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Abstract

Bismuth(III) acetate is a safe, inexpensive, and selective facilitator of sequential 

protodeboronations, which when used in conjunction with Ir-catalyzed borylations allows access 

to a diversity of borylated indoles. The versatility of combining Ir-catalyzed borylations with 

Bi(III)-catalyzed protodeboronation is demonstrated by selectively converting 6-fluoroindole into 

products with Bpin groups at the 4-, 5-, 7-, 2,7-, 4,7-, 3,5-, and 2,4,7-positions and the late-stage 

functionalization of sumatriptan.

Graphical Abstract

Arylboronates are versatile synthetic building blocks.1,2 Iridium catalyzed C–H activation/

borylation reactions are a powerful way of making such compounds as they can obviate the 

need for prior functionalization (e.g., halogenation), pyrophoric reagents, cryogenic 

conditions, etc.3 While the regioselectivity of aromatic C–H borylations is mainly driven by 

steric effects, C–H acidity is a secondary driver.4 For example, Ir-catalyzed borylation of 

unprotected indoles first installs a Bpin group at C2 and then upon further reaction at C7.5
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Recently, Movassaghi and co-workers6 showed that the 2,7-diborylation of tryptophans, 

tryptamines, and 3-alkylindoles could be followed by in situ palladium-catalyzed C2-

protodeboronation to selectively afford the C7 products (Scheme 1). While this tactic may 

not seem atom economical, from a strategic perspective such a borylation/protodeboronation 

sequence enables a streamlined approach to 7-borylated indoles that are otherwise difficult 

to access without additional steps and/or prefunctionalization7 We too had observed 

selective deborylations of a number of diborylated heterocycles, including several 2,7-

diborylated indoles (Scheme 1).8 Our protodeboronations were Ir-catalyzed and for some 

systems could be exposing a crude Ir-catalyzed borylation mixture to protic material. 

Perhaps most usefully, we noted that for diborylated indoles, azaindoles, thiophenes, and 

benzthiophenes the first Bpin group to be installed during the Ir-catalyzed borylation was 

also the first Bpin to be removed in the Ir-catalyzed protodeboronation.

During a total synthesis project, we prepared 7-borylated 2 as shown in Scheme 1. The next 

step in the synthesis called for BiCl3-promoted removal of the Boc group9 (Scheme 2). 

Close examination of this deprotection revealed that 3 formed along with trace amounts of 

byproduct 4 where the C7-BPin was missing. This small amount of deborylated byproduct 

led us to consider whether bismuth salts could facilitate selective protodeboronation in a way 

similar to the previously described Ir- and Pd-catalyzed protodeboronations. Such a method 

would be quite attractive because bismuth salts are earth abundant, harmless, and orders of 

magnitude less expensive than the corresponding precious metal salts.10

After screening BiCl3, Bi(OTf)3 and numerous other metal salts and other additives,11 

Bi(OAc)3 emerged as the catalyst of choice. Subjecting purified 1 to 20 mol % Bi(OAc)3 in 

MeOH (127 equiv) and THF at 80 °C (sealed tube) for 7 h afforded 7-borylated 2 in 90% 

yield (Scheme 3).

Given this favorable result, a series of indoles were subjected to multiple borylations (Table 

1). Several of these Ir-catalyzed borylations are worthy of comment. Following C7 

borylation, the next site for C–H borylation proved to be C4. In this way, 2,4,7-triborylated 

indoles 7 and 10 (entries 2 and 4)12,13 and 4,7-diborylated 12 and 14 (entries 5 and 6) were 

generated. We previously showed that placing a Boc14 or Bpin15 on the indole nitrogen 

directs borylation to the C3-position. Herein we report for the first time that, provided the 

C6 position is blocked, borylation of in situ N-borylated (entry 7) or N-Boc protected (entry 

8) indoles occurs at the C3 and then the C5-positions, affording 15 and 17 respectively.16–18

With the borylated indoles in hand, we explored their Bi(OAc)3 mediated 

protodeboronations (Table 2). Examining first 2,7-diborylated indole (6), we found that 

heating this compound with 20 mol % Bi(OAc)3 and 125 equiv of ACS grade MeOH in THF 

afforded the 7-borylated indole (17) in 82% yield after 17 h (entry 1). Curiously, when we 

looked to deuterate 6, the reaction was complete (83% isolated yield, 87% deuterium 

incorporation19,20) after stirring with 60 equiv of 99.8% CD3OD for 12 h at room 

temperature (entry 2). A closer look into these differences revealed that, as we had observed 

with some of the Ir-catalyzed deboronations,8 the grade of MeOH could significantly impact 

the reaction rate. For example, protodeboronation of 6 was complete in less than 3 h when 

anhydrous MeOH that came in sealed bottles was employed. Notably, reactions with either 
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grade of methanol were reproducible. To highlight the method’s relative robustness and 

economy, we chose to continue our study with the lower grade methanol.21

Within these parameters, 2,4,7-triborylated indole (7) was monoprotodeboronated to afford 

4,7-diborylated indole (19) in 75% yield under similar conditions (entry 3). Attempts at the 

selective C2/C7 diprotodeboronation of 7 were disappointing. While 4-borylated indole (20) 

was formed as the major product, NMR analysis of the crude reaction mixture revealed a 

50/45/5 mixture of 20/19/indole.22 In contrast, 2,4,7triborylated-6-fluoroindole (10) 

underwent clean diprotodeboronation to afford 20 in 80% yield (entry 4) when the amount 

of MeOH was increased. A qualitative feature of deborylating 10 is that upon completion the 

reaction mixture takes on a slight pink color. Monoprotodeboronation of 10 (entry 5) 

provided further indication that these reactions are in part substrate dependent, as relative to 

7, trisboylated 10 required less time and equivalents of methanol to achieve the selective 

deborylation of the Bpin at C2 in similar yields.

The protodeboronation of 4,7-diborylated-2-carboethoxyindole 12 (entry 6) was instructive 

for comparing the synthetic efficiency of Bi vs Ir-catalyzed deboronations. After 24 h at 

80 °C, indole 12 and 40 mol % Bi(OAc)3 in MeOH/THF gave monoprotodeboronated 22 as 

the major product along with fully protodeboronated 11 and unreacted 12 in a 54/9/41 ratio 

per NMR analysis of the crude reaction product. Our recently published Ir-mediated 

conditions of 2 h at 1.5 mol % [Ir(OMe)COD]2 in 2:1 MeOH/CH2Cl2 at 60 °C8 performed 

worse, giving the fully protodeboronated 11 and 22 in a ratio of 67:33. However, Ir catalysis 

in MeOH/THF (~1:6) at rt reacted best, affording 22 in 54% isolated yield along with 13% 

11. 4,7-Diborylated-2-methyindole 14 under the Bi(OAc)3 conditions also afforded a 

52/5/43 mixture of monoprotodeboronated 23 to 13 to 14, respectively. Indole 14 was 

another substrate where Ir-mediated protodeboronation proved superior, giving a 91/9 

mixture of 23 and starting material 14 with 23 being isolated in 74% yield (entry 7).

The 3,5-diborylated indoles (15 and 17) were informative substrates in their own right. 15 
was exclusively monoprotodeboronated at C3 by 20 mol % Bi(OAc)3 in MeOH/THF after 3 

h at 80 °C, affording 24 in 88% yield (entry 8). Deboronation of 15 under our published Ir-

catalyzed protodeboronation conditions proved less selective. With Ir, the crude reaction 

product contained 13% of fully deboronated 6-fluoroindole (8) and 24 was isolated in 66% 

yield. Attempts to optimize Ir-catalyzed deboronation of 15 never met with the selectivity 

observed with Bi(OAc)3 unless the reaction was stopped prior to complete consumption of 

starting material.22

In contrast to 15, Boc-protected 17 failed to undergo any deboronation by the action of 

Bi(OAc)3 (entry 9). Indole 17 was susceptible to Ir-catalyzed deboronation, but again those 

conditions proved too harsh, giving the N-Boc protected 6-fluoroindole as the major product 

(21/79 25/16 in the crude reaction mixture). The ratio of 25/16 improved to 60/40 (47% 

isolated yield of 25) when the protodeboronation was run with 3 mol % Ir in MeOH/THF at 

room temperature for 10 h.

The reactivity difference between unprotected and N-Boc-indoles was probed further. 4,7-

Diborylated-6-fluoroindole 21 was converted to its Boc derivative (26) and then subjected to 
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both the Bi and Ir deboronation conditions (Scheme 4). Again, there was no reaction by 

Bi(OAc)3. However, under the Ir-catalyzed protodeboronation conditions, using CD3OD as 

the protic material, afforded the C4 deuterated product 27 in 78% yield. This result 

demonstrates that the general order of the first boron “on” being the first boron “off” in Ir-

catalyzed deboronations can be altered subsequent to borylation by introducing nearby 

functionality that is sterically demanding.

To demonstrate this chemistry in late-stage functionalization, we applied the one-pot 

diborylation/deboronation sequence to 5-HT receptor agonist sumatriptan (28) (Scheme 5). 

Thus, indole 28 was thus converted to the 2,7-diborylated product. Selective Bi(OAc)3 

catalyzed deboronation of the crude product was then achieved in 85% yield by quantitative 

HPLC. However, the highly polar nature of 29 coupled with the hydrolytic instability of the 

Bpin ester made purification a challenge and the isolated yield of 29 was only 28%.

Questions on the mechanism of these deboronations remain. Analysis of the crude reaction 

material showed a mixture of boronates but no evidence of MeOBpin. The above examples 

do point to an interaction with the indole nitrogen as being important to achieving selectivity 

and gaining reactivity. Given Movassaghi and co-workers’ Pd-catalyzed C2 

protodeboronation of indoles with HOAc as the proton source,6 we questioned if HOAc, 

either residual in the Bi(OAc)3 or in situ generated, was playing a part in our bismuth-

catalyzed protodeboronations. Toward this end, we examined the reactivity of diborylated 10 
with 0.6 equiv of HOAc, which would correspond to the theoretical amount of acetic acid 

available from 20 mol % of Bi(OAc)3 (Scheme 6). Under these conditions no 

protodebornation was observed. Increasing the amount of HOAc to 40 equiv had no affect as 

again only starting 10 was observed after 5 h at 80 °C. The next set of experiments was 

performed with Bi(OAc)3 that had been washed with CCl4 until the washings showed no 

HOAc by NMR. Somewhat surprisingly, HOAc free Bi(OAc)3 exhibited enhanced reactivity, 

as washed Bi(OAc)3 afforded a 3:1 mixture of 21 and 20 while the same reaction with 

unwashed Bi(OAc)3 gave no 20. While not quantified, it appears that adventitious HOAc 

lowers the relative reactivity of the unwashed Bi(OAc)3, perhaps by interfering with a 

putative Bi/indole nitrogen interaction.

In conclusion, bismuth(III) acetate is a safe, shelf stable, inexpensive, and operationally 

simple alternative to Ir and Pd for the catalytic protodeboronations of indoles. Where as the 

conditions for deboronations with Ir8 and Pd6 call for an inert atmosphere, Bi(III)-catalyzed 

deboronations can be run under air. Furthermore, while reaction times are dependent on the 

grade of methanol employed, solvents need not be distilled or degassed. In general, 

sequential deboronations with Bi(OAc)3 occur in the same order in which the Bpin groups 

are installed via Ir-catalyzed borylation. Relative to related methods, Bi(OAc)3 tends to offer 

greater selectivity in protodeboronations of di- and triborylated indoles. Thus, by tuning the 

C–H borylation and deboronation conditions, one can access a variety of boron substitution 

patterns from a single starting indole.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Scheme 1. 
Prior Art
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Scheme 2. 
Discovery of Bicatalyzed Protodeboronations
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Scheme 3. 
Bi(OAc)3 Catalyzed Protodeboronation of 1
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Scheme 4. 
Changing the Sequence of Protodeboronation
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Scheme 5. 
Functionalization of Sumatriptan
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Scheme 6. 
Exploring the Potential Role of HOAc
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Table 1

Ir-Catalyzed Borylation of Indoles

entry Starting indole product time (h) yield (%)a

1b 48 77

2c 12 96

3b 24 82

4c 12 92

5b 12 84

6b 24 71

7d,e 5 90

8e 3 80

a
Isolated yields.

b
Borylations ran with 2.0 equiv B2pin2, 2.8 mol % HBpin, 0.5 mol % [Ir(OMe)COD]2, 1 mol % dtbpy, at 80 °C.

c
Borylations ran as described above, but with 1.0 equiv B2pin2.

d
Substrate stirred in neat HBpin (4 equiv) at rt for 1 h before being subjected to the borylation conditions.
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e
Borylation ran with 2.0 equiv B2pin2, 3 mol % [Ir(OMe)COD]2, 6 mol % dtbpy, at 80 °C.
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Table 2

Bi(OAc)3 Catalyzed Protodeboronations

entry starting indole product conditions and yielda

1 20 mol % Bi(OAc)3,
125 equiv ,
THF, 80 °C, 17 h, 82%

2 20 mol % Bi(OAc)3,

40 equiv ,
THF, 80 °C, 2.5 h, 83%

3 20 mol % Bi(OAc)3,
125 equiv ,
THF, 80 °C, 17 h, 75%

4 20 mol % Bi(OAc)3,
250 equiv ,
THF, 80 °C, 15 h, 80%

5 20 mol % Bi(OAc)3,
60 equiv ,
THF, 80 °C, 5 h, 67%

6 40 mol % Bi(OAc)3,
375 equiv ,
THF, 80 °C, 16 h,

(54:9:41 22: 11:12)b
Ref 8 Ir-catalysis

(33:67 22:11)b

Modifiedd Ir-catalysisc
54% 22, 13% 11

7 40 mol % Bi(OAc)3,
500 equiv ,
THF, 80 °C, 16 h,

(52:5:43 23:13:14)b

Ref 8 Ir-catalysisc

74% (91:9 23:14)b

8 20 mol % Bi(OAc)3,
50 equiv ,
THF, 80 °C, 3 h, 88%

Ref 8 Ir-catalysisc

66% (87:13 24:8)b

9 40 mol % Bi(OAc)3,
500 equiv ,
THF, 80 °C, 16 h,

(no reaction)b

Ref 8 Ir-catalysisc

47% (60:40 25:16)b
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a
Isolated yields.

b
Ratio determined by 1H NMR of the crude reaction mixture.

c
See Supporting Information for details.

d
3 mol % [Ir(OMe)COD]2, 40 equiv MeOH, THF at rt.
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