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Systematic Analysis of Quantitative Logic Model
Ensembles Predicts Drug Combination Effects on Cell
Signaling Networks

MK Morris, DC Clarke, LC Osimiri and DA Lauffenburger*

A major challenge in developing anticancer therapies is determining the efficacies of drugs and their combinations in
physiologically relevant microenvironments. We describe here our application of “constrained fuzzy logic” (CFL) ensemble
modeling of the intracellular signaling network for predicting inhibitor treatments that reduce the phospho-levels of key
transcription factors downstream of growth factors and inflammatory cytokines representative of hepatocellular carcinoma
(HCC) microenvironments. We observed that the CFL models successfully predicted the effects of several kinase inhibitor
combinations. Furthermore, the ensemble predictions revealed ambiguous predictions that could be traced to a specific
structural feature of these models, which we resolved with dedicated experiments, finding that IL-1a activates downstream
signals through TAK1 and not MEKK1 in HepG2 cells. We conclude that CFL-Q2LM (Querying Quantitative Logic Models) is a
promising approach for predicting effective anticancer drug combinations in cancer-relevant microenvironments.
CPT Pharmacometrics Syst. Pharmacol. (2016) 5, 544–553; doi:10.1002/psp4.12104; published online 27 August 2016.

Study Highlights

WHAT IS THE CURRENT KNOWLEDGE ON THE

TOPIC?
� Drug combinations are most likely needed to effec-

tively address complex pathologies such as cancer and

inflammatory diseases. However, there has been little

demonstration of capability for ascertaining efficacious

combinations, because experimental studies become

impractical and computational models have generally not

been adequate for predicting drug combination effects

especially across the anticipated landscape of diverse

physiological contexts.
WHAT QUESTION DID THIS STUDY ADDRESS?
� This study addressed the issue of predicting drug

combination effects across a spectrum of diverse

physiological contexts, for hepatocellular carcinoma

cells stimulated by growth factors and inflammatory
cytokines.
WHAT THIS STUDY ADDS TO OUR KNOWLEDGE
� We constructed a constrained fuzzy logic model for
signaling network activities in hepatocellular carcinoma
cells stimulated by various permutations of IL-1a, TNFa,
TGFa, and/or IGF1. This model then was able to predict
effects of combinations of small molecule targeted kinase
signaling inhibitors differentially under the diverse stimula-
tion conditions.
HOW THIS MIGHT CHANGE DRUG DISCOVERY,
DEVELOPMENT, AND/OR THERAPEUTICS
� Constrained fuzzy logic modeling may be useful for
prediction of drug combination effectiveness across
broad physiological contexts.

The treatment of many cancers remains elusive, such that

new drugs and therapeutic strategies are needed. An impor-

tant determinant of lesion responsiveness to anticancer ther-

apies is tissue context, or the “tumor microenvironment.”1

Tissue context includes extracellular ligands such as growth

factors and inflammatory cytokines, which regulate the activi-

ties of intracellular signaling networks, and which can potently

affect the sensitivities of tumor cells to kinase-targeted

drugs.2,3 Inflammatory microenvironments are particularly

relevant to the pathogenesis of hepatocellular carcinoma

(HCC), because inflammation precedes the cirrhotic environ-

ment that promotes carcinogenesis and tumor progression.4,5

Existing HCC treatments do not target these microenviron-

mental factors, which may explain in part their deficient clini-

cal effectiveness.5,6

Preclinical studies of new therapies should involve effica-

cy tests in physiologically relevant microenvironments.

Existing experimental methods for simulating microenviron-

ments include orthotopic xenograft models7 and tissue-

engineered constructs.8,9 Both, however, are limited by

throughput and feasibility. The challenge is compounded

by the increasing need to test combinations of therapies.

For example, the main chemotherapy for HCC, the multiki-

nase inhibitor sorafenib, has been tested for enhanced effi-

cacy with numerous other drugs.10 The feasibility problem

for testing drug combinations is well established: �2,000

US Federal Drug Administration-approved drugs exist,

such that it is infeasible to exhaustively test all possible

combinations of drugs that might be relevant to a particular

disease. The problem of testing drug combinations in realistic
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microenvironments is a major challenge for drug discov-

ery going forward.
Computational modeling is emerging as an efficient means

for examining the efficacy of therapies and their combina-

tions across diverse microenvironmental contexts. A spec-

trum of frameworks exists for the modeling of cell signaling

networks, each with its own strengths and weaknesses.11–13

We recently established a formalism for modeling quantita-

tive logic relationships called constrained fuzzy logic (CFL),

which allows for the modeling of larger networks than would

be feasible using differential equations while providing

enhanced insights compared to simpler Boolean logic mod-

els.14 We have also developed software named Querying

Quantitative Logic Models (Q2LM) to efficiently simulate CFL

models in response to multiple microenvironments and drug

treatments.15 However, the capability of CFL models to gen-

erate accurate predictions concerning signaling inhibitors

has not yet been rigorously evaluated.
The goal of the present study was to assess the validity of

predictions from Q2LM-driven simulations of CFL models

trained to experimental data featuring combinations of kinase

inhibitors applied to cancer cells in diverse microenviron-

ments. We focused on HCC as our main application

because of its treatment intractability. A further consideration

was that our study implicitly assessed the effects of model

nonidentifiability on prediction accuracy because the models

represent large networks but are built on limited experimen-

tal data. A secondary goal of our study, therefore, was to

assess whether discrepant predictions could guide the col-

lection of new data useful for further constraining the models

and enhancing identifiability. We accomplished our first goal

by successfully identifying drug combinations that inhibit

tumor-promoting signaling activities across microenviron-

ments, including the heretofore untested combined inhibition

of transforming growth factor-b-activated kinase 1 (TAK1)

and phosphoinositide-3-kinase (PI3K). We accomplished our

second goal by investigating discrepant predictions regarding

whether interleukin (IL)-1a could signal via MEK kinase 1

(MEKK1) in addition to TAK1, confirming via dedicated

experiments that TAK1 is the principal target. We conclude

that systematic modeling of signaling networks using CFL-

Q2LM is a promising approach for ascertaining combination

anticancer therapies in diverse microenvironments.

METHODS

Detailed methods are provided as Supplementary

Information.

Study design
Our study consisted of four parts: 1) calibration of the CFL

models, 2) Q2LM-mediated predictions of anticancer effica-

cy, 3) validation experiments, and 4) follow-up experiments

to address discrepant predictions. To calibrate the models,

we measured the levels of 17 intracellular signaling

phospho-proteins in the lysates of HepG2 HCC cells that

we had sequentially treated with combinations of four

small-molecule inhibitors and four growth factors or inflam-

matory cytokines, each at various doses (Figure 1,

Supplementary Tables 1–3). The small-molecule inhibitors
targeted MEK1, p38 MAPK, mTOR, and PI3K. Each of the
cytokine/growth factor conditions mimicked one of three
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Figure 1 Initial dose–response dataset. We measured phospho-
protein levels in response to cotreatments consisting of different
doses of small-molecule inhibitors and cytokine/growth factor stimu-
lation (see Supplementary Tables 1, 2, for abbreviation definitions).
The cytokines and growth factors and their relative doses
(0 5 absent, 1 5 maximum dose) are listed along the right side of
the plot, while the inhibitors and their relative doses are listed along
the left side of the plot. The phospho-proteins are listed along the
top of the plot (see Supplementary Table 3 for abbreviation defini-
tions). The box colors indicate the phospho-protein levels relative to
those observed in vehicle-treated cells. For each signaling protein,
the normalized data represent the relative fold change of signal post-
stimulation compared to its basal value. Relative fold change has
been scaled such that the maximum for each signal is one49; The
yellow and purple colors scale with the magnitude of increase or
decrease, respectively. The gray boxes denote phospho-proteins
whose kinase activities were inhibited by the inhibitor, such that their
phospho-levels did not correspond to their kinase activities.
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microenvironmental scenarios: “Inflammatory Environments”—

IL-1a and/or tumor necrosis factor alpha (TNFa) stimulation;

“Growth Environment”—transforming growth factor alpha

(TGFa) and/or IGF1 stimulation; and “Inflammatory Growth

Environment”—TGFa in combination with IL-1a or TNFa stimu-

lation. Based on the modeling predictions, we employed

additional inhibitors against TAK1 and IjB kinase (IKK) (Sup-

plementary Table 1) in validation experiments, in combination

with some of the previously used inhibitors. The anticancer

efficacy was defined as reductions in the phospho-levels of six

transcription factors that have each been implicated in

HCC (cJun,16–18 Hsp27,19 IjB-a,20 CREB,21,22 S6RP,23 and

p70S6k24).

Experiments
For most experiments, we treated serum-starved HepG2

HCC cells seeded at 1,500 cells/mm2 with combinations of

small-molecule-kinase inhibitors PD325901, ZSTK474, rapa-

mycin, PHA818637, (5Z)27-oxozeaenol, and BMS-345541

(Supplementary Table 1) for a minimum of 30 minutes. We

then added cytokines and growth factors to the cell media for

an additional 30 minutes (IGF-1, IL-1a, TGF-a, and TNF-a)

(Supplementary Table 2). At the end of the experimental

treatments, we aspirated the media, washed the cells with ice-

cold phosphate-buffered saline, snap-froze them with liquid

N2, and stored them at 2808C. We used multiplexed bead-

based flow cytometric immunoassays to measure the relative

levels of 17 phospho-proteins (Supplementary Table 3). For

the short-interfering RNA (siRNA) experiments, we transiently

transfected HepG2 cells with siRNA pools targeting MEKK1

and TAK1, as well as a nontargeting control pool and a fluo-

rescently labeled siRNA. Approximately 70 hours posttrans-

fection, we treated the cells with the indicated stimulatory

ligands and processed them for subsequent immunoblot or

quantitative reverse-transcriptase polymerase chain reaction

analyses.

Computational modeling
We implemented a modified version of our CFL algorithm.14

The workflow consisted of data normalization, prior knowl-
edge network (PKN) construction, model simulation, and
model training (topology and parameter estimation). We
constructed the PKN (Supplementary Figure S1) based
on the one from Morris et al.14 but extended it to include
information describing phosphorylation of different protein
domains. We modified the CellNOpt training process14 to
add a PKN processing step that added nodes and interac-
tions to allow for the algorithm to capture the effects of inhi-
bition on the basal signal values (Supplementary
Figure S2). We also modified the training algorithm to
select transfer functions from a predefined suite of nine
transfer functions consisting of a single Hill coefficient
(n 5 3) and all combinations of EC50 5 {0.3, 0.5, 0.7} and
g 5 {0.3, 0.7, 1} for the estimation of all Hill equations.

We applied the Q2LM algorithm15 to the resulting CFL
model ensemble, which enabled us to efficiently generate
model predictions. Q2LM provides a convenient structure for
addressing the following question: What inhibitors, alone or in
combination, accomplish a predefined task under different
environmental conditions? The software compares conditions
with inhibitors to those without and determines the inhibitor
treatments that accomplish a defined goal such as reducing
the activity of a protein or set of proteins by a specific amount.

RESULTS
Calibration of the CFL models
Our dataset reproduced the known effects of TGFa on
ERK, MEK, and Akt and those of TNFa and IL-1a on IjB-a,
JNK, and c-Jun (Figure 1). In addition, the expected inhibi-
tor effects were evident, with higher doses of the MEK
inhibitor reducing phospho-ERK levels, PI3K inhibitor reduc-
ing Akt and GSK-3 phospho-levels, and high doses of the
p38 inhibitor reducing CREB phosphorylation in response
to inflammatory cytokines (Figure 1). IL-1a and TGF-a
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Figure 2 Ensemble of trained CFL models. The prior knowledge network shown in Supplementary Figure 3 was trained to the data
from Figure 1. Green nodes denote stimulatory cytokines or growth factors, blue nodes indicate measured phospho-proteins, orange
nodes denote inhibited kinases, and white nodes denote nonmeasured or nonperturbed proteins whose inclusion in the models is nec-
essary for logical consistency. Gray/black edges denote activation while orange-red edges denote inhibition. The relative thickness and
darkness of the edges are proportional to the number of models of the ensemble in which the edge is included.
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activated more targets than TNF-a and IGF-1, and cotreat-
ing cells with IL-1a and TGF-a increased the phospho-
levels of virtually all 17 proteins (Figure 1).

Next, we implemented the CFL algorithm to generate an
ensemble of models capable of describing the data. We
applied the CellNOpt training procedure �1,000 times and
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Figure 3 CFL model goodness of fit. (a) The plot layout is the same as for Figure 1, but in this case the box shading color is propor-
tional to the goodness-of-fit, with green corresponding to a better and red to a less good fit. The black lines represent the data, the
blue lines represent the mean of the model ensemble predictions, and the pink lines represent the individual model predictions. (b)
Scatterplot showing the average model-predicted values on the x-axis and experimentally measured values on the y-axis (R2 5 0.85).
The red line denotes the line of identity (i.e., x 5 y).

Table 1 Scenarios simulated by Q2LM for predicting therapeutic effects

Simulated “scenario”

Environmental stimuli

(partial and full activation)

Inhibitor perturbations

(different doses of single

inhibitors and all pairs)

Inflammatory TNFa and IL-1a alone or in combination TAK1, p38, IKK, PI3K, MEK

Growth TGFa and IGF1 alone or in combination TAK1, p38, IKK, PI3K, MEK

Mixed growth and inflammatory TGFa in combination with TNFa or IL-1a TAK1, p38, IKK, PI3K, MEK
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selected the top 120 models that best fit the data for subse-

quent analyses. The resulting consensus network topology

and the fit of the ensemble of models to the data are shown

in Figures 2 and 3, respectively. We observed that the mod-

els generally fit the data well, as demonstrated by the majori-

ty of the boxes in Figure 3a being colored green and the

strong correlation between observed and predicted values in

Figure 3b. However, some analytes, in particular phospho-

STAT3, were associated with several conditions for which the

model fits were poorer. Furthermore, some treatments, such

as TGFa 5 0.5 (no inhibition), were associated with several

analytes whose data were less well fit by the models. In both

cases, the poorer fits occurred in single samples within a

dose–response, suggesting that noise in the data was

responsible, rather than deficiencies with the models.
To further investigate the quality of our models, we

performed a 10-fold cross-validation (Supplementary

Figure S3). In this test, we randomly divided the data into

10 subsets and reserved one as a test set while training

with the remaining nine data subsets. We repeated this pro-

cedure for all 10 subsets and observed that the fit of the

models trained on 90% of the data to the remaining 10%

was slightly worse than, but still comparable to, their ability

to fit the data on which they were trained (R2 5 0.79 for the

training data vs. 0.71 for the test data). Also, the difference

in the fit to training and test data was not dependent on

model size as measured by selection threshold. Together,

these results indicated that the models were predictive and

not overfit.

Predicting anticancer efficacies using Q2LM
We next investigated the ability of the models, in an

“ensemble” sense, to predict how several kinase inhibitors

would alter the phosphorylation state of key signaling net-

work nodes across the diverse microenvironmental scenari-

os using the Q2LM algorithm. In this case, we specified

“Scenarios” consisting of a Microenvironment, which con-

sisted of doses of cytokines and growth factors applied

alone or in combination, and a Perturbation, which con-

sisted of doses of small-molecule inhibitors applied alone

or in combination (Table 1). The perturbation targets were

TAK1, p38, IKK, PI3K, and MEK. Note that TAK1 and IKK

inhibitions were not tested in the original dataset, such that

they represent a means to validate the approach. We simu-

lated 48 environmental conditions in combination with five

inhibitors at four dose levels alone or in combination. In

total, we simulated 8,688 unique scenarios with the ensem-

ble of trained CFL models from Figure 2. We then

searched for inhibitor conditions that the models predicted

would reduce the phospho-levels of several transcription

factors implicated in hepatocellular carcinoma. Specifically,

we selected those that would decrease phosphorylation of

all transcription factors in one of two sets: cJun, Hsp27,

and IjB-a (downstream of inflammatory stimuli) or CREB,

S6RP, and p70S6k (downstream of growth stimuli).

Validation experiments
We performed subsequent experiments to test several

inhibitor treatments that the models predicted would have

broad downstream effects. The experiments involved per-

turbations and combinations that were not included in our

training dataset. For cases in which multiple inhibitor combi-

nations were predicted to be effective, we chose the one

with fewest inhibitors. Although we were initially interested

in evaluating TAK1 inhibition in isolation, its inhibitor, 5Z-7-

Oxozeaenol, appeared to inhibit MEK as well, which had

been previously observed by us and others.25,26 Henceforth

in the model, we specified that this inhibitor acted to inhibit

both TAK1 and MEK.
Experimental data for these prediction tests are shown in

Figure 4, and comparison between predictions and valida-

tion test outcomes are shown in Figure 5. We found that,

for most protein signals, the top 120 CFL models accurately

predicted whether the signal would decrease the true-

positive rate of 86% and false-positive rate of 44%

(Figure 5a,b). We emphasize, however, that the computed

accuracy of the predictions was dependent on the exact

threshold for considering a decrease significant. In the case

of the experimental data, this threshold was applied to the

percent decrease measured, whereas for the simulated val-

ues, the threshold was applied to the average percent

decrease predicted by the models.
In order to fully characterize our prediction accuracy, we

computed receiver operator characteristic (ROC) curves by

varying these thresholds and calculating the true-positive

rate (TPR) and false-positive rate (FPR) for each threshold

pair. The ROC curves indicated that model predictions
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Figure 4 Dataset for model validation. We performed indepen-
dent experiments to generate data against which the model pre-
dictions were compared. The plot layout is similar to that of
Figure 1 except the relative changes compared to unstimulated
value were additionally shown using black lines. The color map
is the same as that used in Figure 1. Note that while we
intended to test TAK1 inhibition in isolation, the inhibitor com-
pound features off-target activity towards MEK. Thus, conditions
featuring this inhibitor are denoted by (TAK1 1 MEK).
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accurately predicted significant decreases in phosphorylation
of single (Figure 5c) and pairs (Figure 5d) of transcription
factors. These results demonstrate the effectiveness of the
CFL-Q2LM approach in predicting drug combinations that
can manipulate cancer cell signaling in a targeted manner.

We observed that most models of the ensemble agreed on
the predictions for a given scenario in the Q2LM simulations.
However, we also observed several ambivalent model predic-
tions, in which some models predicted that a signal would sub-
stantially decrease, whereas others did not. In extreme cases,
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gle (c) and pairs of (d) phospho-proteins. Each point color/shape indicates a different experimental data threshold to consider a
phospho-signal as “decreased.” The true-positive rate (TPR, or sensitivity) indicates that the model accurately predicted that the
phospho-protein levels decreased below the indicated percentage, whereas the false-positive rate (FPR, 1-specificity) denotes that the
model accurately predicted cases for which the levels did not drop below the indicated percentage. (e) Bimodal predictions of phospho-
cJun levels in response to IL-1a and TAK1, PI3K, and MEK inhibition. (f) Topological basis of the ambivalent cJun predictions. We
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hand corner between il1a and map3k1).
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this ambivalence yielded a bimodal prediction of response of a

signaling node to an inhibitor. For example, we observed a

bimodal distribution for the predicted level of phospho-cJun in

conditions with IL-1a stimulation and TAK1 and PI3K inhibition

(Figure 5e). We conclude that the model ensemble as a whole

was predictive of the data but that in some cases ambivalent

predictions required further investigation.

Exploiting prediction imprecision to refine network

topology
We hypothesized that the discrepant predictions were

caused by differences in the topologies between models in

the ensemble. To test this hypothesis, we systematically

compared the topologies of models that predicted that the
signal decreased under the relevant scenarios to those
that did not by plotting the fraction of models in each set
that contained each interaction in the processed PKN
(Figure 5f). We found that all models that predicted a lack
of decrease in phospho-cJun in the relevant scenarios con-
tained an edge linking IL-1a and MEKK1, whereas the mod-
els that predicted phospho-cJun would decrease did not
contain this interaction. The fact that phospho-cJun did
decrease in the experimental test of this prediction
(Figure 4) indicated that models that did not contain this
interaction were more able to make more accurate cJun
predictions. We viewed the edge linking IL-1a and MEKK1
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as particularly interesting because it implicated MEKK1 as
a key node in the network that could allow growth factors to
activate some inflammatory pathways, which could exacer-
bate the tumor phenotype. In contrast, the models predicted
that inflammatory cytokines activated only proinflammatory
signaling pathways primarily through TAK1.

Does IL-1 signal through MEKK1 in HepG2 cells?
Given the potential importance of MEKK1, we experimentally
tested whether IL-1 signaled through MEKK1 in HepG2 cells.
MEKK1 is generally not considered part of canonical IL-1 sig-
naling27 but it is activated downstream of IL-1 signaling in
some cell types28 such that its inclusion in our PKN was justi-
fied. We first checked whether MEKK1 was expressed and
functional in HepG2 cells. A search of online databases
revealed that MEKK1 mRNA is present in HepG2 cells at
higher levels than in normal liver samples as assessed by
microarray analysis (CellMinerHCC database29). MEKK1 pro-
tein has also been detected in HepG2 cells (Swiss-2DPAGE
database30). Exogenously expressing wildtype or dominant-
negative forms of MEKK1 can respectively activate31 or inhib-
it32 JNK signaling in HepG2 cells. We were able to detect
MEKK1 mRNA in our HepG2 cells using quantitative reverse-
transcription polymerase chain reaction (qRT-PCR) (see
below) but we were unable to detect MEKK1 protein via
immunoblotting using an antibody that is capable of detecting
endogenous MEKK1 in other cell lines.33

We next exposed HepG2 cells to stimuli known to induce
JNK phosphorylation. The stimuli included lysophosphatidic
acid (LPA), sorbitol, and cold stress, each of which cause
MEKK1-dependent JNK phosphorylation in mouse embryon-
ic cells,34 as well as thrombin,35 TGF-a, TNF-a, and IL-1a,
for which MEKK1 involvement is unknown. Sorbitol and IL-
1a strongly induced JNK phosphorylation, thrombin and
TNF-a induced weak JNK phosphorylation, and LPA, cold
stress, and TGF-a failed to induce observable JNK phos-
phorylation (Figure 6a,b). In all cases, the putative TAK1
inhibitor (5Z)27-oxozeaenol inhibited JNK phosphorylation
(Figure 6a). However, the inhibitor is nonspecific, such that
this result alone was insufficient for demonstrating that TAK1
was the principal kinase operating downstream of IL-1.

To ascertain a possible role of MEKK1 acting down-
stream of sorbitol and thrombin, we reduced MEKK1 levels
in HepG2 cells using siRNA, followed by treating the cells
with the various stimuli known to activate MEKK1 and mea-
suring JNK phosphorylation. MEKK1 siRNA treatment
reduced JNK phosphorylation in the thrombin-treated cells
but not the sorbitol-treated cells (data not shown, but see
below), which suggested that thrombin could serve as a
positive control for MEKK1 signaling.

To discern the roles of MEKK1 and TAK1 in IL-1 signal-
ing in HepG2 cells, we treated cells with siRNAs against
MEKK1 and TAK1 as well as an siRNA with a scrambled
sequence that served as a negative control. We then
applied thrombin and IL-1a in the presence and absence of
(5Z)27-oxozeaenol and measured JNK phosphorylation.
MEKK1 knockdown reduced phospho-JNK levels in
response to thrombin but not IL-1a (Figure 6c,d). Quantita-
tive RT-PCR of mRNA from cells treated in parallel with the
siRNA showed that MEKK1 mRNA was reduced by 60–65%

in MEKK1-knockdown cells vs. those treated with control
siRNA. TAK1 siRNA had little to no effect on either thrombin-
or IL-1a-induced JNK phosphorylation (Figure 6c,d), where-
as treatment with (5Z)27-oxozeaenol abolished JNK phos-
phorylation. However, the knockdown of TAK1 protein with
TAK1 siRNA was partial (41%; Figure 6e), implying that
residual TAK1 could have phosphorylated JNK. Total JNK
levels were unaffected by the various siRNA treatments
(Figure 6f). Taken together, the data indicate that MEKK1 is
expressed and functional in HepG2 cells but that it is not a
major mediator of signaling downstream of IL-1a.

DISCUSSION

The primary goal of our study was to assess the validity of
predictions from Q2LM-driven simulations of calibrated CFL
models regarding combined inhibitor effects on cancer cell
signaling in diverse microenvironments. We achieved this
goal by identifying drug combinations that decreased the
phospho-levels of transcription factors implicated in HCC in
simulated progrowth and proinflammatory microenviron-
ments. In particular, our data showed the effectiveness of
inhibition of both transforming growth factor-b-activated
kinase 1 (TAK1) and phosphoinositide-3-kinase (PI3K). Our
secondary goal was to determine whether discrepant predic-
tions caused by model nonidentifiability could be leveraged
to discover new biology. We accomplished this goal by
resolving discrepant predictions regarding whether IL-1a sig-
naled via MEKK1 in addition to TAK1 in HepG2 cells. Specif-
ically, we provided experimental evidence that TAK1 is a
principal mediator of IL-1a signaling in these cells, whereas
MEKK1 has little, if any, functional relevance in this regard.

TAK1 is considered a tumor suppressor in hepatocytes.36

However, signaling network topologies are different
between hepatocytes and HCC cells, and specific changes
to the connections involving MEKK1 and TAK1 in HCC
have been observed.37 Furthermore, the major drug cur-
rently used in treating advanced HCC, the multikinase
inhibitor sorafenib,10 was recently shown to inhibit TAK1
activity in keratinocytes.38 These data suggest that HCC
may involve co-opting TAK1 signaling in later stages of dis-
ease progression. TAK1 may therefore be a novel target for
therapy in HCC. However, targeting TAK1 alone is unlikely
to work because clinical trials of targeted therapies in HCC
have typically failed.39 A next step is to test combinations
of chemotherapies in treating HCC,10,40 but the possibility
exists that even combination therapies will need to be per-
sonalized to the patient.39 The PI3K/Akt/mTOR pathway is
a known driver of HCC and is thus considered a primary
target for inhibition,10,41 and we found that inhibiting both
PI3K and TAK1 were required to reduce the phospho-levels
of all six HCC-relevant transcription factors that we studied.
Hence, our approach enables the rational targeting of sig-
naling protein activities that may be therapeutically relevant
to HCC treatment. In this way, our approach may be useful
in personalizing HCC treatments. Given that primary HCC
cells from a patient can be harvested and expanded in cul-
ture,42 our approach is feasible for generating signaling net-
work models in individual patients, which could then be

Systematic Analysis of Quantitative Logic Model
Morris et al.

551

www.wileyonlinelibrary/psp4



used to predict effective combination therapies. Sampling of

interstitial fluid within tumors43 may also provide information

about patient-specific microenvironments, thus enabling

their simulation in vitro.
Our approach complements others seeking to improve dis-

covery of anticancer combination therapies by targeting

phospho-protein signaling networks. First, our focus on testing

therapies in different microenvironments is currently underem-

phasized in existing methods.44,45 The microenvironments we

chose to mimic were simple but nevertheless disease-

relevant because they featured progrowth and inflammatory

aspects of the tumor microenvironment. Second, in using

CFL, which models logical relationships quantitatively, our

approach extends Boolean logic-based approaches, which

models relationships in an on-off manner.46 Third, the CFL

algorithm provides as output an ensemble of best-fit models

instead of a single best-fit model.14 In other work, we have

investigated if we could we develop methods to determine

experimental conditions that would distinguish models a priori,

i.e., before any data has been collected.26 In this work, we

show that this ensemble approach can lead to discrepant pre-

dictions due to model nonidentifiability, which can be lever-

aged as an opportunity to gain knowledge about the system.
Here we vigorously pursued the opportunity to leverage

nonidentifiability by addressing a key discrepancy regarding

the effects of inhibitor combinations on phospho-cJun, in

which some members of the model ensemble predicted the

inhibitors to have no effect, while others predicted they

would decrease this signal. We examined the topologies of

these ensemble subsets and observed that the subset pro-

ducing the accurate prediction did not contain an edge from

the IL-1a cytokine to MEKK1. However, published data indi-

cated that IL-1 signals through MEKK1 in other cell

types.28,47,48 We therefore decided to resolve experimental-

ly whether IL-1a signals through MEKK1 in HepG2 cells,

which would represent a stringent test of whether our

approach could be used to further understanding of the sig-

naling network. As shown in Figure 6, we found that

MEKK1 is not significantly activated by IL-1a in HepG2

cells, even though it is expressed and functional. Accord-

ingly, the increase of cJun phosphorylation in response to

inflammation is likely to be due to signaling through TAK1

and not MEKK1.
The strengths of our method are counterbalanced by

some tradeoffs. First, our method leverages the inferential

power of using prior knowledge, such that subsequent dis-

coveries depend in part on that information. Our PKN was

initially assembled from pathways included in the Ingenuity

Pathway Analysis (IPA) software. The underlying IPA

Knowledge Base consists of information curated from

diverse literature and third-party database sources, all of

which is manually reviewed by experts. Nevertheless, inac-

curacies and omissions in IPA-based pathways have been

reported,49,50 which may compromise the quality of the

PKN. Here we modified the PKN by incorporating published

knowledge regarding the biochemistry of several of the key

nodes in the network (see “Prior Knowledge Network” sub-

section of the Methods section in the Supplementary

Information for details). We anticipate that the quality of

the PKN will continue to improve as new understanding
about the pathways becomes available.

Second, our discoveries also depended on the quantity
and quality of experimental data used to train the models.
The phospho-protein data were collected using commercial
multiplexed bead-based flow cytometric immunoassays.
These assays are of high quality: they feature good specific-
ity and linearity. They are limited, however, by the possibility
for crossreactivity between antibodies, which limits the num-
ber of detection reagents that can be multiplexed. Further-
more, the analytes are restricted to the available assays,
such that only a subset of signaling phospho-proteins can
be measured. Here we partially accommodated this limita-
tion by using small-molecule inhibitors to perturb the activi-
ties of nonmeasured molecules. We anticipate that our
future work will benefit from new assays and technologies
that expand the repertoire of assayable signaling pathways.

In summary, we provide a method for predicting drug com-
binations to target phospho-levels of signaling proteins in
cancer cells in different microenvironments. Our method is
based on the quantitative CFL modeling framework and its
associated simulation software, Q2LM. We applied our
approach to predict drug combinations in HCC and to
resolve gaps in knowledge regarding IL-1a signaling in HCC
cells. Our approach can be used to test new drug combina-
tions in more physiologically relevant microenvironments,
which we hope will lead to improved anticancer therapies.
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