
1Scientific Reports | 6:36004 | DOI: 10.1038/srep36004

www.nature.com/scientificreports

Integrated presentation of 
ecological risk from multiple 
stressors
Benoit Goussen1,2, Oliver R. Price2, Cecilie Rendal2 & Roman Ashauer1

Current environmental risk assessments (ERA) do not account explicitly for ecological factors (e.g. 
species composition, temperature or food availability) and multiple stressors. Assessing mixtures 
of chemical and ecological stressors is needed as well as accounting for variability in environmental 
conditions and uncertainty of data and models. Here we propose a novel probabilistic ERA framework 
to overcome these limitations, which focusses on visualising assessment outcomes by construct-
ing and interpreting prevalence plots as a quantitative prediction of risk. Key components include 
environmental scenarios that integrate exposure and ecology, and ecological modelling of relevant 
endpoints to assess the effect of a combination of stressors. Our illustrative results demonstrate the 
importance of regional differences in environmental conditions and the confounding interactions of 
stressors. Using this framework and prevalence plots provides a risk-based approach that combines risk 
assessment and risk management in a meaningful way and presents a truly mechanistic alternative to 
the threshold approach. Even whilst research continues to improve the underlying models and data, 
regulators and decision makers can already use the framework and prevalence plots. The integration of 
multiple stressors, environmental conditions and variability makes ERA more relevant and realistic.

A challenge in current environmental risk assessment (ERA) practice is accounting explicitly for multiple stress-
ors, ecological realism, and abiotic factors that vary accross different geographies. It is widely recognised that 
there is a need to consider how ecological realism can be best incorporated into prospective environmental risk 
assessment of chemicals, as there is a need to account for variability and uncertainty in a useful, explicit and 
transparent manner1–3. While these complexities are currently covered by assessment factors, next generation risk 
assessments have the potential to explicitly account for complex interactions based on our growing understanding 
of the chemical, biochemical, and ecological interactions that govern adverse effects. Chemical legislation con-
tinues to evolve and develop across the globe and the scientific community is calling on ERAs to be tailored to 
geographical needs and thus increase our confidence in our ability to protect local biodiversity and nature4–6. A 
step toward capturing more ecology in ERAs of chemicals is the use of environmental scenarios that represent key 
differences in ecology (e.g. species composition, food availability, predation, parasitism) and the physical/habitat 
differences (e.g. hydrology, temperature)7,8. The incorporation of environmental scenarios into ERA will enable 
meaningful interpretation and extrapolation to different geographical regions.

Another driver behind the call for more ecological realism is the acknowledgement that organisms do not 
live in single-stress situations. Rather they are constantly exposed to a series of different stressors, both chemical 
and non-chemical. Organisms and populations can respond to stress using a wide range of mechanisms from a 
behavioural response like a change of resting site by ectotherms according to the temperature stress, an acclima-
tion response involving changes in enzymatic activities allowing a complete or partial recovery (re-establishment 
of the homeostasis), or even a genetic adaptation by natural selection of genetic variants presenting a higher 
metabolic efficiency9. Over the past 15 years, several studies have attempted to assess the effects of mixtures of 
chemicals10–14, mixtures of ecological factors15,16 or, mixtures of chemicals and ecological factors17–19 on organ-
isms and populations. These studies indicate that the prediction of the environmental effects of multiple stressors 
is a challenge that is beginning to be addressed by the scientific community. However, little effort has yet been 
invested in the communication of these often very complex results in an integrated and meaningful way that is 
easy for risk assessors to understand and interpret.
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Probabilistic approaches have been suggested as a way to account for spatial, temporal, and environmen-
tal variability and to integrate multiple stressors into more ecologically relevant ERA20–23. Plots based on these 
approaches can present ecotoxicological data, account for ecologically relevant factors (e.g. temperature, food 
availability, predation, etc), and incorporate chemical exposure data on a spatial scale. Essentially such plots can 
help address two related questions: “How strong is the ecological effect?” and “In how many locations will we see 
the effect?” Our aim is to present an integrated approach to communicate results of ERA whilst accounting for 
variability in ecological and environmental factors. This approach enables an integrated representation of multi-
ple stressors (e.g. chemical stress, temperature stress, and food limitation) on a single relevant figure. The output 
of such an analysis can support risk management decisions by assessing the prevalence (e.g. the proportion of 
freshwater habitats that are affected) and the magnitude of the impact (e.g. impact on populations of single species 
or even, in the long-term, loss of biodiversity) to allow decision makers to assess the threshold for acceptance.

Integration of Multiple Stressors
Risk is the integrated assessment of likelihood and severity of an undesired event. In ERA of chemicals, the 
undesired event depends on the chemical and risk assessment scenario, and is usually a detrimental effect on 
organisms, populations or ecosystems. The effect not only depends on the chemical’s toxicity and concentration 
at the biological target site, but also on the characteristics of the organism, population or ecosystem of concern. 
The magnitude and frequency of the effect will also be sensitive to additional environmental factors and stressors 
such as temperature, food availability, predation or habitat loss18,24,25. In addition to this complexity, exposure, 
biological traits, environmental factors and stressors all vary in space and time. This variability, combined with 
the uncertainty associated with the quantification of each of the above, result in the probability of an undesired 
effect. Methods to integrate different levels of uncertainty and variability in probabilistic risk assessment exist26–29. 
However, a major challenge is the integration of multiple environmental factors, stressors, and stress responses.

As an initial step, it is necessary to develop environmental scenarios with defined input variables and param-
eters that are a qualitative and quantitative description of the relevant environment for the ERA30. According 
to Rico et al.7 “unified” environmental scenarios consist of a combination of both biotic and abiotic parameters 
required to characterise direct and indirect exposure, effects, and recovery of species, therefore integrating both 
ecological scenarios and exposure scenarios. The concept of exposure scenarios has been integrated in prospec-
tive ERAs for more than a decade in the EU31 and probabilistic exposure assessment through the use of parameter 
distributions has been used as a part of chemical risk assessment for more than 20 years7,20–23,32. Despite this, 
to our knowledge, so far no regulatory submissions have actually used probabilistic approaches with EUSES 
(European Union System for the Evaluation of Substances)21,22. An exposure scenario will predict chemical fate 
on both spatial and temporal scales by integrating information on chemical use, physical-chemical properties, 
abiotic factors impacting the exposure, anthropogenic practices, and landscape configuration7,31,33.

Conversely, the concept of ecological scenarios is not yet well defined7,8. Ecological scenarios should include 
information on ecosystem structure, intra and inter-species ecological interactions, relevant population level 
traits, exposure susceptibility, as well as abiotic characteristics that may influence the species responses to stress-
ors, landscape configuration, ecological stressors and spatial and temporal scale7.

At which level of biological organization should we integrate? How can we calculate the combined response 
of a population or community to both a toxicant and a variety of environmental factors and stressors? The organ-
ismal response to toxicants clearly depends on environmental factors and stressors, hence it appears obvious 
to integrate at this level of organization. Furthermore, organism responses can be measured in the laboratory. 
Therefore we model organism responses and then use the organism level model as a building block in population 
models to extrapolate to higher levels of organization. Extrapolations to the population level of organisation has 
already been developed and applied34–36 but further work is still needed to extrapolate to higher level of organisa-
tion (e.g. community level)37,38. The organism level model needs to simulate life-history parameters such as sur-
vival, growth and reproduction because these determine population dynamics. As growth and reproduction are 
driven by an organisms’ energy balance, Dynamic Energy Budget models are particularly well suited to integrate 
toxicant and environmental stressors39–42.

Theory and Method
The results of such an integrated analysis will inevitably yield complex and multi-scaled results. A remaining chal-
lenge is to graphically depict the results in a way that is simple enough to understand, yet that retains enough of 
the complexity to make an informed decision. In current ERAs, assessors usually compare an exposure level to a 
no-effect level. In Europe, the Predicted Environmental Concentration/Predicted No-Effect Concentration (PEC/
PNEC) ratio is often used. The PEC is often derived from mechanistic fate models and can usually be tailored for 
local environments. The PNEC is typically derived via the application of an assessment (or uncertainty) factor to 
the most sensitive species or to a species sensitivity distribution and therefore, does not account for environmen-
tal variability. It is also important to note that the usual PEC/PNEC ratio is an indication of an exceeded threshold 
and not a quantification of a risk. The value of this ratio does not explicitly account for uncertainties or variabili-
ties and tells us very little about the nature or level of effect and the likelihood of an undesired event. Further, the 
relationship between the PEC/PNEC ratio and the level of effect is unknown43,44.

The method presented here has the potential to overcome the limitations associated with the PEC/PNEC ratio 
and similar methods as it is focused on a quantitative measure of effects and it enables the uncertainty and varia-
bility in effects and exposure to be quantified and could, ultimately, serve as a replacement. Prevalence plots pres-
ent an endpoint or an effect size as a function of its cumulative prevalence (Fig. 1). They (i) provide an estimate 
of risk by using more integrated biological endpoints, (ii) bring greater ecological relevance to risk assessments, 
and (iii) aid more transparent risk communication by using relevant effect size (e.g. assessor-defined reduc-
tion in population biomass) instead of a significant statistical effect (e.g. difference in means of two populations 
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associated with p-values). Prevalence plots can either use “raw” data to represent the effects of the stressor on an 
endpoint or data scaled by baseline condition to represent the relative impact of the stressor (effect size). Such a 
plot enables a rapid and meaningful understanding of the effects of stressors and incorporates relevant ecological 
factors. The endpoints and effect sizes can be tailored depending on one’s needs from rather basic ones such as a 
brood-size or decrease in population growth rate to more elaborate metrics such as a population biomass or dif-
ference in a biodiversity indicator, or even a really complex one such as a score representing a population or eco-
system structure (e.g. Ecological Integrity Assessment45,46). Likewise, the prevalence axis can be drawn according 
to one’s needs. It can indeed represent various scales of study such as the prevalence of an effect size in a portion of 
a freshwater habitat or the prevalence of an effect size in river basins within a region. This type of plot could there-
fore be used by various communities such as a risk assessor interested in the effect of chemicals discharged on 
the whole ecosystem of a river or an academic assessing the effect of pollution on a particular species worldwide.

The Ecological Simulation Model.  To produce a conceptual working example of the prevalence plot, we 
simulated the response of a population of Daphnia magna exposed to stressors using a modified version of the 
DEB-IBM (Dynamic Energy Budget model coupled with an Individual Based Model) published by Martin et al.47 
to represent the effect size. DEB theory48 is based on a mathematical description of the uptake and use of energy 
within an organism. Energy allocation can be affected by chemicals acting via various physiological modes of 
action (pMoA)49 or by environmental parameters such as temperature or food availability which can affect all 
the energy fluxes in an organism48 (Table 1). The DEB model used in this study is a simplified standard version 
but it is readily able to relate a stressor level to physiological effects, more complex implementations can handle 
more subtle effects such as a receptor-mediated effect [ref. 48, see p. 244]. An IBM is used to translate the changes 
in growth, reproduction, and survival to population endpoints pertinent to support risk assessment such as the 
population biomass or abundance or the population structure34,50.

We demonstrate the integration of multiple stressors by varying three conditions in the environment, namely 
food availability, temperature, and degree of chemical stress. To combine their effects, we modified the DEB 
part of the DEB-IBM model to account for variability in temperature by adjusting DEB rates according to an 
Arrhenius relationship
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with k1 the initial value of the parameter, T the actual temperature (K), Tref the reference temperature (K), and TA 
the Arrhenius temperature (K) [ref. 48, see p. 17]. The DEB-IBM model already accounts for food availability47 
and provides an implementation of equations for modelling chemical stress via different pMoAs41. We selected 
pMoA maintenance (i.e. increase of maintenance costs) as our example stressor.

Figure 1.  Prevalence plots. The prevalence plot present an endpoint (e.g. brood-size, population biomass; see 
Fig. 3) or an effect size (e.g. loss of biomass, index relative to the population structure; see Fig. 4) as a function 
of a cumulative prevalence for this effect (e.g. proportion of a river, hydrogeographic basin) for a selected stress 
level (e.g. chemical stress, temperature stress). The map was created using GIMP 2.8.14 (www.gimp.org).

http://www.gimp.org
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For this exercise, we defined our simulation scenarios with a minimal level of complexity, only considering 
variations in temperature, food availability, and chemical stress. To illustrate the impact of multiple stressors 
we chose to simulate the D. magna population in two scenarios – one within the temperature tolerance range 
(Temperate scenario), and another approaching and exceeding the temperature tolerance (Tropical scenario). 
While not ecologically realistic, this artificial example provides a clear illustrative example of how a chemical 
stressor can impact the overall performance of populations that are already under pressure from other unrelated 
stressors. For simplicity, the scenarios are identical with exception of the temperature distribution.

The temperature distributions were based on the temperature recorded in the river Thames from 1974 
to 2005 (from 2.0 °C to 26.5 °C) for the Temperate scenario and from the river Brahmaputra from 1979 to 
1995 (from 19.6 °C to 34.0 °C) for the Tropical scenario55. The amount of food available in the two scenarios 
is driven by an arbitrary uniform distribution of the resource dilution rate implemented in the DEB-IBM we 
used47 (from 0.005 to 0.1 by 0.005 increments). To represent chemical exposure and impact on a test species, 
we applied chemical stress levels ranging from 0 to 1.5 in 0.1 increments. This corresponds to an expected 
reduction of the reproduction outputs compared to the control of respectively 0% to 95% in the OECD  
Daphnia magna reproduction test (assuming ad libitum food at 20 °C) [ref. 47, see SI]. In this illustrative exam-
ple we have used an arbitrary stress level as described above. In practice, such stress levels can be derived from 
the predicted environmental concentrations in complex exposure models such as the ScenAT56. For further 
information on extrapolating from an external concentration to the chemical stress level, one can refer to Jager 
and Zimmer 201241.

The DEB-IBM simulation allowed the D. magna population to reach steady-state over the first 150 days of 
the simulation at which point a constant level of chemical stress was applied until the end of the simulation at 
600 days. Outputs were recorded between day 300 and day 600. This allowed sufficient time for the model to 
reach its new steady-state while avoiding the recording of transient dynamics47. Monte-Carlo simulations were 
used to simulate the D. magna population at different combinations of food availability, temperature, and chem-
ical stress level. Each combination consisted of one constant value of food availability, of temperature, and of 
chemical stress. Thus the simulations do not account for seasonal or other temporal effects. Each combination 
was simulated three times whilst sampling DEB model parameters to account for inter-individual variability 
(See Supporting Information). The parameters used for the DEB-IBM simulation are presented in Table S1. It 
is important to note that we did not account for correlations that may exist between the temperature level and 
the food availability in these conceptual environmental scenarios. Further, our choice to assess the system at 
steady-state is appropriate for some questions, but may not be suitable for others where the interest might be in 
system resilience or structure.

Visualising the Model Output in Prevalence Plots.  As an endpoint for our analysis we choose the 
population biomass calculated as the average sum of the adult individuals’ cubic length over 300 days47 
relative to the water body volume simulated. In the prevalence plot, an endpoint can be based on the raw 
value compared to a baseline condition or as an effect size, thus relative to the baseline condition, using for 
our case study:

Environmental factor DEB fluxes impacted Relationship Reference

 Predation Indirect effect: assimilation 
and/or reproduction

Indirect effect: likely to be reduction of assimilation and/or direct effect on 
reproduction triggered by predator cues Based on16,51,52,53

Parasitism Variable Highly dependent on the parasite and the species Based on18,54

Resources competition Assimilation Decrease of the assimilation fluxes (likely to be due to a reduction of the 
resources availability)

Temperature All rates ( F{ }m , p{ }Am , ν , 
p[ ]M , p{ }T , k j)
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Oxygen deficit All rates Could be accounted for as a specific substrate with its own sets of parameters 
(which can be partly identical to the parameters of the other substrates)

Toxic compound Depending on the pMoA* Impact on energetic fluxes depending on pMoA 41

Other ecological stress Variable Depends on the behaviour modification

Table 1.   Examples of integration rules. Illustrations of the possible impacts of environmental parameters on 
the energy fluxes of the Dynamic Energy Budget theory. *Five physiological modes of action (pMoA) are 
commonly described in the DEB literature, namely a decrease of the assimilation of energy from food, an 
increase of the maintenance costs, an increase of the cost to create an unit of structure (cost for growth), an 
increase of the cost for creating an egg, or an hazard during the oogenesis process41. With F{ }m  the specific 
searching rate, k j the maturity maintenance rate coefficient, p{ }Am  the surface-area-specific maximum 
assimilation rate, p[ ]M  the specific volume-linked somatic maintenance rate, p{ }T  the specific surface-area-
linked somatic maintenance rate, p{ }Xm  the surface specific maximum ingestion rate, L the structural length of 
the individual, ν  the energy conductance, X the food density, K the half-saturation coefficient, k1 the initial value 
of the parameter, T the actual temperature, Tref the reference temperature, and TA the Arrhenius temperature.
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  =
−reduction of biomass [i] biomass with stress [i] biomass without stress [i]

biomass without stress [i] (5)

where “i” is the ith combination of environmental parameters. The prevalence plots are based on the frequency 
distribution of the population biomass for each stress level. This frequency distribution can represent the raw 
(Fig. 2) or the effect-size data (Fig. S1). The prevalence plots are then constructed by plotting the increasing 
cumulative sum of the frequency distribution for each range of stress level and for either the raw or the effect-size 
data. Plotting the cumulative probability on the y-axis is common in probabilistic risk assessment21 and environ-
mental fate studies57, hence we followed the same convention.

In our study, the cumulative prevalence represents the proportion of all water bodies in a specific location 
in the Temperate or Tropical scenario having a certain D. magna biomass or less. Because our interest is in the 
contribution of chemical stress to the overall biomass, each plotted line represents a given level of chemical stress. 
To compare different stressor levels we plot multiple lines. If the question asked concerns one of the other factors, 
here food availability or temperature, one can plot a line for each level of food availability or each temperature 
(Fig. 1). In practice it is best to define ranges for the factor being plotted to reduce the number of plotted lines to 
a manageable number. Thus, we decided to plot the contribution of five ranges of chemical stress (no-chemical 0, 
low 0.1–0.2, medium low 0.3–0.7, medium high 0.8–1.2, and high 1.3–1.5).

At the Helm: Decision Making Using Prevalence Plots
In contrast to current ERA, prevalence plots (i) provide an estimate of risk by using more integrated biological 
endpoints, (ii) bring greater ecological relevance to risk assessments, and (iii) aid more transparent risk commu-
nication. We illustrate these three points by constructing prevalence plots for the example of population biomass 
of D. magna exposed to a hypothetical stressor in two illustrative scenarios: Temperate and Tropical.

Figure 2.  Raw prevalence histogram. Prevalence distribution of the population biomass (mm3 L−1) for the 
Temperate (dark grey) and the Tropical (light grey) conceptual scenarios for the five ranges of chemical stress 
level. The arrows in the “Medium high” and “High” panels denote a prevalence of 76% and 100% respectively.
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The raw prevalence distribution (Fig. 2) is the first step before building the raw cumulative prevalence plot 
(Fig. 3). Figure 2 demonstrates that even without any chemical stress, i.e. the baseline conditions, a difference in 
the distribution of the population biomasses exists between the Temperate and the Tropical scenarios. The raw 
prevalence plot (Fig. 3) shows that the baseline population biomass is at maximum 5.50 mm3 L−1 and 2.37 mm3 L−1  
at the 50th percentile for the Temperate and Tropical scenarios respectively. This denotes the important effect of 
the environmental scenario on the baseline, or natural, state of ecological endpoints, and therefore, the necessity 
to carefully build the scenarios. In our illustrative case, the difference between the two scenarios is the tempera-
ture distribution, which drives the prevalence distribution of the baseline state of the population biomass.

While adding a chemical effect, a shift of the distribution towards a lower population biomass is observed in 
both scenarios (Figs 2 and 3). For example, with a medium low level of chemical stress, the population biomass 
would be at maximum 3.31 mm3 L−1 and 1.07 mm3 L−1 at the 50th percentile in the Temperate and Tropical sce-
narios respectively. As we are interested in the effects of the chemical stress on the population biomass, we can 
also plot effect-size prevalence plots (Figs 4 and S2) based on the effect-size prevalence distribution (Fig. S1).  
Such plots represent the population biomass relative to a baseline state as a function of the cumulative prev-
alence. This baseline state includes the effects of natural stressors but not the effects of the stressor of interest 
(chemical stress in our illustration). As the effect-size plot compares the predicted state to a baseline state, the 
baseline, “no chemical” line is the same for both the Temperate and the Tropical scenario. Figure 4A shows that 
the population biomass of individuals exposed to a low level of chemical stress is reduced by at least ca. 15% 
compared to the population biomass of the non-exposed individuals (baseline state) in 50% of the cases for the 
Temperate scenario. This reduction would be at least ca. 18% for the Tropical scenario. While increasing the 
chemical stress level (Fig. 4B,C), the impact on the population biomass increases in both scenarios, but more 
dramatically in the Tropical scenario. For example, with a medium high level of chemical stress (Fig. 4C), in 
50% of the cases, the population biomass would be reduced by at least ca. 60% and 100% in the Temperate and 
Tropical scenarios, respectively. This denotes a higher risk of population extinction in the latter conceptual sce-
nario for that specific species.

It is ultimately a policy decision to define a maximal prevalence (e.g. the proportion of rivers) and impact  
(e.g. percent reduction in biomass) that are ecologically acceptable for different systems. For instance, a pro-
tection goal where 90% of rivers have less than 20% reduction in river biomass due to additional chemical 
stress could be deemed acceptable compared to a baseline scenario (dashed line on Fig. 4). In such a case, our 
Temperate scenario would indicate that a low level of chemical stress is acceptable but our Tropical scenario 
would not be acceptable at this level of chemical stress (Figs 4 and S2). This policy decision could be tailored to 
ecological, local, commercial or political needs. For endangered, key ecosystem or key touristic or commercial 
species for example, the policy decision could be to allow no more than 95% of river systems to see a 5% reduc-
tion in population biomass whereas in areas set aside for intensive agricultural production a stronger impact 
might be considered acceptable. Whatever the policy decision is, it can be translated into maximum acceptable 
chemical stress levels using prevalence plots, whilst accounting for ecological factors and variable environmental 
conditions.

Figure 3.  Raw prevalence plot. Population biomass (mm3 L−1) for the Temperate and Tropical scenarios as a 
function of the cumulative prevalence for the five ranges of chemical stress.
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Back to the Engine Room: Improving the Underlying Science
In order to obtain meaningful and non-biased results, it is necessary to carefully build the unified environmen-
tal scenarios. In our illustrative example, both the Temperate and the Tropical scenarios are based on a single 
species, D. magna. Yet, our Tropical scenario fell outside of D. magna temperature tolerance range. Thus, the 
individuals are already stressed by a non-optimal temperature environment which can induce a lower capability 
of the population to cope with a new stress58. Therefore, the addition of another stress (here a chemical stress) 
induces a higher adverse effect on the population biomass. The selection of a relevant species is thus an impor-
tant step of the construction of the environmental scenario. Indeed, it has been demonstrated that, even if some 
individual differences exist for specific compounds and taxa59,60, no clear pattern in differences in sensitivity exist 
between tropical and temperate species exposed to chemical stress under laboratory or semi-field/mesocosm 
conditions59–61. Kwok et al.59 for instance, assessed the differences in species sensitivity between temperate and 
tropical species for 18 chemicals using species sensitivity distributions (SSD) comparisons. The authors found 
that no real pattern exists between the species from the two different climatic zones but noted that temperate 
species seem more sensitive to metals. Conversely, they observed the reverse result for other types of chemicals 
such as chlorpyrifos, un-ionized ammonia or phenol. Similarly, no real pattern was found by Daam and van den 
Brink61 who assessed the differences between temperate and tropical freshwater ecosystems for the ERA of pes-
ticides. They concluded that vulnerability of freshwaters to pesticides did not consistently differ between tropical 
and temperate ecosystems. However, it is important to note that these studies are conducted under laboratory 
or relatively clean semi-field “pristine” conditions and do not reflect the variability of real world multi-stressed 
environments. Indeed, the impact of multiple stressors on aquatic communities is an active and growing area 
of research10,18,62,63. Characterisation of these stressors in diverse scenarios and their influence on the aquatic 
community composition and chemical fate and behaviour is critical to better understand potential differences in 
chemical stress on Temperate and Tropical scenarios.

Currently our illustrative scenario only includes three stress factors (food availability, temperature, and chem-
ical) and a simple question about the effect of chemical stress at steady state. But with further development other 
factors (Table 1) and questions can also be tackled with the framework we present. Indeed, one can be interested 
in the effect of stressors on dynamic transition states of a population in order to assess the resilience capabilities 
of this population. One can also be interested in a scenario accounting for the seasonal dynamics of food or photo 
period (e.g. for algae) or even for more complex ecological interactions such as the impact of competition and/or 
predation on the response of a population to a chemical stressor or the impact of a reduced dissolved oxygen in 
areas receiving untreated wastewater64.

Whereas prevalence plots presented here only account for the unified environmental scenario variability, it is 
possible to include the analysis of the uncertainty as well in to these plots (Fig. S3). One can calculate the uncer-
tainty around the effect size using a bootstrap method for example. These uncertainties exist in all levels of the 

Figure 4.  Effect-size prevalence plot. Population biomass relative to the no-chemical stress level population 
biomass (baseline) as a function of the cumulative prevalence for the baseline state, the Temperate and the 
Tropical scenarios and for a low, medium low, and medium high level of chemical stress.
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scenarios. Thus, it may exist on the baseline state, based on the uncertainties around abiotic factors such as the 
temperature, pH, dissolved oxygen, water quality measurements and biotic factors such as the species selection, 
the ecological processes to include in the scenarios, or even the quality of the biomonitoring data. Uncertainties 
will also be related to the fate of the stressor of interest with factors of uncertainty such as a chemical emission 
and use or degradation behaviour. It may also exist as the intrinsic uncertainty of the model equations and of the 
model calibration processes. The uncertainty is assumed to be reduced according to the refinement used while 
building the unified environmental scenario. Thus, lower tier ERA, that may include more generic scenarios, will 
lead to a higher uncertainty whereas higher tier ERA, with refined and specific scenarios and more data, will lead 
to a lower and explicitly characterised uncertainty.

Although, in principle, this framework could be used by regulators and decision makers, it requires additional 
scientific research to improve various components (Fig. 5). The scope of this iterative framework will increase 
with scientific and technological advances. For example, as we continue to better understand the real systems 
our ability to characterise key ecosystem functioning (e.g. characterisation of food webs, ecosystem resilience) 
will aid the refinement of the problem formulation and the development or update of conceptual models. The 
creation of the latter is indeed, as all parts of the framework, an iterative process that will require fit for purpose 
environmental scenarios that are adequately characterised in terms of key ecosystem components, selection of 
key species, ecological interactions, key abiotic factors and chemical fate and behaviour and that can be improved 
with increasing knowledge. The translation of these components and their interactions into a mathematical and 
computerised models also requires scientific improvements, especially in modelling theories able to cope with 
multiple species, multiple interactions, and multiple stressors. Finally, the analysis of the outputs of such models 
requires prior knowledge and accurate definition of the protection goals. However, what we present here already 
are meaningful metrics and a means of communicating potential risks of chemicals to the environment for a 
range of stakeholders.

Conclusions
It is widely acknowledged that current environmental risk assessment methodologies for single stressors are 
conservative and generally protective. However, in order to incorporate advances in scientific understanding, 
improve ecological realism (multiple stressors) and better account for uncertainty and variability a new frame-
work is required. We presented a novel framework that enables ERA to use unified environmental scenarios that 
combine mechanistic effects models with exposure models to overcome these limitations. The framework can 
already be used to aid decision making, but it does require a good understanding of key ecological services that 
are of specific interest to risk assessors in order to build relevant unified environmental scenarios. Another prior-
ity to improve the framework is to better account for multiple stressors in ERA and improve our ability to extrap-
olate effects to ecologically relevant levels of organisation. Interactions of chemicals with each other and with 
environmental factors can modulate bioavailability, toxicokinetics (TK, uptake, distribution, biotransformation, 
and depuration), toxicodynamics (TD, action on the biological target) or both TK and TD65. Whereas ideas and 
equations exist for the integration of single toxic and ecological stressors (see Table 1 for a vision on the integra-
tion of single stressors in DEB models), a knowledge gap still exists on the integration of the effects of combined 
stressors (both chemical and ecological). Such combined effects on individuals could be taken into account by 
impacting the relevant energy fluxes in the DEB framework. This, however, requires caution as the type, the sign, 
and the strength of the effect seems to be dependent on multiple factors (such as the prey, parasite, or predator 
type, the abundance of each species, the type of habitat, etc.) and the consequences of their interactions for an 
organism’s energy budget are poorly understood. This framework is computationally intensive, especially for high 
resolution, spatially explicit environmental scenarios therefore optimising the framework as well as the model 
parametrisation and model analysis are needed to implement this framework efficiently.

Figure 5.  Schematic view of the framework and the underlying scientific improvements needed. 
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Stakeholders and decision makers can begin to use the framework. Importantly, an iterative process needs to 
be initiated early with input from risk assessors and risk managers to better inform model developers so that the 
framework can be optimised to ensure the right balance between realism and pragmatism is incorporated and 
that the output enables a shift from threshold ERA, driven by summary statistics such as the PEC/PNEC ratio, to 
a more mechanistic and risk based ERA. Indeed, the use of prevalence plots provides a more transparent, quanti-
tative and meaningful interpretation of environmental risk than conventional PEC/PNEC threshold approaches. 
The prevalence plots represent a flexible interface between the risk assessment and the risk management, which 
explicitly accounts for the effect of complex interactions as well as variabilities and uncertainties that can be tai-
lored to bespoke problem formulations.
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