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Abstract
The existence of cancer stem cells has been well 
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established in acute myeloid leukemia. Initial proof 
of the existence of leukemia stem cells (LSCs) was 
accomplished by functional studies in xenograft models 
making use of the key features shared with normal 
hematopoietic stem cells (HSCs) such as the capacity 
of self-renewal and the ability to initiate and sustain 
growth of progenitors in vivo . Significant progress 
has also been made in identifying the phenotype and 
signaling pathways specific for LSCs. Therapeutically, a 
multitude of drugs targeting LSCs are in different phases 
of preclinical and clinical development. This review 
focuses on recent discoveries which have advanced 
our understanding of LSC biology and provided rational 
targets for development of novel therapeutic agents. 
One of the major challenges is how to target the self-
renewal pathways of LSCs without affecting normal 
HSCs significantly therefore providing an acceptable 
therapeutic window. Important issues pertinent to the 
successful design and conduct of clinical trials evaluating 
drugs targeting LSCs will be discussed as well.
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Core tip: Leukemia stem cell (LSC) directed therapy 
targets: (1) Cell surface markers expressed on LSC: 
CD33, CD44, CD123, CD47, etc. ; (2) Crucial pathways 
for maintenance of their stemness: NF-κB, PI3K/
AKT/mTOR and bcl-2; and (3) Interactions between 
LSC in the bone marrow niche: LSC mobilization with 
granulocyte-colony stimulating factor and inhibition of 
LSC homing to the bone marrow by interrupting the 
C-X-C chemokine receptor type 4-CXCL12 and VCAM-
VLA4 axis.
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INTRODUCTION
Despite extensive research efforts in myeloid malig­
nancies, minimal progress has been made in intro­
ducing new effective treatment strategies for acute 
myeloid leukemia (AML) since the introduction of the 
anthracycline-cytarabine combination chemotherapy 
regimens (known as 7 + 3) more than 40 years 
ago[1]. Despite achieving complete remission (CR) with 
intensive induction chemotherapy in about 70% of 
patients with AML, relapse is frequent and the rate of 
5-year disease free survival is only about 30%-40%. It 
has been long proposed that the high rate of relapse is 
due to the persistence of a rare subset of malignant cells 
that are not effectively eliminated by current treatment 
regimens, the so called leukemia stem cells (LSCs)[2-4]. 
LSC were first identified but tumor cells with stem 
cell-like behavior were later found to be also present 
in a variety of solid tumors[5-9]. LSC remain the best 
studied and characterized cancer stem cell (CSC) due 
to the easy accessibility of tumor tissue for (i.e., blood 
and bone marrow) and the availability of a number 
of cell surface markers that allow their prospective 
identification and isolation by flow cytometry followed 
by assays to examine their function both in vitro and in 
vivo[10]. This review will focus on the biology of LSC, the 
impact they have on current leukemia diagnosis and 
prognosis and treatment as well as future directions of 
leukemia therapy based on targeting LSC[6]. 

CSC VS CLONAL EVOLUTION THEORY
It is now well understood that not only tumors from 
different patients but also cells within a single tumor 
are characterized by heterogeneity in terms of the 
morphology, cell surface markers, genetic variations 
and response to therapy[11]. Why there is significant 
variation in genetic and epigenetic abnormalities 
between different cells or locations within a tumor 
despite the clonal origin of all tumor cells, is a question 
that has puzzled researchers for decades. There 
are essentially two different explanations for this 
fundamental problem of cancer biology: The hierarchy 
or CSC model vs the stochastic or clonal evolution 
model[6]. In the stochastic model, all cells in a tumor 
have a similar biological function but are heterogeneous 
(e.g., expression of cell surface markers) because of 
clonal evolution resulting in small but entirely random/
stochastic variations triggered by external and internal 
factors based on Darwinian principles. Importantly, all 
cells within the tumor have an equal sensitivity to both 

intrinsic (transcription factors and signaling pathways) 
and extrinsic (host factors, tumor microenvironment 
and immune response) factors[10]. In the cancer stem 
cell (CSC) model, a tumor follows the principles of 
normal, healthy tissue development with a stem cell 
at the top of the hierarchy, which gives rise to all 
other cells in the tumor. In this model only these rare 
population of CSCs are able to initiate tumor growth: 
They possess self-renewal capacity and can be isolated 
from the bulk non-tumorigenic population. Importantly, 
both models appreciate the existence of a CSC but 
differ in their assessment what cells within the tumor 
can be CSCs. In the stochastic model CSCs are created 
randomly and every cell has the potential to be a CSC, 
whereas in the CSC model only a subset of cancer cells 
has the potential to behave like a stem cell[11].

Whether the stochastic model or the CSC model best 
reflects tumorigenesis/leukemogenesis, has significant 
impact on how cancer/leukemia should be treated[10]. 
In the stochastic model, the cells within a tumor are 
relatively homogeneous in terms of genetic makeup 
and function and therapy can be uniformly directed at 
the bulk of tumor cells. However, per the CSC model, 
tumorigenic pathways might operate differently in 
CSCs compared with the bulk cells and therapy must 
specifically target the CSCs in order to be truly effective. 
Most of the current targeted therapies against leukemia 
and cancer focuses on inhibiting the molecular drivers 
found in all cancer cells but do not necessarily target 
CSCs[11].

BIOLOGY OF LSCS 
CSC characteristics
The definition of a LSC is adapted from normal HSC: 
It is a cell that possesses the capacity to self-renew, pro­
liferates and gives rise to leukemic blasts, which are 
morphologically homogeneous but biologically hetero­
geneous[12]. Apart from self-renewal potential, dor­
mancy/quiescence and a protective stem cell niche are 
shared characteristics between HSCs and LSCs.

Self-renewal capacity: As the definition of CSCs is 
a functional definition, CSCs can thus only be defined 
experimentally by their ability to recapitulate the 
generation of a continuously growing tumor. Immuno­
deficient mice, such as the non-obese diabetic/severe 
combined immunodeficiency (NOD/SCID) mouse 
and newer generations of xenograft models, are used 
to functionally define human hematopoietic stem 
and progenitor cells as well as LSCs[13]. Long-term 
repopulating cells, thought to be LSC are able to be 
successfully engrafted in these mice over prolonged 
periods as well as in secondary recipients[2,14]. Bonnet et 
al[15] in the John Dick laboratory isolated subpopulations 
of cells from primary human AML bone marrow based 
on their immunophenotype and xenotransplanted 
them into NOD/SCID mice. It demonstrated that the 
CD34+CD38- expressing sub-population of AML cells 
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were capable of being serially transplanted in these 
immunodeficient mice[15,16]. Reflecting the emphasis on 
functional assessment, these cells were named as SCID 
leukemia-initiating cells (SL-IC) and are considered the 
equivalent of LSC.

Symmetrical vs asymmetrical cell division: Similar 
to HSCs, LSCs have the ability to undergo symmetrical 
self-renewing cell division, generating identical daughter 
stem cells that retain self-renewal capacity (expansion), 
or an asymmetrical self-renewing cell division, resulting 
in one stem cell and one more differentiated progenitor 
cell (maintenance)[12,17-19]. Normal stem cells are able 
to switch between symmetrical and asymmetrical 
division based on the demands of the tissue they are 
meant to maintain. During early embryogenesis normal 
stem cells undergo symmetrical cell division in order to 
expand the total pool of stem cells giving rise to tissues 
whereas in adult tissues stem cells give rise to mature 
cells though asymmetrical cell division[19,20]. There is 
increasing amount of evidence that in CSCs this delicate 
balance seems to be disturbed in favor of symmetric cell 
division[19,21,22]. For example, CSCs isolated from ERBB2-
expressing breast cancer have been demonstrated to 
prefer symmetric cell division compared to normal breast 
tissue stem cells[23]. Furthermore, the adenomatous 
polyposis coli tumor suppressor gene (APC) has been 
shown to paly a major role in regulating asymmetric cell 
division in drosophila and its mutational loss is suspected 
to lead to an expansion of CSCs by symmetric cell 
division[22,24,25].

Stem cell quiescence and exhaustion: Normal stem 
cells need to be quiescent to avoid exhaustion of a stem 
cell pool and to minimize the risk of oncogenic events[26]. 
In fact, stem cell exhaustion has been described as one 
reason for aging and as a consequence of the attempt 
of the body to prevent the development of cancer[27]. 
Aging leads to an accumulation of DNA damage in all 
cells of the body, including stem cells, which in turn 
leads to an increased risk of developing cancer. Aging 
stem cells are affected by sophisticated mechanisms 
cells have developed to suppress the development of 
cancer, mainly induction of senescence and apoptosis, 
which are mediated through telomere shortening and 
activation of tumor suppressor genes p16 and p53[28-30]. 
The diminished ability of aging HSC to reconstitute the 
hematopoietic system is demonstrated by prolonged 
myelosuppression after cytotoxic chemotherapy in older 
patients as well as age of the stem cell donor being 
significantly associated with overall and disease-free 
survival after hematopoietic stem cell transplant[31,32].

However, normal stem cells are also required to 
continuously replenish the cells that are lost in a tissue. 
In order to fulfill both purposes-avoid exhaustion as well 
as maintaining the cellular integrity of a tissue-stem cells 
undergo asymmetric cell divisions, which give rise to 
another stem cell as well as a rapidly dividing progenitor 
cells. These progenitor cells proliferate quickly for a 

limited amount of cell divisions and regenerate all cells in 
a tissue[33,34]. 

Similarly, LSCs are quiescent, which explains the 
difficulties to eradicate LSCs with standard chemo­
therapies that preferentially target rapid proliferating 
cells[35-37]. 

Key signaling pathways relevant for retaining 
stemness: Similar signaling pathways involved in the 
control of self-renewal of HSCs are also key elements 
maintaining stemness in LSCs (Figure 1). Among many 
others, these pathways include PI3K/Akt/mTOR[38], 
Wnt/beta-catenin[39,40], Hedgehog[41,42], NF-kB[43,44], 
Notch[45] and Bcl-2[46,47]. Several drugs targeting these 
pathways are in different stages of preclinical and 
clinical development (Figure 1).

Stem cell niche: The bone marrow niche is quintes­
sential for normal HSC to maintain their quiescence 
but at the same time enable HSC to generate cells in 
the blood stream to meet the organism’s needs[48]. 
The stem cell niche is formed by a complex network 
of different cells including vascular endothelial cells, 
perivascular mesenchymal cells, megakaryocytes, 
osteoblastic lineage cells, macrophages and nerve 
cells[49-53]. Dysregulation of the bone marrow niche plays 
an important role in preventing the detection of LSC 
by the immune system and protecting LSC from the 
effects of chemotherapy[48,54]. Similar to normal HSCs, 
LSCs are retained in the marrow niche by interactions 
between CXCR4, on stem cells, and CXCL12 (SDF-1), on 
osteoblasts and mesenchymal cells in the bone marrow 
niche[55,56]. Chemokine interactions through CXCL12 
can lead to up-regulation of vascular cell adhesion 
molecule-1 (VCAM-1) and very late antigen-4 (VLA-4) 
expression, which further strengthen LSC retention in 
the marrow niche[57,58] (Figure 1). The significance of 
the interaction between LSCs and the protective bone 
marrow niche is exemplified by the fact that elevated 
levels of CXCR4 and VLA-4 have been associated 
with poor response to chemotherapy and decreased 
survival[59-61]. Several therapeutic approaches attempt 
to break the dormancy of LSCs by induction of stem 
cell cycling with granulocyte-colony stimulating factor 
(G-CSF) and inhibition of the CXCR4-SDF-1 axis 
involved in LSC retention in the protective bone marrow 
niche[62,63] (Figure 1).

Identification of LSCs by surface markers 
Recent studies have shown that LSCs may reside not 
only in CD34+CD38-, but also in CD34+CD38+ and CD34- 
CD38+ compartments demonstrating the lack of a 
definitive phenotype for LSCs[64-66]. Several studies have 
shown that the CD34+CD38+ fraction has repopulating 
ability when immunosuppression is applied[18,67,68]. It 
was demonstrated that by treating mice with immuno­
suppressive antibodies, the CD34+CD38+ fraction of 
AML samples is able to initiate leukemia in immuno­
deficient mice[64]. Furthermore, by transplanting sorted 
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fractions of primary NPM-mutated AML into immuno­
deficient mice, it was shown that approximately one-
half of cases had LICs exclusively within the CD34- 
fraction, whereas the CD34+ fraction contained normal 
multilineage hematopoietic repopulating cells[66]. Most of 
the remaining cases had LICs in both CD34+ and CD34- 
fractions and when samples were sorted based on 
CD34 and CD38 expression, multiple fractions initiated 
leukemia in primary and secondary recipients (Table 1). 

Heterogeneity within the LSC population
Over the last years several groups have found a wide 
variety of other markers that appear to be expressed 
higher in LSCs than normal HSCs[14]. 

These include CD123, CD96, CLL-1, TIM3, CD33, 
CD13, CD44, CD47 and others[69-75] (Table 1). In 
essence, these studies suggest that leukemogenic 
activity is not restricted to the CD34+CD38- fraction and 
there is heterogeneity among patients in leukemogenic 
cell phenotype. Over the last years, there has been 
significant advancement in the understanding of the 

complexity and heterogeneity of human LSC. Several 
important observations have been made along the way 
of discovery.

LSC heterogeneity within a patient: First, there is 
heterogeneity of the stem cell population within the 
same patient as not all LSC have the same self-renewal 
capacity[10,76]. Use of lentiviral gene marking to track the 
behavior of individual leukemia initiating cells following 
serial transplantation has revealed heterogeneity 
in their ability to repopulate secondary and tertiary 
recipients and this enabled researchers to classify long 
term (LT-LSC) and short term (ST-LSC) LSCs[76,77]. 
LT-LSCs are defined by a long-termed persistence in 
xenotransplantion models given an extensive self-
renewal capacity while ST-LSCs have a reduced self-
renewal capacity and only a transient repopulation 
capability in xenotransplantation models. 

LSC heterogeneity based on the specific xeno
transplantation model used: The LSC phenotype 
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depends on what mouse model is used for functional 
assessment of stem cell properties of human AML 
cells[14] (Table 1). The bone marrow niche in mice differ 
from that of humans in terms of architecture, stromal 
cells, cytokines, growth factors, adhesion molecules 
and most importantly the immune cell composition, 
which potentially impairs growth of human HSC or 
LSC in the mouse bone marrow[78]. Normal HSCs and 
LSC are therefore more likely to be detected in more 
highly immunodeficient mice. As different xenotrans­
plantation mouse models display different levels of 
immunodeficiency they are associated with different 
levels of engraftment of normal human HSCs and 
LSCs[6,14]. In nude mice T cells are absent whereas in 
severe combined immunodeficiency mice (SCID mice) 
both B and T cells are inactivated. NOD/SCID mice, 
which harbor defects in T, B, and macrophage activity, 
support higher levels of human engraftment[14]. NOD/
SCID gamma (NSG) mice have almost no murine 
immune system left as a complete null mutation in the 
gene encoding the interleukin 2-receptor gamma chain 
blocks NK cell differentiation[79]. Similarly, NK cells can be 
depleted by treating NOD/SCID mice with anti-CD122 
antibodies[80]. In creating a supportive bone marrow 
niche for engraftment of human AML cells not only a 
suppression of the hosts immune system is essential but 

also a recreation of the cytokine environment supporting 
stem cell self-renewal and quiescence[14]. This has led to 
the development of mice models that express human 
cytokines like human SCF, GM-SCF, IL3 and TPO[13,81]. 

LSC heterogeneity between patients: It has 
become increasingly evident that the LSC phenotype 
varies between patients based on the specific subtype of 
leukemia that they suffer from (Table 1). As mentioned 
above, the majority of AML cells express CD34, however 
in AML cells carrying a mutation in NPM1 the CD34+ 
percentage is very low and LSC activity is exclusively 
restricted to the CD34- population[66]. Furthermore, 
specific subtypes of AML (in particular less aggressive 
subtypes) are significantly more difficult to be engrafted 
as they may have low progenitor cell frequency or are 
particularly sensitive to a specific cytokine or cell type 
missing in the particular xenotransplantation model[14]. 
For example, AML samples with a t(8;21) translocation 
were shown to be difficult to be engrafted and found 
to be dependent on signaling though the TPO/mpl 
pathway[82,83]. Subsequently, human TPO knock-in mice 
were shown to have improved engraftment for t(8;21) 
AML samples[84]. 

Cell of origin of LSCs
It is important to distinguish the concept of the cell of 
origin from the CSC[10]. The CSC has stem cell like pro­
perties and is capable of initiating and sustaining tumor 
growth, whereas the cell of origin refers to the normal 
cell in which the initial transforming event occurs. Impor­
tantly, cancer and LSCs do not have to arise from a 
normal stem cell, in fact, it is not entirely clear what the 
cell of origin for most LSCs is[11,12]. One hypothesis is 
that LSCs are only able to arise from normal HSCs but 
not from committed progenitor cells[10,15]. This theory is 
supported by the observation that LSCs and HSCs share 
many characteristics like self-renewal capacity controlled 
by genes like Bmi1 and PTEN and quiescence[35,85,86]. On 
the contrary, transformation might occur in a variety 
of cell types in the hematopoietic hierarchy, including 
HSCs and committed progenitors[10,87]. Experimental 
evidence in mice shows that LSCs may arise either 
through neoplastic changes initiated in normal self-
renewing HSCs or downstream progenitors cells[10,11,88]. 
Some oncogenes including MOZ-TIF, MLL-AF9 and 
MLL-ENL can induce LSCs regardless of what target 
cell population they are expressed in[88-90]. Other 
oncogenes like BCR-ABL, FLT3-ITD, Hoxa9 and Meis1 
were found to be oncogenic when expressed in HSCs 
but not when expressed in progenitor cells[39,89,91]. 
However, experimental data in murine studies might be 
confounded by non-physiologic levels of expression from 
exogenous promoters, such as transgenes or retroviral 
vectors[11]. This was demonstrated by the recent finding 
that in an MLL-AF9 knock-in model of the same construct 
shown to initiate disease in both HSCs and progenitor 
cells by retroviral expression only initiated leukemia 
from HSCs when expressed from the endogenous MLL 

  Cell surface 
  markers

Patient samples used Mouse model 
used

Ref.

  CD34+CD38- FAB M1, M4, M5 NOD/SCID [15,16]
  CD34+CD38+ CN-AML, MLL-ENL NOD/SCID + 

IVIG or 
anti-CD122

[18,64,67,68]

  CD34-CD38+ AML with NPM1 
mutation

NOD/SCID β-2 
microglobulin

NOD/SCID IL2 
receptor γ−/− + 

IVIG

[66]

  CD34+CD123+ FAB M1, M2, M4 NOD/SCID [69]
  CD34+CD38-CD96+ CK-AML, CBFB-

MYH11,
PML-RARA, 
AML1-ETO,

FAB 
M4

Rag2-/- IL2RG-/- [70]

  CD34+CLL1+ AMLs with FLT3-
ITD

NOD/SCID [71]

  TIM3+ FAB M1, M2, M4 NOD/Rag1-/- 
IL2RG-/-

[72]

  CD34+CD38- 
  CD33+CD13+

CN-AML, 
CBF-AML,
MLL-ENL

NOD/SCID [73]

Table 1  Markers of leukemia stem cells

FAB: French-American-British classification system; CN: Cytogenetically 
normal; CK: Cytogenetically complex; MLL-ENL: Mixed-lineage 
leukemia-eleven nineteen leukemia; NPM1: Nucleophosmin 1; CBFB-
MYH11: Core binding factor beta unit-Myosin heavy chain 11; PML-
RARA: Promyelocytic leukemia-retinoic acid receptor alpha; AML1-ETO: 
Acute myeloid leukemia 1 protein- eight twenty one; FLT3-ITD: Fms-
like tyrosine kinase 3 Internal tandem duplication; NOD/SCID: Non-
obese diabetic/severe combined immunodeficiency; Rag: Recombination 
activating gene; IL2RG: Interleukin 2 receptor subunit gamma.
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promoter[92]. In vivo clonality studies in humans suggest 
variations in the cells of origin and is was demonstrated 
that in patients with t(8;21) AML primitive CD34+CD90-

CD38- HSC like cells from leukemic bone marrow give 
rise to normally differentiating progenitors, whereas 
more mature CD34+CD90-CD38+ multi-potent progenitor 
like cells form exclusively leukemic blast colonies[93-95]. 
These observations suggest that the truth about the cell 
of origin might be reflected by a combination of both 
theories depicted above: Although the initial genetic 
mutation might happen in HSCs subsequent events 
occur in the committed progenitor pool, giving rise to 
LSCs[11].

IMPACT OF LSC ON CURRENT 
TREATMENT AND PROGNOSIS
Impact on prognosis
The LSC burden of AML patient is suggested to be a 
strong biomarker for clinical outcome in AML[96-100]. The 
ability of cells from AML patients to engraft NOD/SCID 
mice and the LSC frequency (simplistically characterized 
as CD34+CD38- frequency) are associated with worse 
clinical outcomes[99-101]. AML patients with greater than 
3.5% of CD34+CD38- AML cells show a median relapse 
free survival of 5.6 mo vs 16 mo in those with a lower 
percentage of CD34+CD38- cells[96]. Furthermore, 
poor clinical outcome seems to correlate with the 
degree to which the LSCs matched normal HSC gene 
expression[98]. 

It is noted that it is controversial whether the 
simplistically phenotypically defined LSC frequency 
(characterized as CD34+CD38-) in AML is prognostic 
and correlates with xenograft potential[14]. Also, as 
described above, LSCs can be found outside of the 
CD34+CD38- cell fraction. An improved characterization 
of subpopulations of LSCs is expected to be associated 
with improved prediction of prognosis. 

Impact on current therapies
It is thought that LSCs have a significant role in the 
relapse of leukemia as induction chemotherapy targets 
the bulk of blast cells but not LSC[102]. Minimal residual 
disease (MRD) is an important determinant for relapse 
and poor outcomes in AML and it is likely that the MRD 
cell population contains LSCs[103-105]. Thus, in order to 
improve outcomes in AML, MRD needs to be reduced 
to prevent disease relapse. LSCs seem to be only 
minimally affected by traditional chemotherapy[35,106]. 
Several reasons for chemotherapy resistance have been 
proposed, which are related to the key features of LSCs 
discussed above. LSCs are quiescent in the G0 phase of 
the cell cycle but chemotherapy is only effective in killing 
rapidly cycling cells[36,37]. LSCs are supported by a stem 
cell niche in the bone marrow protecting them from 
the effect of classical chemotherapy[65]. Furthermore, 
LSCs express high levels of ATP transporters, which are 
involved in extrusion of chemotherapeutic drugs from 

LSCs[107-109].
To improve survival in AML, traditional chemotherapy 

targeting the blast population needs to be combined 
with therapy specifically targeting LSCs to maintain 
prolonged remission.

FUTURE DIRECTIONS FOR THERAPY
Despite the recent increased interest in LSCs, experi­
mental studies have not been translated into improved 
survival outcomes for cancer patients. However, several 
new agents targeting LSC specific surface molecules 
and pathways as well as the LSC microenvironment 
remains under different stages of preclinical and clinical 
development (Table 2 and Figure 1). To rationally design 
clinical trials testing drugs for efficacy against LSCs, it 
is important to appreciate the fundamental differences 
between drug design targeting blast cells and LSCs[102]. 
Principles and challenges faced by targeting LSCs will be 
discussed first followed by an overview of various new 
therapeutic options targeting LSCs.

General principles and challenges faced by targeting 
LSCs
Limiting side effects: As LSCs and HSCs have many 
similar properties (see above), therapeutic approaches 
targeting LSCs also have the potential of causing 
severe side effects by eliminating healthy HSCs. To 
develop novel therapies with limited side effects, 
unique properties of LSCs have to be identified[102,110]. 
While expression of several surface markers is similar 
between normal HSCs and LSCs (CD34, CD38, CD71 
and HLA-DR), other surface antigens are only displayed 
on LSCs (CD33, CD90, CD117 and CD123)[110]. Apart 
from a similar immunophenotype, HSCs and LSCs 
share many pathways important for maintaining 
features of “stemness” like quiescence and self-renewal 
capacity[111]. Pathways, which are up-regulated in 
LSCs compared to normal HSCs, are the ideal target 
for therapeutic approaches directed towards LSCs. For 
example, the active form of NF-κB and bcl-2, which are 
associated with anti-apoptotic activity in cancer cells, 
are overexpressed in LSCs compared to normal HSC 
and drugs targeting both NF-κB and bcl-2 are in clinical 
development[36,46,112]. 

Using biomarkers for LSC eradication: To assess 
the efficacy of investigational therapies targeting 
LSCs, precise diagnostic methods are needed to 
assess the quantity of LSCs present in leukemia 
patients. Unfortunately, current characterization of LSC 
phenotype is not precise enough to permit real-time 
tracking of LSCs in vivo[113]. As discussed above, current 
strategies for purification do not yield functionally 
homogeneous population: The frequency of LSCs within 
the CD34+CD38- fraction in AML ranges from 1 in 104 
to 1 in 5 × 106 cells and several other populations 
contain LSCs as well[15]. Functional assessment of LSC 
frequency with xenotransplantation models offers a 
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more robust method to evaluate eradication of LSCs but 
might not be feasible in large clinical trials[102]. Similarly, 
methods for detecting MRD might guide decisions by 
detecting patients who do require additional therapy 
to prevent relapse. However, detecting MRD does not 
distinguish persistent LSCs, which may cause relapse, 
from residual blasts and normal HSCs that do not have 
tumor-initiating activity. Distinguishing residual LSCs 
from residual blasts might be accomplished by gene 
expression analysis showing reactivation of self-renewal 

  Drug Mechanism Selected 
clinical trials 

Phase Ref.

  Therapy targeting cell surface markers
     GO Anti-CD33

monoclonal 
antibody 

conjugated 
with 

calicheamicin, 
a potent 

antitumor 
anthracycline 

antibiotic

NCT00882102
NCT01869803
NCT00968071
NCT01409161
NCT00766116
NCT02724163
NCT00658814
NCT02473146
NCT00895934
NCT00006265
NCT00860639
NCT00927498
NCT00085709
NCT00195000
NCT00893399
NCT00017589

Phase 
I-III

[124,126,
130,132,133]

     Hu5F9-G4 Anti-CD47 
monoclonal 

antibody

NCT02678338 Phase 
I

[74,141]

     CSL360 Anti-CD123
monoclonal 

antibody

NCT00401739 Phase 
I

[69,134]

     DT388IL3/
     SL-401

Anti-CD123
recombinant 
immunotoxin

created by 
the fusion of 
diphtheria 
toxin with 
a ligand 

targeting the 
IL-3 receptor

NCT02113982
NCT00397579

Phase 
I-II

[69,134,136]

     MGD006/
     S80880

Anti-CD3 and 
CD123 DART

NCT02152956 Phase 
I

[137]

     H90 Anti-CD44
monoclonal 

antibody

N/A N/A [75,139]

     A3D8 anti-CD44
monoclonal 

antibody

N/A N/A [139]

  Therapy targeting LSC-specific molecular pathways
     Bortezomib Proteasome 

inhibitor
inhibits the 
degradation 
of the IkBa 
creating an 
anti-NF-kB 

effect

NCT00789256
NCT00382954
NCT01127009
NCT00666588
NCT00703300
NCT01534260
NCT00383474

Phase 
I-III

[36,143-147,
175-177]

    Parthenolide Inhibitor of 
NF-kB 

N/A N/A [149]

     Celastrol Inhibitor of 
Hsp90 and by 
extension NF-

kB

N/A N/A [150]

     4-hydroxy-
     2-nonenal

Product 
of lipid 

peroxidation, 
inhibiting the 
proteasome 
and NF-kB 

function

N/A N/A [151,152]

     BKM120
     CAL-101

PI3K 
inhibitors 

NCT01396499
NCT01833169
NCT00710528

Phase 
I-II

[38,153,154]

Table 2  Emerging therapy targeting leukemia stem cells
     GSK21110183
     MK-2206
     Perifosine

AKT 
inhibitors

NCT00881946
NCT01253447
NCT01231919
NCT00301938

Phase 
I-II

[38,155-157]

     Sirolimus, 
     everolimus, 
     temsirolimus

mTOR 
inhibitors

NCT01184898
NCT01611116
NCT01074086
NCT01074086
NCT01154439
NCT00775593
NCT02583893
NCT01869114
NCT01822015

Phase 
I-II

[38,158]

     Oblimersen
     (Genasense, 
     G3139)

bcl-2 antisense 
oligodeoxy
nucleotide

NCT00085124
NCT00039117
NCT00017589

Phase 
I-III

[46,159,160]

     Obatoclax 
     Mesylate 
     (GX15-070MS)

Small 
molecule bcl-2 

inhibitor

NCT00438178
NCT00684918
NCT00684918

Phase 
I-II

[161-163]

  Therapy targeting the LSC microenvironment
     G-CSF Mobilization 

of LSC from 
the protective 
bone marrow 

niche - > 
increased 

susceptibility 
to traditional 

chemotherapy

NCT00820976
NCT00602225
NCT00199147
NCT01723657
NCT01101880
NCT00943943
NCT00906945

Phase 
I-III

[165-168]

     Plerixafor
     (AMD3100)

CXCR4 
inhibitor

Decreased 
homing to the 
bone marrow 

NCT00943943
NCT00906945
NCT01236144 
NCT00512252
NCT01319864
NCT01352650
NCT02416908

Phase 
I-II

[61,135,178]

     AMD3465 CXCR4 
inhibitor

Decreased 
homing to the 
bone marrow 

N/A N/A [61,135,169,179]

     BMS-936564 Anti-CXCR4 
antibody

Decreased 
homing to the 

bone 
marrow

NCT01120457 Phase 
I

[172]

     Natalizumab Anti-VLA4 
antibody

Decreased 
homing to the 
bone marrow

N/A N/A [174]

GO: Gemtuzumab ozogamicin; DART: Dual-affinity retargeting molecule; 
N/A: Not available; LSC: Leukemia stem cell; IkBa: Inhibitor of kappa 
B alpha; CXCR4: C-X-C chemokine receptor type 4; mTOR: Mechanistic 
target of rapamycin; G-CSF: Granulocyte-colony stimulating factor.
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genes in LSCs but not in blast cells[88,114]. In preclinical 
development, the recently published Connectivity Map 
could be investigated for agents that attenuate a stem 
cell gene signature or induce a differentiated state[115,116]. 

Timing of LSC targeted therapy: Therapy targeting 
LSCs is effective in eradicating a small amount of 
leukemia initiating cells but not the bulk of blasts 
cells in the blood and bone marrow[102]. By combining 
drugs eradicating LSCs with standard chemotherapy 
targeting the bulk of the disease, both the aggressive 
proliferating process as well as the root of the leukemia 
can be targeted[117]. An example serves the successful 
combination of the anti-CD33 immunoconjugate anti­
body gemtuzumab ozogamicin (GO) with standard 
chemotherapy[118]. This is associated with challenges 
in a meaningful design of clinical trials in terms of the 
correct timing of these therapies. LSC targeting therapy 
can either be given after reduction of the bulk population 
with standard chemotherapy as remission therapy 
or concomitant with chemotherapy as an induction 
regimen[102]. Upfront combination would allow assessing 
for additive and/or synergistic properties between drugs 
and would allow targeting of LSCs early on in the disease 
process, which might improve outcomes[102]. On the 
other hand, LSC targeted therapy might be particular 
valuable as post-consolidation therapy as no current 
post-consolidation intervention has led to improved OS 
for patients with AML[102,119,120]. LSC targeting therapies 
have the potential to fill the gap as they eradicate the 
cells responsible for relapses of AML. 

Assessing clinical endpoints: Classical response 
criteria like CR and hematologic improvement might 
not be the best parameters to assess the efficacy of 
therapeutic approaches targeting LSCs as these drugs 
do not eradicate the bulk of blast cells but rather 
eliminate the rare population of LSCs[102]. Progression-
free survival (PFS), event free survival and overall 
survival (OS) may be a more relevant endpoint for 
assessing the effectiveness of LSC elimination than 
tumor response as they better account for whether 
the root of the leukemia has been eliminated[113]. 
Importantly, while LSC frequency was found to be 
prognostic for survival, response rates did not correlate 
with LSC burden[96]. Subsequently, drugs targeting LSCs 
may show little activity if tested in traditional phase 
I/II trials as a proper assessment of endpoints relevant 
for LSCs, like PFS and OS, is generally only feasible in 
a phase III trial with a larger numbers of patients and 
long-term follow-up[113,121]. 

One example for the importance of assessing 
relevant endpoints for LSC targeting therapy, is incon­
sistency of clinical trials evaluating the efficacy of 
GO[102]. Single agent studies of GO showed overall 
response rates only approaching 30% at best and 
GO was voluntarily withdrawn from the United States 
market in 2010 after a study showed no improvements 
in outcomes when used in combination therapy as well 

as increased fatal toxicity[122-124]. In contrast, other large 
clinical trials showed improvement in outcomes more 
relevant for therapies targeting LSC- event-free survival, 
disease-free survival and OS- despite no differences in 
disease response rates[125-128]. 

Targeting LSC surface molecules
Anti-CD33 antibodies: CD33 is found on LSCs alth­
ough it is not a consistent feature of all LSCs studi­
ed[73,118,129]. As discussed above, there have been con­
flicting reports surrounding the efficacy and safety of 
GO and currently GO is not available on the market in 
the United States or Europe[130]. Apart from the different 
endpoints studied, there are additional explanations 
for the discrepancies observed: First, the dose of 
daunorubicin as the combination partner of GO did vary 
between trials, although it is known that treatment with 
daunorubicin-based schedules of 90 mg/m2 for 3 d is 
more effective than similar schedules with daunorubicin 
at 45 mg/m2[131]. In the SWOG trial, which questioned 
the efficacy of GO, single bolus combined with dau­
norubicin at 45 mg/m2 was studied against a control 
group with daunorubicin at 60 mg/m2[124]. However, the 
best effect of GO was seen when higher dose of GO (3 
d at 3 mg/m2 for 2 cycles) was added to a daunorubicin 
regimen of 60 mg/m2 in both comparator groups[126]. 
Furthermore, GO seems to be quite active in acute 
promyelocytic leukemia (APL) as APL cells express high 
levels of CD33[132,133]. These results have prompted calls 
to reconsider the approval status of GO[130].

Anti-IL-3 receptor (CD123) antibodies: The inter­
leukin-3 receptor alpha chain (IL-3Rα or CD123) is 
strongly expressed in CD34+/CD38- LSCs and can be 
targeted with monoclonal antibodies[69,134]. The blockage 
of CD123 has pleiotropic anti-leukemic effects including 
inhibition of LSC homing to the bone marrow, activation 
of innate immunity and inhibition of intracellular signa­
ling events[135]. Several different agents targeting 
CD123 are currently evaluated in clinical trials: CD123 
targeting antibodies can either be naked antibodies 
or be conjugated to toxins (e.g., diphteriod toxin) or 
chemotherapeutic agents (chemo-immune conjugates) 
or be the backbone of a bi-specific T cell engager (BITE, 
e.g., CD3-CD123)[134,136,137] (Table 2).

Anti-CD44 antibodies: CD44 regulates interaction 
between LSCs and the bone marrow niche by controlling 
cell-cell adhesion and cell-matrix interaction through 
binding to hyaluronic acid, osteopontin, collagens and 
others[138]. 

Inhibition of CD44 with monoclonal antibodies was 
shown to reduce the numbers of LSCs in NOD/SCID 
mice and to increase the survival of the primary reci­
pient mice as well prevent engraftment into the secon­
dary receipt mice[75,139] (Table 2). 

Anti-CD47 antibodies: CD47 is overexpressed on 
LSCs and high expression of CD47 is associated with 
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worse outcomes[74]. By interaction with the extracellular 
region of signal-regulatory protein alpha (SIRPα) 
on phagocytic cells, LSCs deliver a “do not eat me” 
message to these phagocytic cells[140]. Antibodies 
blocking the interaction between CD47 and SIRPα 
promote LSC phagocytosis and are in development 
(Table 2)[74,141].

Targeting LSC-specific molecular pathways
NF-κB signaling pathway: Bortezomib is able to 
suppress the NF-κB signaling pathway by inhibiting the 
destruction of IκB, a cellular inhibitory protein of NFκB, 
by the ubiquitin-proteasome pathway[142]. Several clinical 
trials are examining the efficacy of Bortezomib targeting 
AML LSCs (Table 2): Two clinical trials combining 
Bortezomib with Cytarabine and Anthracyclines resulted 
in CR rates of 61% and 65%[143,144], whereas other trials 
that co-administrated Bortezomib with other drugs did 
not show encouraging CR rates[145-147]. Several other 
inhibitors of NF-κB signaling are in different phases of 
development (Table 2)[148-152]. 

PI3K/AKT/mTOR pathway: The PI3K/AKT/mTOR 
pathway is of utmost importance in regulating cellular 
growth, survival, and metabolism and is frequently 
dysregulated in cancers and AML[38]. A multitude of 
PI3K inhibitors[153,154], AKT inhibitors[155-157] and mTOR 
inhibitors[158] is currently investigated for their efficacy 
targeting LSCs in clinical trials (Table 2).

Bcl-2 pathway: LSCs, similar to other tumor cells, 
are able to avoid apoptosis due to overexpression of 
bcl-2[46]. Currently, bcl-2 inhibition is investigated in 
clinical trials in form of the bcl-2 antisense oligodeo­
xynucleotide oblimersen[159,160] and the small molecule 
inhibitor of bcl-2 obatoclax[161-163] (Table 2).

Targeting the LSC microenvironment
Approaches targeting the interactions of LSCs with the 
bone marrow niche focus on breaking the dormancy 
of LSCs in the bone marrow in order to make them 
sensitive to traditional chemotherapy[62,164]. 

LSC mobilization: LSC mobilization from the marrow 
niche can be achieved by nonspecific stimulators like 
G-CSF, Interferon-α and Arsenic trioxide[62]. Using the 
NOD/SCID/IL2rgamma (null) mouse model, Saito 
et al[165] showed that quiescent human AML LSCs, at 
first resistant to cytarabine, start proliferating and 
become susceptible to cytarabine once exposed to 
G-CSF. Combining chemotherapy with G-CSF leads to 
significantly increased survival of secondary recipients 
after transplantation of leukemia cells compared with 
chemotherapy alone. Furthermore, they showed that 
treatment with G-CSF before cytarabine did not increase 
apoptosis of normal HSCs making this approach a 
particular attractive option for targeting LSCs but at 
the same time avoiding side effects from depletion of 
HSCs. The data from clinic trials using G-CSF priming 

in combination with chemotherapy are conflicting. 
Löwenberg et al[166] randomized 640 newly diagnosed 
AML patients to receive cytarabine plus idarubicin with 
G-CSF (321 patients) or without G-CSF (319 patients) 
for the first cycle of induction of chemotherapy. Patients 
in CR after induction chemotherapy plus G-CSF had 
a higher rate of disease-free survival than patients 
who did not receive G-CSF (42% vs 33% at four 
years, P = 0.02), owing to a reduced probability of 
relapse (relative risk, 0.77; P = 0.04). Other studies 
did not show a benefit of adding G-CSF to traditional 
chemotherapy regimens[167,168]. These different res­
ponses to G-CSF might be explained by differences in 
the group of patients included in these trials[63]. In the 
trial by Löwenberg et al[166] patients with standard-risk 
AML benefited from G-CSF therapy whereas G-CSF 
did not improve the outcome in the subgroup with an 
unfavorable prognosis. In the trials without improvement 
with G-CSF, patients had a more unfavorable prognosis 
based on age, cytogenetic abnormalities or response to 
previous treatment. Several clinical trials are ongoing 
to investigate the efficacy of G-CSF in combination of 
chemotherapy in different risk groups of AML (Table 2).

Inhibition of homing: LSC dormancy can be targeted 
by specifically interrupting the CXCR4-CXCL12 and 
VCAM-VLA4 axis as well as inhibiting CD44 and CD123 
on LSCs to prevent homing of LSCs to the bone 
marrow.

CXCR4-CXCL12 axis: SDF-1 was shown to promote 
survival of AML cells, whereas addition of neutralizing 
CXCR4 antibodies, SDF-1 antibodies, or AMD3100 
significantly decreased their survival[169]. Furthermore, 
pretreatment of primary human AML cells with 
neutralizing CXCR4 antibodies blocked their homing into 
the BM and spleen of transplanted NOD/SCID/B2mnull 
mice[169]. Additionally, CXCR4 inhibition with AMD3465 
was shown to increase the sensitivity of FLT3-mutated 
leukemic cells to the apoptogenic effects of the FLT3 
inhibitor sorafenib[170]. Recently a phase 1/2 study 
examined the efficacy of the CXCR4 inhibitor plerixafor 
in combination with mitoxantrone, etoposide, and 
cytarabine in 52 patients with relapsed or refractory 
AML[171]. Overall CR was found to be 46% and corre­
lative studies demonstrated a 2-fold mobilization in 
leukemic blasts into the peripheral circulation without 
evidence of symptomatic hyperleukocytosis or delayed 
count recovery. BMS-936564, a fully human IgG4 
monoclonal antibody against CXCR4, exhibits antitumor 
activity in cytarabine-resistant mouse xenograft models 
of AML and is currently tested in a phase I clinic trial 
(Table 2)[172].

VCAM-VLA4 axis: Integrin alpha4beta1 (VLA4) 
mediates adhesion of LSCs to stromal cells and extra­
cellular matrix in the marrow niche and can be blocked 
by the monoclonal antibody Natalizumab[59,69,173]. 
AML cells were shown to de-adhere from a layer of 
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immobilized human VCAM1 expressing human stromal 
cells when exposed to Natalizumab and NSG mice 
transplanted with human AML cells survived significantly 
longer when they received intraperitoneal Natalizumab 
injections[174].

CONCLUSION
AML remains one of the most difficult malignancies 
to treat. Despite significant advancements in the 
understanding of disease biology, this has not been 
translated yet into new treatment modalities improving 
outcomes. The relapse of AML is frequent and is 
responsible for the inability to cure AML. LSCs are 
understood to be the root of relapse and their presence 
has been found to be prognostic for the disease course. 
Unfortunately, LSCs are not easy to target as they are 
quiescent, able to self-renew and well protected by 
a supportive bone marrow niche. Furthermore, their 
inconsistent phenotype and similarity to normal HSCs 
hamper specific drug development. Nevertheless, a 
multitude of potential targets have been identified 
and are currently tested in different phases of clinical 
and preclinical development. Successful eradication of 
LSCs will require combination of different strategies 
including targeting LSC specific surface molecules 
and pathways as well as interactions of LSCs with the 
microenvironment. Furthermore, clinical trials have 
to be designed in a way that they are able to detect 
a specific effect of LSCs, which is easy to miss in a 
traditional trial design. Overall, targeting LSCs has the 
promise to not only effectively reduce disease burden 
but to eradicate the root of leukemia itself.
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