation of the functional Env
trimer on virions. On the basis of the observation that the HIV-1
gp120 V1/V2 and V3 regions contribute to contacts among the
gp120 protomers of the Env trimer (24–27), we hypothesized that
some V1/V2 changes might compromise the maintenance of state
1 and induce transitions to downstream conformations. By study-
ing a large panel of HIV-1JR-FL V1/V2 mutants, we identified a
subset of mutants that exhibited increased virus sensitivity to sol-
uble CD4 (sCD4) and to incubation in the cold; these two prop-
erties were previously shown to be associated with Envs that are
more prone to undergo conformational change (41) (see Ta-
ble S1 in the supplemental material). Measuring virus sensitivity
to our chemical probes revealed an inverse relationship between
the sensitivities of the V1/V2 mutants to the CD4MC DMJ-II-121
and the blocker of conformational change BMS-806 (Fig. 1C).
As the V1/V2 element is not directly involved in binding these
inhibitors (38, 39), the observed pattern of altered sensitivity likely
results from changes in Env conformation. The observed increase
in resistance to BMS-806, which prefers state 1, along with hyper-
sensitivity to the CD4MC DMJ-II-121, which preferentially rec-

ognizes the CD4-bound state, suggested a transition of these mu-
tants to downstream conformations. Consistent with such
conformational changes, the V1/V2 mutants exhibited increased
susceptibility to Env ligands recognizing downstream conforma-
tions (Fig. 1D; see also Table S1). These ligands included sCD4
and the following monoclonal antibodies (Mabs): 19b, directed
against the gp120 V3 loop; MAb 902090 and Fab 830A, directed
against a V2 �-barrel; and 17b, a CD4-induced (CD4i) MAb (see
Table S2). The V1/V2 mutants were not generally more sensitive
to the T20 peptide (Fig. 1D); therefore, unlike Envs in the full
CD4-bound state (32), the mutants do not spontaneously expose
the gp41 HR1 coiled coil. Thus, these mutants apparently sample
conformations that are distinct from state 1 and yet differ from the
full CD4-bound state (state 3).

Role of leucine 193 in maintaining state 1. Of the V1/V2 mu-
tants, L193A exhibited the greatest phenotypic differences from
wild-type (WT) Env with respect to virus inhibition by
conformation-sensitive Env ligands (Fig. 1C and D). The L193A
mutant was 75-fold more resistant to the blocker of conforma-
tional change BMS-806 than WT Env and was approximately 250-
fold more sensitive to the CD4MC DMJ-II-121. The L193A virus
was hypersensitive to neutralization by the 902090 and 830A
anti-V2 antibodies, the 19b anti-V3 antibody, and the 17b CD4i
antibody. Notably, the L193A change induced these specific con-
formational effects while maintaining productive infectivity as
well as efficient Env processing and syncytium-forming capacity
(see Table S1 in the supplemental material). The simultaneous
and substantial exposure of multiple elements in the L193A Env
suggested that Leu 193 may represent an amino acid residue that
maintains Env in state 1. To test this hypothesis, multiple amino
acid changes were introduced into Env residue 193 and their effect
was measured. We observed an inverse correlation between the
hydrophobic character of residue 193 (estimated according to
Kyte and Doolittle [42]) and susceptibility of the corresponding
mutant viruses to inhibition by ligands that recognize down-
stream Env conformations (Fig. 1E; see also Fig. S2 and S3). Non-
hydrophobic substitutions resulted in up to 100-fold increases in
virus sensitivity to sCD4 and a V2 MAb and in more than 1,000-
fold increases in sensitivity to a V3 and CD4i MAb; sensitivity to
the T20 peptide was not significantly different from that of the WT
virus (Fig. 1E to G). Thus, when residue 193 is not hydrophobic,
the maintenance of state 1 is compromised, allowing Env to sam-
ple an intermediate conformation that is distinct from, but shares
some antigenic features with, the CD4-bound conformation.

We next used single-molecule fluorescence resonance energy
transfer (smFRET) to investigate the conformational dynamics of
the WT, L193A, and L193R HIV-1JR-FL viruses. smFRET analysis
previously demonstrated that HIV-1 WT Env can sample at least
three conformations detectable with FRET probes in the V1 and
V4 variable regions of gp120 (43). Two conformations were de-
fined with high confidence: state 1 (low FRET) represents the un-
liganded Env conformation, and state 3 (intermediate FRET) rep-
resents the full CD4-bound conformation. The identity and
functional significance of the high-FRET state are currently un-
known. This state was hypothesized to represent either a CD4-
bound conformation or a previously uncharacterized and neces-
sary structural intermediate (43). We defined state 2 as this
high-FRET conformation and used the leucine 193 mutants to
investigate its nature. The WT HIV-1JR-FL Env primarily occupied
the “closed” conformation (state 1) and made infrequent transi-
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FIG 1 Specific amino acid residues in the gp120 V1/V2 region regulate HIV-1 Env conformational transitions. (A) The binding sites of the small-molecule
HIV-1 entry inhibitors used in this study are indicated by arrows on a ribbon structure of the gp120 core (PDB entry 1RZK). The gp120 core inner domain
(purple), outer domain (magenta), and bridging sheet (orange) are shown. The location of the inhibitor binding sites is based on available crystal structures (38,
39). The gp120 residues contacting CD4 (12) are colored in cyan. (B) Flow cytometric analysis of the effect of the CD4-mimetic compound (CD4MC)
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tions from this state (Fig. 2A). Incubation with sCD4 moderately
shifted some of the WT HIV-1JR-FL Env to downstream confor-
mations (Fig. 2B). Notably, transitions of WT Env from state 1 to
state 3 occurred exclusively through state 2, suggesting the poten-
tial functional importance of Env transitions through state 2.
Compared with the WT Env, the unliganded L193 mutants exhib-
ited a substantial shift in the occupancy of the conformational
states. The occupancy of state 1 was lowered and the occupancy of
state 2 was increased (with a smaller increase for state 3) for the
unliganded L193 Envs relative to the WT Env (Fig. 2A, C, and E).
Notably, the distribution of conformations of both L193 mutants
in their unliganded state was similar to that of the WT Env incu-
bated with sCD4. Transitions among the different conformations
of the unliganded L193A and L193R Envs were more frequent
than those detected for the WT Env, which was reflected in the
higher rate constants calculated for transitions between confor-
mational states of the L193 mutants (Fig. 2A, C, and E; see also
Fig. S4 and Table S3 in the supplemental material). The higher rate
constants indicate that the activation barriers separating the con-
formational states of the L193 mutants are lower than those of the
WT Env. The magnitude of the increase in transitions of the
L193A and L193R mutants was in agreement with their relative
sensitivities to ligands recognizing downstream Env conforma-
tions. The addition of sCD4 to the L193 mutants resulted in pro-
found transitions into downstream states, shifts that were signifi-
cantly greater than that observed for the WT Env incubated with
sCD4 (Fig. 2B, D, and F). CD4 binding to the L193A Env increased
the occupancy of state 3; CD4 binding to the L193R Env increased
the occupancies of both state 2 and state 3. As was observed for the
WT Env, transitions of the L193A and L193R Envs from state 1 to
state 3 occurred exclusively through state 2. Thus, alteration of the
hydrophobic Leu 193 decreases the energy barriers between state 1
and downstream states, increasing the propensity of the mutant
Env to sample state 2 and state 3, both spontaneously and after the
binding of CD4 (Fig. 2G). These results relate functional Env phe-
notypes to conformational states defined by smFRET and illus-
trate the relationship between viral phenotypes and thermody-
namic parameters. Because the Env L193 mutants retain the
ability to bind receptors and mediate membrane fusion, our data
support a model in which state 2 is a functional intermediate on
the virus entry pathway.

Enrichment of state 2 lowers the CD4 concentration re-
quired for HIV-1 entry. Changes in Leu 193 in the V1/V2 loop of
gp120 resulted in the highest increases in the sensitivities of the
resulting virus variants to ligands recognizing downstream con-

formations. The inferred increase in Env sampling of downstream
states is expected to enhance the ability of these HIV-1 variants to
infect cells with lower levels of CD4 (28, 29, 31, 32). To evaluate
the requirement of CD4 for infection, we incubated viruses dis-
playing the WT and L193A Envs with CD4-negative, CCR5-
expressing cells and measured the ability of different concentra-
tions of the CD4MC DMJ-II-121 or sCD4 to activate infection
(Fig. 3A). Neither virus efficiently infected the cells in the absence
of a CD4 mimetic (data not shown). The L193A mutant required
significantly less CD4MC or sCD4 to trigger virus entry than the
WT Env, confirming its enhanced propensity to transition into the
CD4-bound conformation.

As the ability to enter cells with low CD4 expression is one
requirement for macrophage tropism (34, 44–47), we asked if the
L193 mutants exhibited an increased ability to infect primary hu-
man macrophages compared with the wild-type virus. We gener-
ated wild-type and L193A and L193R mutant HIV-1JR-FL, normal-
ized the virus titers according to infectivity on TZMbl cells, and
infected human monocyte-derived macrophages. The ability of
the two state-2-enriched mutants to infect primary macrophages
was increased, on average, ~4-fold over that of the wild-type HIV-
1JR-FL (Fig. 3B and C). A similar phenotype was observed for a
recombinant HIV-1 with the L193A Env variant of HIV-1BG505, a
non-macrophage-tropic strain (Fig. 3D and E). These data relate
shifts in the energy landscapes of HIV-1 Env variants toward state
2 and state 3 to an increased ability of the virus to infect cells with
low levels of CD4. Additional requirements shaped by the cellular
and immunological environment ultimately determine HIV-1
macrophage tropism in vivo.

Conformational preferences of broadly neutralizing anti-
bodies. The ability to modulate the energy landscape of the HIV-
1JR-FL Env allowed us to evaluate the conformational preferences
of antibodies generated in humans during HIV-1 infection. We
examined the ability of polyclonal sera from two HIV-1-infected
individuals to neutralize the panel of Leu 193 mutants. In both
cases, the neutralization sensitivity of the mutants inversely cor-
related with the hydrophobicity of Leu 193 (Fig. 4A) (42). The
sensitivity of the virus panel to the polyclonal sera correlated with
the sensitivity to sCD4, 19b, 17b, and 902090 but not with the sensi-
tivity to T20 (see Fig. S2 in the supplemental material). Thus, most of
the neutralizing antibodies in these sera are directed against Env
epitopes that are better exposed in state 2 than in state 1.

Broadly neutralizing antibodies (bNAbs) are elicited in only a
minority of HIV-1-infected humans and after a long period of
infection (48). We used the HIV-1JR-FL Leu 193 mutant panel to

Figure Legend Continued

DMJ-II-121 (100 �M) and the BMS-806 blocker of conformational change (1 �M) on the conformation of the HIV-1JR-FL�CT Env expressed on the cell surface.
Structural rearrangements were measured using the CD4i 17b antibody and C34-Ig, which binds the gp41 HR1 region. (C) Inverse relationship between the
sensitivity of HIV-1JR-FL V1/V2 Env mutants to inhibition by a CD4MC (DMJ-II-121) and the sensitivity to a blocker of conformational change, BMS-806.
Spearman’s Rho coefficient and two-tailed P value are reported. (D) Normalized IC50s (IC50 mutant/IC50 WT) of inhibition by BMS-806 and DMJ-II-121 (from
panel C), sCD4, antibodies 902090, 830A, 17b, and 19b, and the T20 peptide. The WT Env is depicted by a filled symbol with no border, the L193A variant is
depicted by an open symbol, and Env variants with alterations in the putative binding site of the antibodies are marked with an asterisk. 902 � the 902090
antibody; DMJ � DMJ-II-121. (E) Relationship between the hydrophobicity of gp120 residue 193 and HIV-1 inhibition by conformation-sensitive Env ligands.
The hydrophobicity of substituted amino acids was assigned based on the work of Kyte and Doolittle (42). Spearman’s Rho coefficient and two-tailed P values
are reported for each analysis. (F) A heat map of the inhibition (on a logarithmic scale) of Env variants with the specified changes in residue L193 by the indicated
Env ligands. Amino acid substitutions, ranked according to hydrophobicity, are shown on the top of the heat map in single-letter code. Increased-sensitivity data
are indicated in green. (G) Correlations among the susceptibilities of the HIV-1 L193 mutant virus panel to inhibition by different conformation-sensitive Env
ligands were evaluated. Two-tailed P values are reported for each correlation, with green coloring indicating statistical significance (P � 0.05) and red coloring
a lack of statistical significance. sCD4, soluble CD4. Results shown are representative (B) or averages (C to F) of those obtained in two or three independent
experiments.
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evaluate bNAb selectivity for specific Env conformations. Three
different patterns of conformational selectivity among these anti-
bodies were identified. The first group included the CD4 binding
site (CD4-BS) and V2 quaternary bNAbs and showed a strict pref-
erence for state 1. The WT Env was efficiently inhibited by these
bNAbs; however, nonhydrophobic substitutions at residue 193
generated Env variants that were significantly more resistant to
neutralization by these bNAbs (Fig. 4B to D; see also Fig. S5 in the
supplemental material). In contrast, weakly neutralizing antibod-
ies directed against related sites, namely, F105 (against the CD4-
BS) and 830A (against the V2 �-barrel [49]), showed the opposite
preference, inhibiting only viruses with Envs that moved from
state 1 to downstream conformations. The preference of the

CD4-BS and V2 quaternary bNAbs for state 1 is consistent with
the occlusion or disruption of their respective epitopes by CD4
binding (37, 50, 51).

The second group of bNAbs included 35O22, which targets an
Env epitope in the gp120-gp41 interface (52), and 10-1074, which
targets a gp120 glycan-dependent V3 epitope (53). These bNAbs
showed no preference for a specific Env conformation and equiv-
alently neutralized viruses with Envs altered in gp120 residue 193
(Fig. 4E).

The third group of bNAbs included PGT151, which targets an
Env epitope in the gp120-gp41 interface (54), and three bNAbs
directed against the gp41 membrane-proximal external region
(MPER). All these bNAbs exhibited a trend favoring a state 2 con-

FIG 2 Single-molecule FRET analysis of the WT and leucine 193 HIV-1 Env variants. (A to F) Single-molecule fluorescence resonance energy transfer (smFRET)
probes were placed in the gp120 V1 and V4 loops of WT or L193 mutant HIV-1JR-FL Envs. FRET trajectories were compiled into population FRET histograms
and fitted to the Gaussian distributions associated with each conformational state, according to a hidden Markov model (43). The percentages of the population
that occupied each state and the numbers of molecules analyzed are shown and represent averages of results of two independent experiments. Transition density
plots (TDPs) are shown on the right. Note that the densities for the transitions between state 1 and state 2 and between state 2 and state 3 were readily detectable
in the TDPs, whereas the densities for the transitions between state 1 and state 3 were not evident. This suggests that transitions between state 1 and state 3 occur
through state 2. The results for the unliganded Envs (A, C, and E) and after incubation of the Envs with D1D2 sCD4 (B, D, and F) are shown. (G) The relative free
energies of states 1, 2, and 3 for the unliganded (blue) and sCD4-bound (red) Envs. The placement of the energy diagrams for each Env variant on the absolute
G0 scale is arbitrary. Note the similarity in the energy landscape of the unliganded L193 Env and the sCD4-bound WT Env proteins. The forward rate constants
(1/s) are indicated adjacent to the arrows at each transition point.

FIG 3 Effect of changes in Env on CD4 dependence and infectivity of monocyte-derived macrophages (MDMs). (A) Recombinant viruses carrying the specified
HIV-1JR-FL Env were incubated with CD4-negative, CCR5-expressing Cf2Th cells in the presence of CD4MC DMJ-II-121 or sCD4 at the indicated concentra-
tions. The percentage of maximal infection for each virus variant is reported. Maximal (max) infection levels after DMJ-II-121 addition were 728,752 and 237,686
relative luciferase units (RLU) for viruses with the WT and L193A Envs, respectively. (B and C) Infection of MDMs by WT HIV-1JR-FL and L193 mutant viruses
was measured as described in Materials and Methods. (D) Infection of MDMs by HIV-1BG505 and the HIV-1BG505 L193A viruses. (E) Infection of MDMs versus
HeLa JC.53 cells, which express high levels of CD4 and CCR5 (61), by HIV-1BG505 and the HIV-1BG505 L193A viruses. Results shown are averages (A and C) or
representative (B, D, and E) of those obtained in 2 to 5 independent experiments.
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FIG 4 Neutralization of HIV-1 variants differing in conformational state by human antibodies elicited during infection. (A) Recombinant viruses with Envs
containing substitutions in residue 193 were tested for sensitivity to neutralization by antibodies. The relationship between the hydrophobicity of residue 193 and
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formation, but only PGT151 and 4E10 antibodies showed a statis-
tically significant preference (Fig. 4E). This observation is consis-
tent with previous suggestions that some MPER epitopes on gp41
are more exposed after CD4 binding (55, 56). Overall, we found
that many naturally elicited antibodies, including several bNAbs,
exhibit selectivity for specific Env conformations (see Table S4 in
the supplemental material).

We next used the bNAbs with high conformational selectivity
to study the effects of the L193A change in the gp120 Env of other
HIV-1 strains. The L193A change in HIV-1 strains from clades A,
B, and C led to phenotypes consistent with those expected for state
2 or 3 (Fig. 4F). Ligands preferring downstream Env conforma-
tions (sCD4 and 4E10) inhibited the L193A viruses more effec-
tively than the related WT viruses. Conversely, ligands preferring
state 1 (PG9 and VRC03) more potently inhibited the WT strains.
Thus, Env residue 193 maintains Envs from different HIV-1 clades
in state 1, countering transitions to downstream conformations.
The high degree of conservation (98%) of leucine at this position
among all HIV-1 strains is consistent with its key role in maintain-
ing the integrity of state 1.

DISCUSSION

Our report provides new insights into the relationship between
the Env conformational landscape, virus entry requirements, and
HIV-1 susceptibility to inhibitors and antibodies. Changes in spe-
cific gp120 V1/V2 residues resulted in increased resistance to
BMS-806, a blocker of conformational change, and increased sen-
sitivity to sCD4, CD4MCs, and CD4i, V2, and V3 antibodies. Sig-
nificant increases in sensitivity to T20, reflecting formation/expo-
sure of the gp41 HR1 coiled coil, were not observed for most of
these mutants. Moreover, the mutants remained CD4 dependent.
Thus, these mutants sample a set of related entry-compatible con-
formations that are intermediate between state 1 and the full CD4-
bound state (state 3). smFRET analysis revealed that these Env
mutants are enriched in the occupancy of state 2, thus linking this
obligate intermediate state to phenotypically characterized, func-
tional Env conformations on the HIV-1 entry pathway.

The conformational states occupied by the functional HIV-1
Env trimer depend upon two related parameters: (i) the height
of the activation barriers separating the states, which deter-
mines the rates of transitions between the states, and (ii) the
relative free energies of the states, which dictate the occupancy of
each state at equilibrium. The major fraction of primary HIV-1
Envs resides in state 1, with transitions from this metastable state
constrained by the high activation barriers separating state 1 and
state 2 (Fig. 5). Under certain circumstances, these high activation
barriers may allow Env-receptor engagement or antibody binding
to state 1 before equilibrium among the available conformations is

achieved. Indeed, antibodies that potently neutralize primary
HIV-1 isolates exhibit high rates of binding to Env trimers in state
1 (41, 57, 58). The Env energy landscape changes upon CD4 bind-
ing and upon alteration of specific conformation-restraining res-
idues in gp120 (Fig. 5). In both cases, the activation barriers and
the differences in free energy between state 1 and downstream
conformations are lowered, increasing the propensity for the
CD4-bound and mutant HIV-1 Envs to proceed along the entry
pathway. Lowered activation barriers allow more transitions be-
tween states, and the smaller differences between the free energies
of the states result in an increase in the occupancy of state 2 relative
to that of state 1. Of note, multiple different Env residue changes
resulted in qualitatively similar viral phenotypes; this observation
favors a model in which changes in restraining Env residues de-
stabilize state 1, allowing Env to proceed to state 2. Some of the
Env changes may have fortuitously stabilized state 2 as well. State
2 encompasses a set of related conformations that reside in a local
energy well. Previous studies suggested that the HIV-1 gp120 core
has a propensity to sample the CD4-bound state when variable
loop-mediated restraints are removed (59). In a similar manner,
the more subtle losses of key molecular contacts resulting from
single-residue changes in the gp120 trimer association domain
release Env to assume one or more intermediate states. Impor-
tantly, Envs in state 2 retain a high potential energy, which likely is
required for Env function; however, due to the low activation
barrier between states 2 and 3, Envs in state 2 are more sensitive to
triggering by ligands, including CD4 itself, that drive Env to the
CD4-bound state. Destabilization of the ground state of a typical
protein is expected to result in a decrease in function. In contrast,
destabilization of state 1 creates increased opportunities for
HIV-1 Env to sample downstream functional conformations.
Smaller activation barriers and more-favorable free energy differ-
ences between state 1 and state 2 should allow a higher occupancy
of Env protomers by CD4, lowering CD4 requirements for pro-
ductive infection. CD4-independent HIV-1 may move even fur-
ther along the entry pathway than the L193 mutants.

Alteration of several gp120 restraining residues, some of which
exhibit variability in natural HIV-1 strains, can influence virus
susceptibility to conformation-sensitive ligands. Hypersensitivity
of the L193 Env mutants to these ligands reflects an increased
sampling of state 2. We hypothesize that the observed variation in
sensitivity of natural HIV-1 strains to conformation-sensitive li-
gands (32, 41, 60) results from altered activation barriers between
state 1 and downstream conformations, either as a result of desta-
bilization of state 1 or by changes more specific for the CD4 acti-
vation process. Viruses may thus achieve a balance between resis-

Figure Legend Continued

sensitivity to neutralization by polyclonal sera (PS) from two HIV-1-infected individuals is shown. (B) Neutralization of WT and L193R HIV-1JR-FL by two
different types of CD4-BS antibodies: the bNAb VRC03 and the weakly neutralizing F105 antibody. (C) Relationship between the hydrophobicity of Env residue
193 and HIV-1JR-FL sensitivity to neutralization by four CD4-BS antibodies: three bNAbs (3BNC117, VRC01, and VRC03) and one weakly neutralizing antibody,
F105. (D) Sensitivity of viruses with the indicated Env variants to neutralization by the PG9 antibody. The Env variants tested have changes distant from the
defined V1/V2 binding site of the PG9 antibody (62). All these variants have, in addition, the E168K-plus-N188A changes that are required for the binding of PG9
to the HIV-1JR-FL Env (51). (E) The relationship between the hydrophobicity of Env residue 193 and HIV-1JR-FL sensitivity to neutralization by bNAbs directed
against gp120-gp41 hybrid epitopes (35O22 and PGT151), a V3 glycan-dependent epitope (10-1074), and gp41 MPER epitopes (10E8, 7H6, and 4E10) is shown.
(A, C, and E) Spearman’s Rho coefficient and two-tailed P values are shown. (F) Conformation-selective bNAbs and sCD4 were used to test the sensitivity of the
WT and the L193A variant of HIV-1 strains BG505 (clade A), JR-FL (clade B), and ZM53M.PB12 (clade C). For PG9 neutralization, the E168K � N188A mutant
of HIV-1JR-FL was used. Reported IC50 units are nanomolar (nM) for sCD4 and micrograms per milliliter (�g/ml) for the bNAbs. Data shown are averages of
results obtained in two or three independent experiments.
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tance to neutralization by host antibodies and the level of target
cell CD4 required to trigger virus entry.

MATERIALS AND METHODS
Detailed descriptions of the methods used are provided in Text S1 in the
supplemental material.

Viral infection assay. A single-round infection assay was performed in
96-well plates by adding to each well a test compound or an antibody
followed by supernatant containing a specific Env-pseudotyped virus
(4 ng of p24) and then Cf2Th-CD4/CCR5 target cells. The activity of
firefly luciferase, which was used as a reporter protein in the system, was
measured after 48 h of incubation at 37°C. Values corresponding to 50%
infectivity concentrations (IC50s) were calculated by fitting the data to the
four-parameter (logistic) equation (37).

Single-molecule fluorescence resonance energy transfer. Analysis of
the conformational dynamics of HIV-1 Env was done after enzymatic
labeling of the V1 and V4 loops on native HIV-1 virions with Cy3 and Cy5
fluorophores, respectively (43).

Flow cytometry. Flow cytometric analysis was performed by incubat-
ing transfected 293T cells with various concentrations of a test compound
or an antibody. Binding was detected with allophycocyanin-conjugated
anti-human antibody and/or fluorescein isothiocyanate-conjugated anti-
CD4 antibody and analyzed with a BD FACSCanto II flow cytometer (BD
Biosciences).

SUPPLEMENTAL MATERIAL
Supplemental material for this article may be found at http://mbio.asm.org/
lookup/suppl/doi:10.1128/mBio.01598-16/-/DCSupplemental.

Text S1, DOCX file, 0.1 MB.
Figure S1, DOC file, 0.1 MB.
Figure S2, DOC file, 0.2 MB.
Figure S3, DOC file, 0.3 MB.
Figure S4, DOC file, 0.6 MB.
Figure S5, DOC file, 0.2 MB.
Table S1, DOC file, 0.1 MB.
Table S2, DOC file, 0.1 MB.

Table S3, DOC file, 0.1 MB.
Table S4, DOC file, 0.1 MB.
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