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ABSTRACT: Tris(1,3-dichloro-2-propyl)phosphate (TDCIPP)
is a high-production volume organophosphate-based plasticizer
and flame retardant widely used within the United States.
Using zebrafish as a model, the objectives of this study were to
determine whether (1) TDCIPP inhibits DNA methyltransferase
(DNMT) within embryonic nuclear extracts; (2) uptake of
TDCIPP from 0.75 h postfertilization (hpf, 2-cell) to 2 hpf
(64-cell) or 6 hpf (shield stage) leads to impacts on the early
embryonic DNA methylome; and (3) TDCIPP-induced impacts
on cytosine methylation are localized to CpG islands within intergenic regions. Within this study, 5-azacytidine (5-azaC, a DNMT
inhibitor) was used as a positive control. Although 5-azaC significantly inhibited zebrafish DNMT, TDCIPP did not affect DNMT
activity in vitro at concentrations as high as 500 μM. However, rapid embryonic uptake of 5-azaC and TDCIPP from 0.75 to 2 hpf
resulted in chemical- and chromosome-specific alterations in cytosine methylation at 2 hpf. Moreover, TDCIPP exposure
predominantly resulted in hypomethylation of positions outside of CpG islands and within intragenic (exon) regions of the
zebrafish genome. Overall, these findings provide the foundation for monitoring DNA methylation dynamics within zebrafish as
well as identifying potential associations among TDCIPP exposure, adverse health outcomes, and DNA methylation status within
human populations.

■ INTRODUCTION

Early embryonic development is a dynamic, complex process
that is dependent on the timing and extent of epigenetic
reprogramming of the zygotic genome. Immediately following
fertilization, early embryogenesis progresses through two
phases of the maternal-to-zygotic transition (MZT): (1) rapid
degradation of maternally loaded transcripts and (2) minor and
major waves of zygotic genome activation. The MZT is highly
conserved across a wide range of invertebrate and vertebrate
species, including sea urchins, nematodes, fruit flies, zebrafish,
frogs, mice, and humans.1,2 In humans, the MZT occurs in utero
at the 8-cell stage (3 d postfertilization) prior to implantation
within the uterine wall2 whereas, in zebrafish, the MZT com-
mences ex utero near the end of cleavage (2 h postfertilization,
hpf) and terminates at approximately midblastula (2.75−3 hpf).3
After rapid erasure of maternal and paternal methylation marks
following fertilization, zygotic genome activation, tissue-specific
gene expression, and normal somatic development of
mammalian and zebrafish embryos are dependent on steady,
de novo genome-wide cytosine methylation by DNA methyl-
transferases (DNMT) during the MZT.4,5 Therefore, alterations

in de novo DNA methylation marks, via impacts on DMNT
activity or methyl donor concentrations, during early embryonic
development have the potential to change the trajectory of
normal development and, if inherited, persist across multiple
generations.6

Over the last 10−15 years, the role of environmental factors,
including nutrition, chemical exposures, and physical variables
such as temperature, in mediating epigenetic modifications
during early development has been intensely investigated, albeit
the number of environment-related epigenetic studies pales in
comparison to studies considering nonenvironmental factors.7

To date, the most well-studied environmental chemical known
to alter DNA methylation and, as a result, offspring phenotypes
is bisphenol A (BPA),8−13 a high-production volume chemical
used in the production of polycarbonate plastics and epoxy
resins. In a seminal study published by Dolinoy et al. in 2007,13
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maternal exposure of yellow agouti (Avy) mice to BPA resulted
in CpG hypomethylation at the Avy locus and a corresponding
shift in coat color phenotypes within offspring, an effect that
was rescued by maternal supplementation with methyl donors
(folic acid or genistein). Importantly, this was one of the
first animal studies to demonstrate that maternal exposure to an
environmental chemical during in utero development has the
potential to reprogram the offspring epigenome, leading to
immediate phenotypic consequences (e.g., change in coat color)
and potential long-term effects on adult disease susceptibility.
These findings have since provided the basis for investigating
the potential association of BPA exposure and epigenetic
changes within human populations,14−16 raising the possibility
that epigenetic marks within certain loci may be used as
diagnostic indicators of prior environmental exposures.
Tris(1,3-dichloro-2-propyl)phosphate (TDCIPP) is a chlori-

nated phosphate ester used as a high-production volume
plasticizer and flame retardant within polyurethane (rigid and
flexible), plastics, resins, and acrylic latexes.17 As TDCIPP
persists within indoor and outdoor environmental media,18

environmental exposure to TDCIPP may pose a health risk
to humans and ecological species, particularly during sensitive
windows of early development (e.g., during epigenetic
reprogramming) that have the potential to coincide with higher
internal doses of TDCIPP.19 Using zebrafish as a model, we
previously demonstrated that the cleavage period (0.75−2.25 h
postfertilization, hpf) during embryogenesis is susceptible to
TDCIPP-induced delays in methylation of the zygotic
genome.20 Within various life-stages of zebrafish, TDCIPP
exposure also results in a wide range of adverse effects, including
disruption of thyroid hormone regulation,21−23 gene expres-
sion,24,25 behavior,26−29 and reproduction.30−32 In addition,
exposure of early zebrafish embryos to 3 μM TDCIPP, an
identical nominal aqueous concentration used within our 2012
study, arrests epiboly and induces severe malformations later
in development.24 However, to our knowledge, no studies have
investigated the potential impacts of TDCIPP on DNMT
activity and cytosine methylation within zebrafish embryos
(or any other animal model). Therefore, the objectives of
this study were to determine whether (1) TDCIPP inhibits
zebrafish DNMT within embryonic nuclear extracts; (2) uptake
of TDCIPP from 0.75 hpf (2-cell) to 2 hpf (64-cell) or 6 hpf
(shield stage) leads to impacts on the DNA methylome
during cleavage; and (3) TDCIPP-induced impacts on cytosine
methylation are localized to CpG islands within intergenic
regions. For DNMT activity assays and all embryonic exposures,
5-azacytidine (5-azaC), an inhibitor of DNMT activity, was used
as a positive control.4

■ MATERIALS AND METHODS
Animals. Adult wild-type (strain 5D) zebrafish were

maintained and bred on a 14 h:10 h light:dark cycle within a
five-shelf stand-alone system (Aquatic Habitats, Inc., Apopka,
FL, USA) containing photoperiod light-cycle enclosures and
recirculating conditioned reverse osmosis (RO) water as
previously described.33 For all experiments described below,
newly fertilized eggs were staged according to previously
described methods.34 All fish were handled and treated in
accordance with approved Institutional Animal Care and Use
Committee protocols at the University of South Carolina,
Columbia.
Chemicals. TDCIPP (99% purity) and 5-azaC (>98%

purity) were purchased from ChemService (West Chester, PA)

and Tocris (Bristol, United Kingdom), respectively. Stock and
working solutions of each chemical were prepared and stored as
previously described.33

DNMT Activity Assays. Newly fertilized eggs were
collected immediately after spawning and placed in groups
of approximately 100 per Petri dish within a light- and
temperature-controlled incubator. Embryos (100 per time point)
were collected at 2, 10, and 24 hpf and stored at −20 °C. Nuclear
proteins were extracted from whole embryo pools using an
EpiQuik Nuclear Extraction Kit (Epigentek Group, Farmingdale,
NY). Nuclear extract was kept on ice and immediately quantified
using a BCA Protein Assay (Pierce Biotechnology, Rockford, IL)
following the manufacturer’s instructions. Optical density of
the colorimetric reaction was quantified using a VICTOR
X3Multilabel Plate Reader (PerkinElmer, Waltham, MA), and
total protein was quantified using a standard curve generated
from bovine serum albumin.
DNMT inhibition was quantified using an EpiQuik DNMT

Activity/Inhibition Assay Ultra Fluorometric Kit (Epigentek
Group, Farmingdale, NY). DNMT inhibition within nuclear
extracts (6.5 μg of protein per reaction) derived from 2-, 10-,
and 24-hpf embryos was quantified in the presence of vehicle
(0.1% dimethyl sulfoxide, DMSO), 250 μM 5-azaC, or TDCIPP
(63, 125, 250, or 500 μM). All reactions were conducted in
triplicate. Fluorescence was measured by a VICTOR X3Multilabel
Plate Reader (PerkinElmer, Waltham, MA) and data were
corrected for background and reported as relative fluorescent
units.

Embryonic Exposures for Genomic DNA Extractions.
Newly fertilized eggs were collected immediately after spawning
and placed in groups of approximately 100 per Petri dish within
a light- and temperature-controlled incubator until 0.75 hpf
(2-cell stage). Prior to each experiment, 50 mL glass beakers
were thoroughly rinsed with DMSO and RO water. Viable 5D
embryos were exposed to 10 mL of vehicle (0.1% DMSO),
250 μM 5-azaC, or 2 μM TDCIPP in triplicate glass beakers
(70 embryos per replicate beaker) under a 14 h:10 h light:dark
cycle and static conditions at 28 °C from 0.75 hpf to 2 or 6 hpf.
To minimize the potential for false negative findings and
confounding effects of systemic toxicity at 2 and 6 hpf, 250 μM
5-azaC and 2 μM TDCIPP were selected based on the (1)
absence of effects on cell cycle, overall embryo size, or cell
morphology from 0.75 to 2 hpf; (2) absence of developmental
delays from 0.75 to 6 hpf; but (3) presence of severe malforma-
tions (trunk curvature, tail malformations, craniofacial
malformations, decreased body length, pericardial edema, and
yolk sac edema) at 24 hpf (data not shown). Embryos
(25/replicate) were collected at either 2 or 6 hpf, transferred
from beakers to 2 mL cryovials, snap-frozen in liquid nitrogen,
and stored at −80 °C. These experiments resulted in three
independent replicate samples for each time point and treat-
ment group.

Quantification of Internal Embryonic Doses of TDCIPP
and BDCIPP. Embryos (50 per replicate) were treated with
vehicle (0.1% DMSO) or 2 μM TDCIPP within six replicate
beakers per treatment starting at 0.75 hpf. At 2 and 6 hpf,
embryos were transferred from three replicate beakers to three
2 mL cryovials, snap-frozen in liquid nitrogen, and stored at
−80 °C until analysis. Frozen embryos were then processed
and analyzed for TDCIPP and BDCIPP concentrations using
previously described protocols.20 Method detection limits
(MDLs) were defined as three times the standard deviation
of lab blanks (if present) or three times the noise. MDLs for
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TDCIPP and BDCIPP were 0.1 and 1.0 ng, respectively.
Recoveries averaged 103 ± 8% and 118 ± 17% for the internal
standards, D15-TDCIPP and D10-BDCIPP, respectively.
Quantification of 5-Methyl-2′-deoxycytidine (5-mdC)

and 2′-Deoxyguanosine (dG). Genomic DNA (1 μg per
replicate sample) was digested and processed similar to
previously described methods.35 Enzymes were removed by
extraction with chloroform, and the resulting aqueous layer was
subjected directly to LC-MS/MS and LC-MS/MS/MS analysis
for quantification of 5-mdC and dG, respectively, as previously
described.35 The amounts of 5-mdC and dG (in moles) in
nucleoside mixtures were calculated from area ratios of peaks
found in selected-ion chromatograms for the analytes over their
corresponding isotope-labeled standards (SI Figures S1 and S2),
amounts of the labeled standards added (in moles), and calibra-
tion curves (SI Figure S3). 5-mdC levels (% of dG) were
calculated by comparing the moles of 5-mdC relative to the
moles of dG.
DNA Methylome Profiling Using Whole-Genome

Bisulfite Sequencing (WGBS). Genomic DNA was extracted

from pooled 2-hpf embryos (25 per replicate) using a Wizard
Genomic DNA Purification Kit (Promega, Madison, WI).
After elution of DNA in 25 μL of nuclease-free 1× Tris-EDTA
buffer, the concentration and quality of all DNA samples were
quantified using a Qubit 2.0 fluorometer (Invitrogen, Carlsbad,
CA) and Agilent 2100 Bioanalyzer (Agilent Technologies, Santa
Clara, CA), respectively; as the DNA concentration within one
of the vehicle (0.1% DMSO) samples was <0.5 ng/uL, only
two vehicle control samples (vs three samples for 250 μM
5-azaC and 2 μM TDCIPP) were prepared for sequencing.
DNA samples (8 total) were then processed using an EZ DNA
Methylation-Lightning Kit (Zymo Research Corp., Irvine, CA)
for bisulfite conversion, and nonbarcoded sequencing libraries
were then prepared using a TruSeq DNA Methylation Kit
(Illumina, San Diego, CA). The concentration and quality of
sequencing libraries were quantified using a Qubit 2.0 fluoro-
meter (Invitrogen, Carlsbad, CA) and Agilent 2100 Bioanalyzer
(Agilent Technologies, Santa Clara, CA), respectively, and eight
libraries were then paired-end (2×50) sequenced on eight lanes
(one library per lane) of a HiSeq 2500 Sequencing System
(Illumina, San Diego, CA). This sequencing strategy generated
160−185 M short reads per replicate, providing sufficient

Figure 1. TDCIPP does not inhibit zebrafish DNMT in vitro. Mean
relative fluorescence units (RFU) ± standard deviation. N = three
replicates/group.

Figure 2. TDCIPP uptake occurs by 2 hpf following initiation of
exposure at 0.75 hpf. Mean internal dose (per 50 embryos) ± standard
deviation. BDCIPP was less than the method detection limit (MDL)
across all groups. N = three replicate pools/group. Asterisk (*)
denotes significant treatment effect (p < 0.05) relative to vehicle
control (0.1% DMSO).

Figure 3. 5-azaC and TDCIPP do not significantly impact total 5-mdC
levels at 2 or 6 hpf (A) nor global cytosine methylation at 2 hpf
(B) following initiation of exposure at 0.75 hpf. Mean 5-mdC (A) or
cytosine methylation (B) ± standard deviation. N = three replicates
per group within Panel A. N = two replicates per control group and
three replicates per treatment group within Panel B.
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coverage (∼6−7× per sample) for differential methylation
analysis by WGBS.36

All bisulfite-converted, 2×50 sequence reads (Reads 1 and 2)
were first checked for quality control using FastQC. Approxi-
mately 97% of Read 1 sequences resulted in a quality score
≥Q30, whereas only 76% of Read 2 sequences resulted in a
quality score ≥Q30. Therefore, Read 1 sequences were aligned
against the current zebrafish genome assembly (GRCz10)
using Bismark v0.14.337 and Bowtie 2 v2.2.538 to determine the
methylation status of all cytosines within each sample. Bismark’s
output included BAM files (.bam) containing alignments,
methylation call strings, and a report summarizing alignment
statistics and percent methylated cytosines within a CpG, CHG,
and CHH context, where H = A, T, or C. Bismark-generated
BAM files were then sorted and converted into SAM files (.sam)
using Samtools.39 SAM files were then imported into
methylKit40 using the read.bismark function; the read.context
option was set to “CpG”, whereas all other options were
set to default values for the read.bismark function. This

approach allowed us to determine percent cytosine methylation
at base-pair resolution within a CpG context on each of
25 chromosomes. Using percent cytosine methylation data,
signal-to-noise ratios (SNR = (μ1 − μ0)/(σ1 + σ0), where μ1 =
treatment mean; μ0 = vehicle control mean; σ1 = treatment
standard deviation; σ0 = vehicle control standard deviation)
were then calculated at all available positions on each of
25 chromosomes to account for the magnitude and variation of
cytosine methylation relative to vehicle controls. SNRs > 0 and
SNRs < 0 represent hypermethylation and hypomethylation,
respectively, relative to vehicle controls.

Secondary Analysis of TDCIPP-Specific WGBS Data.
TDCIPP-specific data were sorted by SNR, and SNRs between
−5 and +5 were removed from the data set. SNR thresholds of
>5 or <5 were selected in order to (1) filter out highly variable
vs consistent, TDCIPP-related impacts on cytosine methylation
across independent treatment replicates and (2) prioritize regions
of interest that were reliably impacted by TDCIPP exposure.
Across all 25 chromosomes, 189 out of 25 270 positions were

Figure 4. 5-azaC (A) and TDCIPP (B) exposure results in chromosome-specific alterations in cytosine methylation at 2 hpf following initiation of
exposure at 0.75 hpf. All signal-to-noise ratios (SNRs) are relative to vehicle controls and reflect variation among two replicates per control group
and three replicates per treatment group. SNRs > 0 and SNRs < 0 represent hypermethylation and hypomethylation, respectively, relative to vehicle
controls.
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identified and mapped to the current zebrafish genome assembly
(GRCz10) hosted by the National Center for Biotechnology
Information (NCBI) (http://www.ncbi.nlm.nih.gov/
genome?term=danio%20rerio). After mapping each position
to the zebrafish genome, we then (1) determined whether the
position mapped to an intragenic (exon or intron) or intergenic
region; (2) identified the NCBI Gene ID if mapped to an
intragenic region; (3) identified the NCBI Gene ID cor-
responding to genes immediately upstream and downstream of
the mapped position; and 4) determined whether the position
mapped to a NCBI-predicted CpG island. Genomic sequences
for all identified CpG islands were also compared against
NCBI’s nucleotide collection (nr/nt) database using Basic Local
Alignment Search Tool (BLASTn) to identify potential human,
mouse, or rat orthologs and, if mapped to an intragenic region,
corresponding NCBI Gene IDs.
Statistical Analyses. Statistical procedures for DNMT data

and internal embryonic doses were performed using SPSS
Statistics 22.0 (Chicago, IL). A general linear model (GLM)
analysis of variance (ANOVA) (α = 0.05) was used for all data,
as these data did not meet the equal variance assumption for
non-GLM ANOVAs. Pair-wise Tukey-based multiple compar-
isons of least-squares means were performed to identify
significant differences among treatment groups.
Accession Number. Raw Illumina (fastq.gz) sequencing

files (eight files totaling 70.98 GB) are available via NCBI’s
BioProject database under BioProject ID PRJNA330715
(http://www.ncbi.nlm.nih.gov/bioproject/330715).

■ RESULTS AND DISCUSSION
Since our previous study suggested that normal DNA
methylation at the end of cleavage (2 hpf) was decreased in
TDCIPP-treated embryos,20 we tested the hypothesis that
TDCIPP inhibits zebrafish DNMT activity in vitro. We relied
on an assay containing universal DNA substrate in order to
identify potential impacts of TDCIPP on multiple zebrafish
DNMTs present during early embryonic development.41−44

Although 5-azaC significantly inhibited zebrafish DNMT
within 2-, 10-, and 24-hpf nuclear extracts, TDCIPP did not
affect DNMT activity up to 500 μM (Figure 1), suggesting that
TDCIPP-induced impacts on DNA methylation during
cleavage are likely not due to direct DNMT inhibition. Rather,
these findings point to the possibility that TDCIPP may be
impacting the concentration of available methyl donors (e.g.,
S-adenosyl-L-methionine) during early embryonic development.
To help guide interpretation of our findings, we quantified

mean internal doses of TDCIPP and BDCIPP within 2- and
6-hpf embryos following initiation of exposure to vehicle
(0.1% DMSO) or 2 μM TDCIPP at 0.75 hpf. Although mean
internal doses (per 50 embryos) of TDCIPP were <8.5 ng within
vehicle controls, which is consistent with typical background
concentrations, and BDCIPP was not detected across all
treatment groups, mean internal doses (per 50 embryos) of
TDCIPP at 2 and 6 hpf were 80.86 and 129.97 ng, respectively
(Figure 2). Therefore, these data demonstrate that TDCIPP
uptake is rapid, TDCIPP is not metabolized to BDCIPP during
the first 6 h of embryonic development, and TDCIPP (but not
BDCIPP) is likely responsible for any impacts on DNA
methylation.
To address the potential for 5-azaC- and TDCIPP-induced

impacts on DNA methylation, we relied on (1) LC-MS/MS
and LC-MS/MS/MS to quantify 5-mdC and dG, respectively,
within genomic DNA extracted from vehicle-, 5-azaC-, and

TDCIPP-exposed 2- and 6-hpf embryos and (2) WGBS on
Illumina’s HiSeq 2500 platform to identify the magnitude and
extent, if any, of 5-azaC- and TDCIPP-induced effects on the
entire DNA methylome at 2 hpf (the end of cleavage) at single

Figure 5. TDCIPP exposure from 0.75 to 2 hpf results in genome-wide
hypomethylation within intragenic regions of the zebrafish genome.
Intragenic regions include exons and introns, whereas intergenic
regions represent sequences between genes.

Figure 6. TDCIPP exposure from 0.75 to 2 hpf predominantly impacts
positions mapped outside of CpG islands (A) and, for the remaining
positions mapped within CpG islands, TDCIPP-induced effects were
localized to intragenic regions of the zebrafish genome (B).
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base-pair resolution. Although 5-azaC and TDCIPP did not
significantly impact 5-mdC levels at 2 or 6 hpf (Figure 3A) nor
global cytosine methylation at 2 hpf (Figure 3B), 5-azaC and
TDCIPP exposure resulted in chemical- and chromosome-specific
alterations in cytosine methylation within a CpG context at 2 hpf
(Figure 4), suggesting that aggregated analysis of global cytosine
methylation lacks sufficient sensitivity to detect spatially resolved,
position-specific effects. Interestingly, exposure to 5-azaC from
0.75 to 2 hpf resulted in a stronger impact than TDCIPP on
cytosine methylation at 2 hpf, leading to strong hypermethylation
(SNR > 20) within four chromosomes and strong hypo-
methylation (SNR < 20) within 19 chromosomes (Figure 4A).
In contrast, although the overall magnitude of TDCIPP-induced
impacts on cytosine methylation was less than 5-azaC, TDCIPP
only resulted in strong hypomethylation (SNR < 20) across 13
chromosomes (in particular, chr1, chr22, and chr25) (Figure 4B).
On the basis of secondary analysis of our TDCIPP-specific

WGBS data, we identified 39 out of 189 positions (20%) with

a SNR > 5 and 150 out of 189 positions (80%) with a SNR < 5
(Supplemental File 3), indicating that, based on a SNR threshold
that filters out positions with highly variable responses,
hypomethylation (relative to vehicle controls) represented the
large majority of reproducible, TDCIPP-induced impacts on the
zebrafish DNA methylome at 2 hpf. Moreover, with the exception
of chr24, TDCIPP-induced alterations in cytosine methylation
occurred on all other 24 chromosomes (in particular, chr1, chr 2,
chr 3, chr 5, chr 7, and chr 20) (Supplemental File 3), suggesting
that TDCIPP-induced epigenetic modifications are genome-wide
and not localized to certain loci. Interestingly, contrary to our
working hypothesis, 154 out of 189 positions (81.5%) mapped
to intragenic regions of the zebrafish genome (151 positions
mapped to exons, whereas only 3 positions mapped to introns),
whereas only 35 out of 189 positions (18.5%) mapped to
intergenic regions (which includes promoter regions) (Figure 5).
In addition to revealing the location of TDCIPP-induced

impacts on the zebrafish genome, we also determined whether

Figure 7. BLASTn identifies a CpG island localized to human 45S preribosomal 5 as an ortholog (87% identity) to a zebrafish-specific, TDCIPP-
susceptible 726-bp fragment of a 1373-bp intergenic CpG island on chr4. CpG sites are highlighted yellow.
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these effects occurred within or outside of CpG islands.
Surprisingly, 155 out of 189 positions (82%) mapped outside
of CpG islands (Figure 6A). For the remaining positions
(34 out of 189) that mapped within CpG islands, 79% of CpG
islands identified (27 out of 34) were localized to intragenic
regions of the zebrafish genome (with the majority being
mapped to exons) (Figure 6B). For all 34 CpG islands, we then
used BLASTn to identify potential orthologs within the human,
mouse, and rat genome. Although no orthologs were identified
within the rat or mouse genome, one ortholog was identified
within the human genome (Supplemental File 3), where a
zebrafish-specific 726-bp fragment of a 1373-bp intergenic CpG
island on chr4 was 87% identical to an exon-localized CpG
island within human 45S preribosomal 5 (RNA45S5, NCBI
GeneID: 100861532) on chr22 (Figure 7).
This study yielded two important yet unexpected conclusions:

(1) TDCIPP exposure during cleavage predominantly results in
non-CpG island hypomethylation localized to intragenic regions
of the zebrafish genome; and (2) WGBS-based identification
of contaminant-susceptible CpG islands within the zebrafish
methylome has the potential to identify human orthologs for
epigenetic-focused environmental epidemiology studies. To date,
the majority of the scientific literature has focused on the role of
CpG island methylation within promotor (intergenic) regions in
regulating gene transcription.7 Moreover, most investigations
have been limited to studying environmentally induced changes
in DNA methylation within small, targeted regions of the
genome rather than nontargeted, unbiased profiling of the entire
methylome.45 By using high-resolution WGBS to scan the entire
zebrafish DNA methylome, we revealed that, contrary to our
working hypothesis, non-CpG island hypomethylation within
exons accounted for the majority of TDCIPP-induced effects,
suggesting that strategies for enrichment of CpG islands prior to
sequencing, such as methylated DNA affinity capture coupled
with sequencing (MethylCap-seq) or reduced representation
bisulfite sequencing (RRBS), may, although more cost-effective,
lead to a high proportion of false-negative results. Moreover,
the use of methods to eliminate non-CpG islands prior to
sequencing may limit the probability of identifying potential
candidate loci for future investigations in zebrafish, other animal
models, or human populations.
In conclusion, we have revealed that TDCIPP-induced

impacts to the zebrafish DNA methylome at 2 hpf are complex
and primarily localized to regions outside of classical CpG
islands. As our data are based on a single TDCIPP con-
centration and developmental stage, future research should
focus on monitoring DNA methylation dynamics within WGBS-
identified, TDCIPP-susceptible loci across multiple TDCIPP
concentrations and developmental stages using a cost-effective,
targeted sequencing-based strategy such as bisulfite amplicon
sequencing.46 In addition, as we have identified a CpG island
within the human genome that may be susceptible to TDCIPP
(or other flame retardants and plasticizers), future environ-
mental epidemiological studies should consider measuring DNA
methylation within this region to determine whether there
are potential associations between chemical exposure, adverse
health outcomes, and DNA methylation status.
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