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To the Editor

The analysis and storage of ever-increasing amounts of sequencing data present a huge 

computational challenge for the genomics community1. However, only a small proportion of 

this sequence information varies between individuals, and it is this variation that we hope to 

identify and understand. Recently, compressive genomics has been introduced as a way of 

improving the accuracy and efficiency of searching large sequencing databases2. 

Compressive genomics removes redundancies in genomic sequences and enables 

compressed data to be analyzed directly—facilitating parsimonious storage and fast access. 

This approach has been shown to accelerate the performance of standard search tools, such 

as BLAST and BLAT2. Although some read-mapping tools also remove redundancies in the 

reference genome to facilitate mapping individual reads3, 4, 5, they do not take full advantage 

of the redundancy across reads present in large sequencing data sets, which are often much 

larger and more redundant than the reference genome itself6 (Supplementary Figure S1a).

In this correspondence, we report the development of CORA (compressive read-mapping 

accelerator; Supplementary Software and http://cora.csail.mit.edu)—a computational tool 

that utilizes compressive acceleration to boost the performance of existing read 

mappers3, 4, 7 (Supplementary Figure S1b). CORA takes as input a sequencing read data set 

in FASTQ format and an off-the-shelf read-mapper. The read data sets are compressed into 

mid-size (typically ~30-60 bp) k-mer sets that contain only nonredundant sequence 

information. These representative k-mers are then mapped onto the reference genome using 

the existing read-mapper by means of a plug-in architecture. A high-resolution homology 

table is created for the reference sequence by mapping the reference to itself. The homology 

table contains all homologous pairs of loci in the reference above a similarity threshold, 

allowing fast, direct access to similar locations in the reference during mapping. The 

resulting mappings are outputted to a SAM file that can be readily integrated into existing 

sequence analysis pipelines.
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CORA offers tractable mapping of terabyte-sized read data sets and achieves paired-end 

read mapping up to orders of magnitude faster than existing methods for mapping next-

generation sequencing (NGS) reads from the 1000 Genomes Project and Mouse Genomes 

Project (Figure 1a,b and Supplementary Figure S2). Even for relatively small data sets (~100 

GB and ~16× read depth-coverage), when such common mappers as BWA or Bowtie2 are 

plugged into CORA, our framework provides ~10 to ~4,700 times acceleration for ‘all-

mapping’ (each read is mapped to all matching reference loci) with no loss in overall 

sensitivity, and ~2.7 to ~4.3 times for ‘best-mapping’ with a maximum sensitivity loss of 

~1.2%. Mapping reads onto a reference genome in this way overcomes an important 

computational bottleneck in most sequence analysis pipelines (e.g., GATK)8, 9.

Because CORA identifies redundancies in both sequencing reads and reference data, its 

computational cost scales linearly with the size of the nonredundant data, which comprise a 

smaller portion of the total input data. Furthermore, CORA constructs a reference homology 

table data structure (Supplementary Text, Supplementary Figures S3 and S4), which also 

offers general utility beyond read mapping by providing fast access to all pairs of 

homologous loci in the reference genome (Supplementary Figure S5). Moreover, because 

CORA’s compressive framework achieves speed gains inversely related to the sequencing 

error rate, the acceleration it provides will substantially improve as sequencers generate 

higher-quality reads (Figure 1c, Supplementary Figures S6 and S7).

In contrast, existing read mappers require a costly sequence-comparison step, called seed-

extension, which iteratively maps each read onto a reference genome. The computational 

cost is high even if the seed-matching step (finding exact matches for short seeds in the 

reference) is performed simultaneously on identical seeds across the read data set10, 11, 12, 

and the reference is stored, indexed or cached efficiently3, 4, 7. Moreover, as whole-read 

duplicate removal methods13 require the entire read sequence to be identical, their 

acceleration is negligible for longer paired-end-read data sets (>75 bp), such as those 

produced by common sequencing technologies (e.g., San Diego-based Illumina’s HiSeq X 

and HiSeq 2500; Supplementary Text). Thus, existing methods’ time requirements scale 

linearly with the size of the full read data set (Figure 1a), and increase each year along with 

the exponentially growing read data.

CORA accelerates both gapped and ungapped alignment of conventional best-mapping 

capabilities of state-of-the-art BWA and Bowtie2 (Supplementary Figure S2). However, 

CORA’s advance is particularly striking for ‘multi-reads’ (reads that map to multiple 

locations on the reference genome), enabling massively accelerated all-mapping, even in 

comparison to state-of-the-art all-mappers (e.g., mrsFAST-Ultra10), which achieves 

improvements in efficiency based on machine architecture, rather than leveraging 

redundancy in the data themselves. When CORA-BWA (i.e., CORA framework with BWA 

plugged-in) computes gapped all-mapping results from a ~16× depth-coverage read data set 

of four Finnish individuals from the 1000 Genomes Project, it is >62 times faster than BWA 

alone, and CORA-Bowtie2 is three orders of magnitude faster than Bowtie2 alone, both 

CORA versions demonstrating improvements in sensitivity. Our ungapped all-mapping 

experiments show that CORA-BWA is approximately sixfold faster than mrsFAST-Ultra for 

human, and approximately ninefold faster for mouse read data sets with minimal loss in 
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sensitivity (<0.4%) (Figure 1a,b and Supplementary Text). Because of CORA’s use of 

memory-intensive data structures like the homology table (Supplementary Text), it has 

relatively higher memory usage (~50 GB) than the other mappers we tested (Figure 1 and 

Supplementary Figure S2, Supplementary Tables S1–S3). However, the added cost of 

physical memory is unlikely to be a hindrance to large-scale sequencing studies, given the 

cost-saving benefits, and high sensitivity of accelerated read-mapping using CORA 

(Supplementary Tables S4–S6).

All-mapping is an important component of many downstream analyses. It is the most robust 

way to comprehensively and accurately analyze structural variants, transposons, copy-

number variants and other repeat elements within the genome14. There is increasing 

evidence that using multi-mapped reads enriches the statistical power and accuracy of 

single-nucleotide polymorphism (SNP) and structural variation discovery15, 16, 17, 18, 

transcriptome and isoform quantification19, 20, 21, 22, and RNA binding-site prediction23. 

Presently, all-mapping—in particular gapped all-mapping—is often not used by sequence 

analysis pipelines because of its high computational cost. CORA’s ability to compressively 

accelerate existing mappers to achieve sublinear time-scaling enables use of all-mapping in 

large-scale sequence analysis pipelines (Supplementary Figure S8 and Supplementary Text).

As state-of-the-art NGS technologies continue to improve and generate ever-increasing 

quantities of data with higher quality, the amount of redundant sequence information within 

them also increases. Compressive methods such as CORA—which scale sublinearly by 

operating directly on nonredundant data—may have an important part to play in how the 

biomedical community handles sequencing data in the upcoming years.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
(a) Run-time comparison results between conventional read mapping methods and CORA 

for whole-genome gapped and ungapped all-mapping of 1000 Genomes Phase 1 Illumina 2 

× 108 bp paired-end read data sets of one, two, and four Finnish individuals (FIN1, FIN2 

and FIN4, with approximately 4×, 8× and 16× read depth-coverage, respectively; graph at 

left). The mapping similarity threshold is defined as the Levenshtein (edit) distance of 4 for 

each 108 bp-long read end. For the FIN4 data set, we additionally performed ungapped 

mapping experiments with the similarity threshold set as Hamming distance of 4 for each 

end (graph at right). We compared all-mapping run-times of Bowtie2 v2.1.0 (with ‘–a’ 

parameter) and BWA aln v0.7.5a (with ‘–N’ parameter) against compressively accelerated 
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versions of each (CORA-Bowtie2 and CORA-BWA); for the ungapped mapping experiment, 

we also compared against mrsFAST-Ultra v3.3, which does not perform gapped mapping. 

We included read data set compression in the run-time for CORA mappers, but not time to 

build the homology table; similarly, we did not include genome indexing for other mappers. 

To ensure consistency across run-time comparisons, we assumed that all paired-end 

mappings of a read should be reported individually and consecutively, so that a downstream 

method can directly use the mapping output. Both CORA mappers and Bowtie2 readily 

satisfied these criteria; the additional computation needed to ensure this for BWA and 

mrsFAST-Ultra are indicated with a lighter shade (Supplementary Text). (b) Sensitivity 

comparisons indicate that CORA mappers are substantially more sensitive than BWA and 

Bowtie2 for both gapped (lower) and ungapped (upper) all-mapping. Though it does not 

have 100% sensitivity like mrsFAST-Ultra, CORA is able to report mapping results with 

near-perfect sensitivity (~99.7%) for ungapped all-mapping. Color key as in a. (c) CORA’s 

compressive framework achieves speed gains inversely related to the sequencing error rate. 

The graph shows the run-time of full and coarse ungapped mappings of CORA-BWA when 

aligning 20 million simulated paired-end reads (100 bp) onto hg19 chromosome 20 at 

varying sequencing error rates and a fixed mutation rate of 0.1%. ‘Coarse only’ run-time 

stands for the time required to run BWA within the CORA-BWA pipeline.
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