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phosphorylated adhesive protein (Stewart & Wang 2010). 
Knowledge of the underlying gene sequences is essential 
for modelling bioinspired adhesives (Endrizzi & Stewart 
2009; Guerette et al. 2013) and often represents the bot-
tleneck of many research projects (Rodrigues et al. 2014).

Transcriptome-based approaches (commonly referred 
to as RNA-seq) aimed at elucidating the full collection 
of RNA molecules expressed in an organism, a tissue 
or a certain cell type have become an important tool for 
bioadhesion research and hold a promising future in the 
bioadhesion field (Rodrigues et al. 2014; Hennebert et al. 
2015). For example, RNA-seq facilitated the discovery 
of neuropeptides and peptide hormone involved in 
barnacle larval settlement (Yan et  al. 2012). While 
transcriptome sequencing retrieves the full complement 
of mRNA present in the sample, additional quantitative 
information is necessary to identify transcripts that are 
highly expressed in the region specific to the adhesive 
tissue of interest. Differential transcriptomics permit 
the in silico subtraction of different samples yielding a 
quantitative ranking of differentially expressed transcripts. 

Introduction

Biological adhesion (bioadhesion) is the attachment of 
organisms to either biotic or abiotic surfaces (Gorb 2008). 
This capacity occurs from microscopic organisms, such 
as bacteria, to much larger and more complex marine 
algae, invertebrates, and terrestrial vertebrates (Smith & 
Callow 2006; von Byern & Grunwald 2010). Information 
on how animals solve problems of adherence in diverse 
environments offers models for bio-inspired technol-
ogy with applicability in biomedicine (Khanlari & Dubé 
2013). Despite years of research in the field, only a few 
model systems have inspired the development of biomi-
metic adhesives, eg the case of geckos for dry bioadhesion 
(Hawkes et al. 2014) and mussels for glue-based attach-
ment (Lee et al. 2007; Westwood et al. 2007). Within glue-
based adhesion, the mode of action is better understood 
in marine than in freshwater organisms. One represent-
ative model for freshwater bioadhesion is the caddisfly 
larvae (order Trichoptera). These larvae produce adhe-
sive silk fibres to construct shelters underwater by gluing 
material gathered from the environment using a highly 
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column and peduncle. The bud, Hydra’s mode of asexual 
reproduction, emerges from the budding zone. Before 
detaching from the mother polyp, buds contain the same 
cellular characteristics of an adult asexual polyp including 
the modified ectodermal basal disc cells with the ability to 
secrete adhesives (Hobmayer et al. 2012; Steele 2002). This 
ability is attained by adhesive secretions that are mainly 
composed of proteins which are produced and released by 
only one cell type: basal disc-specific, differentiated ecto-
dermal cells (Figure 1C and D). These ectodermal basal 
disc cells are characterised by the presence of granules 
presumably containing the adhesive (Chaet 1965; Philpott 
et al. 1966; Davis 1973; Rodrigues et al. Forthcoming). 
Morphologically, four types of granules can be recognised, 
but their degree of contribution to the secreted adhesive 
is still not known. Glycan was found to be a constituent 
of all the granules but with different distributions. Muscle 
mediated detachment seems to be an important mecha-
nistic component facilitated by basal disc cells (Rodrigues 
et al.  Forthcoming); until now no evidence for chemical 
detachment was reported in Hydra.

Little information is currently available regarding the 
molecular basis of the bioadhesive of Hydra. The ectoder-
mal basal disc cells are known to have peroxidase activity 
which is related to some granules and neighbouring cyto-
plasm (Dübel et al. 1987; Hoffmeister-Ullerich et al. 2002;  
Rodrigues et al. Forthcoming). These peroxidase genes were 
isolated and sequenced (Hoffmeister-Ullerich et al. 2002; 
Habetha & Bosch 2005; Thomsen & Bosch 2006). The mor-
phogenetic cell movements which give rise to the forma-
tion of peduncle and the basal disc are well known (Dübel 
et al. 1987; Steele 2002; Hobmayer et al. 2012). However, 
little molecular information exists about the peduncle, and 
most studies are related to pattern formation and regener-
ation. Two proteins involved in patterning are the receptor 
protein tyrosine kinase gene shin guard, which is expressed 
in the ectoderm of peduncle region (Bridge et al. 2000), 
and CnNK-2 which is expressed in the endoderm, mainly 
in the peduncle region (Grens et al. 1996). Moreover, two 
antibodies, namely AE03 (Amano et al. 1997) and 3G11 
(Shirokova et al. 2009), were generated by homogenates 
of Hydra cells, staining both granules and the secretion of 
basal disc cells (Amano et al. 1997; Shirokova et al. 2009; 
Rodrigues et al.  Forthcoming), but their epitopes and exact 
subcellular localisation are currently unknown.

The goal of the research described here was to identify 
genes potentially involved in the adhesive mechanism 
of Hydra. By comparing intact and peduncle-amputated 
polyps through differential transcriptomics, a list of basal 
disc-specific candidates was identified. This list was fur-
ther screened by means of in situ hybridisation to track 
down the transcripts which were exclusively expressed in 
basal disc cells. ESI-LC-MS/MS was used to confirm that 

Based on a region-specific transcriptome of the flatworm 
Macrostomum lignano (Arbore et al. 2015), an adhesion-
related intermediate filament gene has been identified 
(Lengerer et al. 2014) and potential glue candidates are 
currently under study (Ladurner, unpublished). Thus 
far, differential transcriptomic studies are becoming 
popular in bioadhesion research, primarily to identify 
candidate adhesive genes for reliable downstream analysis. 
In barnacles, RNA-seq has been applied to compare 
transcriptomes of the prosoma (non-adhesive tissue) 
and the basis (which contains the cement gland) of the 
species Tretraclita japonica formosana (Lin et  al. 2014). 
The analyses showed that homologues of barnacle cement 
proteins and other possible adhesion related-genes, like 
custrin and fibroin, were predominately expressed at the 
basis (region responsible for adhesion).

The combination of transcriptomics and proteomics has 
proven to be a powerful method for directly correlating 
mRNA and secreted adhesive proteins. Guerette et al. (2013) 
used tissue-specific transcriptome as a database for peptide 
prediction after tandem mass spectrometry analysis to iden-
tify proteins involved in the adhesive mechanism in the green 
mussel Perna viridis. In the caddisfly larvae Hesperophylax 
sp., the silk gland-specific transcriptome was used to identify 
homologous H-fibroin contigs, an important component of 
proteins present in silk fibres (Ashton et al. 2013; Wang et al. 
2014). It was also used to identify a novel 114 kDa cement 
protein in the barnacle Amphibalanus amphitrite (Wang et al. 
2015), and successfully implemented by Hennebert et  al. 
(2015) for identification of proteins secreted by the tube feet 
of the sea star Asterias rubens. In the scallop Chlamys farreri 
a comparison between several tissue specific transcriptomes 
and proteomes helped in identifying seven foot-specific 
proteins, which might be involved in adhesion (Miao et al. 
2015). These studies have provided important insights into 
the sequences of the proteins composing natural adhesives 
and provide the foundation for the molecular designing of 
novel biomimetic adhesives.

The freshwater cnidarian Hydra is a solitary polyp con-
sidered to be a member of the most ancient multicellular 
animal clades in metazoan evolution to develop special-
ised tissues (Figure 1A and B). They are common inhab-
itants in any shallow freshwater ponds, lakes and creeks 
all year round. During its entire life cycle, Hydra is able 
to attach and detach repetitively by establishing effective 
and reliable underwater adhesion onto the substratum. 
The animal has a single axis with radial symmetry, which 
contains a head, body column, and peduncle along the 
axis. The head consists of two parts: the hypostome in 
the apex, and the tentacle zone from which the tentacles 
emerge in the basal part of the head. The body column has 
three parts: the gastric column in the apical part, peduncle 
in the basal part, and a budding zone between the gastric 
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some of the proteins coded by the transcripts are effec-
tively present in the adhesive secretion. This information 
is important for our understanding of the Hydra adhesion 
molecular mechanism and represents valuable resources 
for producing synthetic adhesives.

Materials and methods

Animal culture

Hydra magnipapillata strain 105 was used for all the exper-
iments carried out in this study in compliance with animal 
welfare laws and policies (Austrian Law for animal exper-
iments, TVG 2012, §1). Mass cultures were kept at 18°C 

in a hydra culture medium (1 mM NaCl, 1 mM CaCl2, 
0.1 mM KCl, 0.1 mM MgSO4, 1 mM tris-(hydroxyme-
thyl)-amino-methane; pH 7.4 adjusted with HCl). Polyps 
were fed five times per week with freshly hatched Artemia 
nauplii as previously described (Hobmayer et al. 1997). 
Under these conditions, animals remained asexual and 
reproduced by budding. Animals were starved for 24 h 
before experiments.

Tissue collection for RNA sequencing

Tissue and RNA preparations were divided into two 
categories based on the ultimate use of the samples: 

Figure 1. The model organism Hydra. (A) Micrograph of an adult polyp. The arrow indicates the basal disc. (B) Scheme of an adult polyp 
indicating details of the animal morphology. (C) Squeezed preparation of the peduncle region. The square indicates the area magnified 
in D. (D) The arrowheads point at individual ectodermal basal disc cells. (E–H) Different polyp conditions used for the RNA sequencing, 
transcriptome assembly and differential gene expression. (E) Whole polyp with bud; (F) whole polyp without bud; (G) amputated anterior 
part; and (H) amputated peduncle. te=tentacles, hy=hypostome, gc=gastric column, pe=peduncle, m=mesoglea, bd=basal disc. Scale 
bars=(A) 1 mm, (C, D) 50 μm.
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1990). The raw reads and resulting transcriptome assem-
bly HYRNA140215 were submitted to NCBI databases 
and are associated to the BioProject PRJNA324754.

For differential gene expression analysis, Illumina reads 
were mapped to the transcriptome assembly by Bowtie 
v.1.0.0 (Langmead et al. 2009) with parameters ‘–best –
strata’, and transcript abundancies were calculated using 
transcripts per million (TPM) metric implemented in 
Rsem v 1.2.7 (Li & Dewey 2011). Differential gene expres-
sion analysis was performed with EBSeq (Leng et al. 2013) 
through wrapper scripts provided in the Rsem package. 
The transcriptome assembly completeness was assessed 
with BUSCO (Simão et al. 2015).

Preparation for mass spectrometry

Samples were collected from whole intact polyps in trip-
licates. 15 polyps were placed into a 500 μl low binding-
protein tubes and were allowed to secrete material for 1 h 
at room temperature. Secreted proteins in the 500 μl sam-
ple vials were reduced with 50 μl of 10 mM dithiothreitol 
(solved in 100 mM NH4HCO3 buffer pH 8) at 56°C for 
30  min, and alkylated with 50  μl of 55  mM iodoaceta-
mide (solved in 100 mM NH4HCO3 buffer pH 8) at RT for 
20 min. Samples were digested by adding 1 μg of trypsin 
(Trypsin gold, Promega, Mannheim, Germany) in 100 mM 
NH4HCO3 buffer pH 8, and incubated at 37°C overnight. 
The tryptic peptides were purified by ZipTip C18 pipette 
tips (Millipore, Vienna, Austria) according to the manu-
facturer’s instructions prior to nanoLC-ESI-MS analysis.

Samples were analysed using an UltiMate 3000 nano-
HPLC system coupled to a Q Exactive Plus mass spec-
trometer (both Thermo Scientific, Bremen, Germany) 
equipped with a Nanospray Flex ionisation source. 
The peptides were separated on a homemade fritless 
fused-silica microcapillary column (75 μm i.d. × 280 μm 
o.d. × 10 cm length) packed with 3 μm reversed-phase C18 
material (Reprosil). Solvent for HPLC were 0.1% formic 
acid (solvent A) and 0.1% formic acid in 85% acetonitrile 
(solvent B). The gradient profile was as follows: 0–2 min, 
4% B; 2–55 min, 4–50% B; 55–60 min, 50–100% B, and 
60–65 min, 100% B. The flow rate was 250 ml min−1.

Mass spectrometry data analysis

The Q Exactive Plus mass spectrometer was operated in 
the data dependent mode selecting the top 12 most abun-
dant isotope patterns with charge  >  1 from the survey 
scan with an isolation window of 1.6 mass-to-charge ratio 
(m/z). Survey full scan MS spectra were acquired from 
300 to 1,750 m/z at a resolution of 70,000 with a maxi-
mum injection time (IT) of 120 ms, and automatic gain 
control (AGC) target 1e6. The selected isotope patterns 

transcriptome assembly and differential analysis. Tissue 
for transcriptome assembly was collected from 15 whole 
polyps containing at least one bud (ie sample ‘Whole 
hydra’, Figure 1E). Samples for differential analysis were 
composed by batches of 15 whole polyps without bud 
(sample ‘Whole polyp’, Figure 1F), 20 polyps with ampu-
tated peduncle (sample ‘Anterior part’, Figure 1G), and 
50 amputated peduncles (sample ‘Peduncle’, Figure 1H). 
Three biological replicates were generated for each sample 
condition. The tissue samples were immediately dissolved 
in TRI Reagent® (Sigma-Aldrich, Vienna, Austria) for RNA 
extraction. DNA was removed by extraction with chloro-
form, and RNA was precipitated in isopropanol, washed 
with 70% EtOH, and air dried previous to RNA resuspen-
sion with RNAse-free water. Quantity and quality (purity 
and integrity) of purified RNA was assessed by three meth-
ods: first, by gel electrophoresis, second by the absorbance 
at different wavelengths with a NanoDrop 2000c spectro-
photometer (Thermo Fisher Scientific, Bremen, Germany), 
and finally by an Agilent 2100 Bioanalyzer before library 
preparation (Santa Clara, CA, USA).

To obtain a high-quality transcriptome, state-of-the-art 
Illumina sequencing for generating three different librar-
ies were used. For the full transcriptome of whole Hydra, 
two Illumina HiSeq 100 bp paired-end using the TruSeq 
PE Cluster kit v3, and one 250 bp MiSeq paired-end using 
the HiSeq PE Cluster generation kit. For the differential 
transcriptome, single reads of HiSeq 50 bp libraries were 
prepared by using the TruSeq SBS kit v3 for Whole polyp, 
Anterior part, and Peduncle. The libraries were sequenced 
with 51 cycles on an Illumina Genome Analyzer II follow-
ing the manufacturer’s protocol (San Diego, CA, USA).

Transcriptome assembly, annotation and 
differential analysis

Illumina reads were assembled separately by two de novo 
transcriptome assembly programs, Trinity v. r2013_08_14 
(Grabherr et  al. 2011) and IDBA-Tran v. 1.1.1 (Peng 
et  al. 2013). The resulting assemblies were merged with 
Minimus2 assembler from Amos package v.3.1.0 (Treangen 
et al. 2011), and transcripts with more than 99% identity 
over their full length were reduced to single longest tran-
scripts to remove redundancy. Next, transcripts were clus-
tered using cd-hit-est software v.4.5.4 (Li & Godzik 2006) 
to assign gene groups to alternative transcripts.

For functional domain annotation, transcripts were 
translated in all six frames using a bioperl script, and the 
resulting amino acid sequences were searched by hmmer 
software v. 3.1 (Eddy 2011) against Pfam database v.27 
(Finn et al. 2016). Best hits against human proteins and 
UniRef90 database (Suzek et  al. 2007) were annotated 
with blastx program from BLAST v 2.2.26 (Altschul et al. 
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for the whole mount ISH is available in Table S1 of the 
Supplemental material. ISH was modified after Grens 
et al. (1996) with the following changes: (1) about 360 
H. magnipapillata polyps were pooled together into a 
50 ml tube up to the hybridisation buffer step; (2) the 
buffer used was PBS; (3) for probe hybridisation, 10–15 
polyps were transferred from the 50 ml tube to a 1.5 ml 
Eppendorf tube, placed into an incubator with 55°C 
and shaking at 350 rpm for 48 h, probe concentration 
during hybridisation was 0.2 ng μl−1; and (4) the steps 
after hybridisation were slightly modified after Pfister 
et al. (2007). Animals were transferred from the reaction 
tubes into 24 mesh baskets (53 μm mesh size; INTAVIS 
Bioanalytical Instruments AG, Germany), which were 
placed into custom made holes drilled into the lid of a 
24-well tissue culture plate (Figure S1A–B). Heating steps 
after hybridisation were performed in a water bath. Plates 
with pre-warmed buffers were prepared and the lid with 
the baskets and animals was transferred to the successive 
solution. For colour development, animals were moved 
to a 24-well plate without baskets. The colour develop-
ment was at 4°C for ensuring a slow reaction using the 
NBT/BCIP system (Roche). Processed specimens were 
mounted in Gevatol medium. For bright field or differ-
ential interference contrast visualisation, samples were 
examined with a Leica DM5000, Vienna, Austria. Images 
were taken with a Leica DFC495 digital camera and Leica 
LAS software.

Results

An H. magnipapillata strain 105 specific 
transcriptome

At the beginning of the present study, no transcriptome 
of H. magnipapillata was publicly available. Therefore, a 
transcript sequence database was generated from both 
Illumina paired-end and single reads by de novo transcript 
assembly.

To generate a high quality transcriptome for down-
stream analysis, a total of 9,648,108 raw reads passing 
Illumina filter were generated by 250 bp MiSeq paired-end 
sequencing, 27,631,126 reads by 100  bp HiSeq paired-
end sequencing, and 58,941,681 50 bp single reads. De 
novo transcriptome assembly of H. magnipapillata was 
executed by combining all the reads from all different 
sequencing strategies. After removing transcripts shorter 
than 200 bp in length, the final transcriptome assembly 
accounted for 55,849 transcripts, with a N50 of 1,672 bp 
in length. The statistics of these data are summarised in 
Table 1. This Transcriptome Shotgun Assembly project 
has been deposited at DDBJ/EMBL/GenBank under the 
accession GEVZ00000000. The version described in this 
paper is the first version, GEVZ01000000.

were fragmented by higher-energy collisional dissocia-
tion (HCD) with normalised collision energy of 28 at a 
resolution of 35,000 with a maximum IT of 120 ms, and 
AGC target 5e5.

Data analysis was performed using a Proteome 
Discoverer 1.4.1.14 (Thermo Scientific) with the search 
engine Sequest. The raw files were searched against the 
Hydra transcriptome generated in the present study 
(HYRNA140215) which was translated into proteins 
using transeq pipeline implemented in Galaxy software 
(Blankenberg et al. 2007). This allowed for 137,663 entries. 
Precursor and fragment mass tolerance was set to 10 ppm 
and 0.02 Da, respectively, and up to two missed cleav-
ages were allowed. Carbamidomethylation of cysteine, 
and oxidation of methionine were set as variable modi-
fications. Peptide identifications were filtered at 1% false 
discovery rate. Raw data and results were deposited to 
the ProteomeXchange consortium via the Pride (Vizcaíno 
et  al. 2016) partner repository with dataset identifier 
PXD004899.

In situ hybridisation screening

Candidate transcripts were selected for in situ hybridi-
sation (ISH) screen from the differential transcriptome 
analysis. As an additional parameter for quality control of 
the differential expression analysis we included 90 tran-
scripts that were predicted to be differentially expressed 
in the peduncle (Whole polyp vs Anterior part), and the 
top-10 transcripts predicted to be differentially expressed 
in the anterior part (Whole polyp vs Peduncle). Forward 
and reverse primer pairs were designed for each candi-
date transcript with Primer3 version 4.0.0 (Untergasser 
et al. 2012). A T7-promoter sequence was added to the 
reverse primer. cDNA was synthesised using peqGold 
cDNA synthesis kit H Plus (Peqlab) from total RNA 
extracted from Hydra polyps containing at least one 
bud collected from a mass culture. cDNA templates were 
amplified with transcript specific primer pairs under the 
following PCR conditions: 98°C 30 s, (98°C 10 s, between 
56°C and 66°C 30 s, 72°C 30 s)×35, 72°C 2 min. PCR 
products were purified using Wizard SV Gel and PCR 
Clean-Up System (Promega) and used as template to syn-
thesise single stranded anti-sense Digoxigenin-labelled 
RNA probes with the DIG RNA Labelling KIT (Roche, 
Mannheim, Germany). Transcription was performed 
following the manufacturer’s instructions except for 
the use of DIG-labelling mixture from Roche, where 
1  μl was used per reaction. Two  μl of each transcrip-
tion were checked by gel electrophoresis and quantified 
using NanoDrop 2000c. Transcription reactions were 
pre-diluted in hybridisation buffer to a concentration 
of 5 ng μl−1 and conserved at –80°C. The full protocol 
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with amputated peduncle (Figure 1G), which lack dif-
ferentiated ectodermal basal disc cells. To determine 
differentially expressed transcripts in the peduncle, the 
reads from the control sample Whole polyp (46,192,895 
raw reads passing Illumina filter, 50 bp reads) and reads 
of Anterior part (46,809,132 50 bp reads) were mapped 
against the generated H. magnipapillata transcriptome. 
The differential expression analysis retrieved a raw list of 
279 transcripts with Posterior Probability Differentially 
Expressed (PPDE) ≥0.95, of which 226 transcripts showed 
a ≥ twofold change in the peduncle (Figure 2A). This col-
lection of 226 transcripts constitutes the peduncle specific 
transcript candidates. To generate a highly peduncle-spe-
cific candidate list, the raw list was filtered for transcripts 
with the abundance of more than five transcripts per 
million (TPM) in Whole polyp, and sorted from higher 
to lower LOG2 fold change (Table S2). The rational to 
consider only transcripts with more than 5 TPM is based 
on the observation that vesicles containing potential glue 
proteins are only present in the basal disc cells, they are 
abundant and constantly produced within these cells 
(Rodrigues et al. Forthcoming). Known proteins present 
in basal disc cell, such as eg. Peroxidase transcripts, accu-
mulate up to 96 TPM. Therefore, 5 TPM was considered as 
a suitable threshold, and lower expressed transcripts most 
likely do not represent potential glue proteins.

To further validate that the analysis was unbiased, the 
‘peduncle’ sample (Figure 1H; 52,921,184 50  bp reads) 
was compared to the ‘Whole polyp’ sample, which should 

A published dataset containing 843 metazoan ort-
hologues was used to assess the assembled Hydra tran-
scriptome completeness with BUSCO (Simão et al. 2015). 
With BUSCO analysis, orthologues are considered to be 
complete (C) if the length of their aligned sequence is 
within two standard deviations of the BUSCO group’s 
mean length, otherwise they are classified as fragmented 
(F). Complete genes found with more than one copy are 
classified as duplicated (D), and are classified as miss-
ing (M) when the expected score is not met. The anal-
ysis resulted in the following BUSCO notation: C:87% 
[D:26%], F:3.0%, M:9.0%, n:843. This confirms that the 
generated H. magnipapillata transcriptome is of high qual-
ity and is a valuable source for downstream applications 
such as differential gene expression analysis.

A peduncle-specific differential transcriptome

To generate a peduncle-specific candidate list, RNA-seq 
technology was used to compare transcriptomic profiles 
of intact polyps without buds (Figure 1F) and polyps 

Table 1.  Summary of the Hydra magnipapillata transcriptome  
assembly.

Total number of transcripts 55,849
Total length (bp) 57,061,933
Longest transcript (bp) 31,041
Shortest transcript (bp) 201
Average transcript length (bp) 1,022
N50 length (bp) 1,672 

Figure 2. Distribution of expression values between (A) the whole polyp vs the anterior part and (B) the whole polyp vs the peduncle. 
Red dots symbolise transcripts with fold change equal or higher than 2, green dots represent fold change equal or smaller than 2, and 
black dots symbolise transcripts not passing the threshold of 0.95 for the estimated posterior probability of differential expression. wp: 
whole polyp, an=anterior part, pe=peduncle.
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(Figure S4A–D), four in the peduncle (Figure S4E–H), 
one in the peduncle and bud (Figure S4I), one provided 
a weak ISH signal in the bud, which could be related to 
bud detachment from mother polyp, but not directly 
involved in adhesion (Figure S4J), and one in the tenta-
cles (Figure S4K).

To corroborate bioinformatic analysis of candidate 
transcripts expressed in the anterior part of the animal 
(Table S3), ISH was performed with eight of the top-10 
candidates (Figure S5). Seven out of eight were expressed 
in the head (Figure S5A–G), and one showed expression 
in cells at the gastric column (Figure S5H).

Annotation of basal disc specific genes

Out of 40 transcripts expressed in the basal disc, 22 scored 
an annotation after Protein BLAST (Table S3). The largest 
group of annotated proteins comprised molecules with 
an apparent structural function that are characteristic for 
extracellular matrix proteins involved in protein–protein 
and protein–ligand interactions. Protein domain were 
searched using Protein family (Finn et al. 2016) http://
pfam.xfam.org/. The identified motifs include galactose 
binding lectin, chitin binding peritrophin-A, DOMON, 
leucine rich repeats, and fibronectin type III. Four tran-
scripts were related to protease inhibitor function includ-
ing the serine-type endopeptidase inhibitor from the 
antistasin family, and the cysteine-type cystatin domain. 
Two transcripts encoded glycosidase hydrolases of the 
alpha-L-arabinofuranosidase B domain with the ability 
of breaking linkages in both oligosaccharides and poly-
saccharides. Two transcripts encoded for the haem per-
oxidase enzyme. Another two transcripts contained the 
FRG1-like domain motif, a domain with unknown func-
tion. In a BLAST search against UniProt database, the 
two transcripts annotated with a FRG1-like domain were 
shown to be similar to PPOD1 (Thomsen & Bosch 2006) 
commonly present in Hydra species. Finally, one protein 
domain was involved in nitrogen metabolism – glutamine 
synthetase.

From the 18 transcripts with non-PFam annotation, 
12 were predicted in the published H. magnipapillata 
genome as uncharacterised protein, and another as tenas-
cin-X-like, an extracellular matrix glycoprotein. Five tran-
scripts were not predicted in the published Hydra genome 
(Chapman et al. 2010); four of these have homologues to 
other phyla but did not contain PFam domains, and a last 
one showed no detectable homologues in the databases 
(Table S2). The number of novel and structural proteins 
is markedly pronounced in Hydra basal disc, which might 
indicate a large diversity between adhesive proteins of 
different taxa or a higher morphological complexity of 
hydrozoan ectodermal basal disc cells.

yield candidate transcripts expressed exclusively in the 
anterior part of the animals including tentacles, head, 
and gastric column. Although the resulting differentially 
expressed transcripts of Whole polyp vs Peduncle are not 
relevant for the adhesive related transcripts, it is highly 
informative to ensure the analysis was accurate. The gen-
erated anterior part specific raw list rendered 2,679 tran-
scripts with PPDE ≥ 0.95 and ≥ twofold change (Figure 
2B, Table S3). A highly anterior part-specific candidate list 
was generated by filtering the raw candidates for having 
more than 40 TPM in whole polyp and less than 10 TPM 
in the peduncle (Table S3). The rational for the selection 
of 40+TPM is to ensure a high expression in the ante-
rior part. The choice of 10 TPM in the peduncle is based 
on experience of previous differential expression studies 
(Ladurner, unpublished). In theory, an anterior-specific 
transcript should not have mapped reads in the peduncle. 
However, an anterior-specific transcript might be a mem-
ber of a larger gene family that exhibit a certain sequence 
overlap with other transcripts – resulting in cross-mapping 
of short reads. For example, in M. lignano, a tail-specific 
intermediate filament related transcript involved in adhe-
sion was identified (Lengerer et al. 2014). Intermediate 
filaments comprise a large protein family with various 
types and isoforms (eg keratin, desmin, vimentin, lamin, 
and neurofilaments), which results in a distribution of 
mapped reads within similar sequence regions. Therefore, 
a non-stringent number of 10 TPM was chosen for select-
ing anterior-specific candidates.

In summary, this strategy rendered a highly specific 
candidate list of transcripts differentially expressed either 
in the peduncle or in the anterior part. These candidates 
were the ones selected for ISH screening.

Spatial gene expression: in situ hybridisation 
screening

The differential gene expression analysis resulted in 90 
transcripts as candidates with potential basal disc spe-
cific expression (Table S2). An ISH screen was performed 
for all candidates. An adapted ISH protocol for Hydra 
polyps was established by using a 24-well plate system 
(Table S1 and Figure S1). Thirty-five transcripts were 
exclusively expressed in the basal disc cells (Figure 3A–
R; Figure S2A–Q). Two transcripts showed expression 
in basal disc cells and at the base of tentacles (Figure S3S 
and T), one had expression in basal disc and in cells of 
the gastric column (Figure 3U), one was expressed in 
basal disc, gastric column and hypostome (Figure S3A), 
and a last one in the endoderm of basal disc and whole 
body endoderm (Supplementary Information Figure 
S3B). In addition, the ISH screen revealed expression of 
four transcripts in interstitial cells in the gastric column 

http://pfam.xfam.org/
http://pfam.xfam.org/
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Figure 3. Whole mount in situ hybridisation of transcripts expressed in the peduncle and potentially involved in the adhesive mechanism 
of Hydra. Scale bars: 500 μm.
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fact that ectodermal basal disc cells must produce many 
copies of the genes coding for adhesive proteins in order 
to meet the demands of reversible adhesion. The fact that 
marine organisms need to produce many copies of the 
adhesive proteins to meet the demands of bioadhesion has 
been previously mentioned for mussels (Warner & Waite 
1999) and for sea urchins (Lebesgue et al. 2016). For the 
present experiments the polyps were detached from the 
substratum before amputation and RNA extraction. This 
procedure could have triggered the biosynthesis of new 
adhesive proteins. It would be interesting to perform new 
experiments without detachment to elucidate whether the 
levels of glutamine synthetase are affected.

Some of the annotated adhesive-candidate transcripts 
are possibly involved in the Hydra adhesive mechanism. 
Notably, eight transcripts were annotated with glycan-
binding functions, suggesting that glycans can be an 
important component of the adhesive. Post-translational 
modifications (PTM) such as glycosylation and phospho-
rylation are common features of several adhesive proteins 
(Sagert et al. 2006; Flammang et al. 2009; Stewart et al. 
2011). The presence of glycans in the adhesive secretory 
granules of Hydra has been reported (Rodrigues et  al.  
Forthcoming). Several adhesive proteins performing either 
permanent or temporary adhesion have been found to be 
glycosylated in other systems, such as in the marine sea 
stars, barnacles and green mussels (Ohkawa et al. 2004; 
Zhao et al. 2009; Hennebert et al. 2010; Kamino et al. 2012), 
in freshwater zebra mussels (Rzepecki & Waite 1993), 
and also in the stick threads secreted by terrestrial velvet 
worms (Graham et al. 2013). Both N- and O-glycosylation 
were reported, as is the case of N-glycosylation of cp52 k 
in barnacles, and O-linked glycans primarily to threonine 
residues in green and zebra mussels Pvfp-1 and Dpfp-1 
(Rzepecki & Waite 1993; Ohkawa et al. 2004; Zhao et al. 
2009). They were also reported for C-mannosylated trypto-
phan, and C-mannosylated hydroxyl-tryptophan (Ohkawa 
et al. 2004; Zhao et al. 2009). The sea star adhesive was pro-
posed to contain at least two glycoproteins, Sfp-290 which 
contains mainly N-linked oligosaccharides, and Sfp-210 
containing mainly O-linked oligosaccharides (Hennebert 
et al. 2010). To some extent, the proteins present in Hydra 
adhesive could be O-glycosylated given the presence of the 
enzyme glycosyl hydrolase AbfB (present results) which is 
known to hydrolase O-glycosyl compounds.

Transcripts with homology to galactose-binding lec-
tin domain were abundant in the differentially expressed 
Hydra peduncle. The presence of such a domain in the 
secreted adhesive raises the possibility that non-cova-
lent cross-links contributed by glycan protein binding 
might be essential to adhesive cohesion in Hydra. Non-
covalent cross-linking of polysaccharide chains by carbo-
hydrate-binding proteins had been proposed to support 

In addition to examining basal disc gene expression, 
the material secreted from Hydra was analysed using mass 
spectrometry to find transcripts that are secreted by ecto-
dermal basal disc cells. The MS/MS results were merged 
and only the proteins identified in the three replicates were 
taken into account (Table S4). A total of 21 basal disc spe-
cific transcripts matched a protein in the secreted material 
(Table 2, Figure 3). The transcript HYRNA1402_9309 was 
identified in the three replicates with only one peptide 
while the other 20 transcripts were mapped with more 
than three peptides (Table S4).

Discussion

The ectodermal basal disc cells of Hydra are to the authors’ 
best knowledge the only studied cell type with the com-
bined ability of secreting adhesive for substratum attach-
ment and simultaneously performing muscle-mediated 
detachment (Rodrigues et al. Forthcoming). The Illumina 
sequencing effort used in the present work led to a reliable 
transcriptome assembly and differential gene expression 
results. While undertaking the present work, two tran-
scriptomes for the H. magnipapillata 105 strain were pub-
lished from different sources (Juliano et al. 2014; Petersen 
et  al. 2015). There is a considerable discrepancy in the 
number of assembled transcripts between the different 
works (27,128 transcripts, Juliano et  al. (2014); 36,338 
transcripts, Petersen et al. (2015); and 55,849 transcripts, 
present work). The use of different strategies for the tran-
scriptome assembly is a hindrance for a more detailed 
comparison. For example, Petersen et  al. (2015) set a 
number of 400 bp as cut-off for their assembly while the 
present work set 200 bp. In another Hydra strain (Hydra 
vulgaris strain Basel), RNAseq transcriptome yielded 
48,909 assembled transcripts (Wenger & Galliot 2013). 
In addition, the first differential transcriptome dataset 
for the peduncle region is presented, which combined 
with the footprint proteomic data provides first candi-
dates for molecules involved in the temporary adhesive 
mechanism of Hydra. The expression survey produced a 
library of 21 candidates for looking more deeply into the 
molecular mechanism of temporary adhesion in Hydra. 
Therefore, these results provide critical information to fur-
ther explore individual gene function in the underwater 
adhesive process.

The main constituent of the adhesive secreted by 
the ectodermal basal disc cells of Hydra are proteins 
(Rodrigues et  al. Forthcoming). One of the transcripts 
expressed in the basal disc codes for the enzyme glutamine 
synthetase. It acts as a key enzyme controlling the use 
of nitrogen inside cells to build nitrogen-rich molecules, 
such as proteins (Eisenberg et al. 2000). The high expres-
sion of this enzyme in the basal disc can be related to the 
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the adhesive proteins secreted by terrestrial gastropod 
(Pawlicki et al. 2004). Lectin staining and proteins with 
lectin binding domains have been reported in the adhesive 
secretions of sea stars, sea urchins, frogs, flatworms, and 
velvet worms (Fleming et al. 2009; Hennebert et al. 2010; 
Graham et al. 2013; Toubarro et al. 2016; Lengerer et al. 
2016). An investigation using lectins to study sea stars 
adhesive (Hennebert et al. 2010) showed that some gly-
cans, such as galactose, N-acetylglucosamine, fucose and 
sialic acid residues were linked to the sea star footprint 
proteins and could provide both cohesive and adhesive 
properties. The sea urchin adhesive protein Nectin (Nec-1 
and Nec-2) also has six tandemly repeated galactose bind-
ing domains (Lebesgue et al. 2016; Toubarro et al. 2016), 
similar to the sea star adhesive protein 1 (Sfp1) which 
has three of these domains (Hennebert et al. 2014). So, 
the presence of galactose binding domains in different 
adhesive systems seems to indicate that it is an important 
trait in aquatic adhesion. However, treatment of frog’s 
glue hydrogel with a cocktail of carbohydrate-degrading 
enzymes did not affect their mechanical integrity. This 
suggested that glycan-binding interactions did not under-
pin the structure of frog’s glue (Graham et al. 2013). The 
lectin binding domains could offer additional properties 
like resistance to bacterial degradation for the secreted 
adhesive. They are well known to be part of the constitu-
tive antimicrobial secretions of fish mucus (Thongda et al. 
2014), and in combination with a cystatin domain, to pro-
tect foam nests for incubating eggs and sperm produced 
by frog (Fleming et al. 2009). In general, the importance 
of glycans in the adhesive proteins are still under debate, 
and therefore, their ultimate role in adhesion remains to 
be determined.

Additionally, a type of chitin binding domain (chitin- 
binding peritrophin A) was found to be differen-
tially expressed in basal disc cells (present results), 
and was also identified in the Hydra nematocyte pro-
teome (Balasubramanian et  al. 2012), but its function 
was not further investigated. Chitin (chain polymer of 
N-acetylglucosamine) is structurally part of hard bioma-
terials such as squid beaks (Tan et al. 2015), but it is not 
often associated as part of glue based bioadhesive com-
posites. A surprising association of chitin to glue based 
adhesion is its involvement with adhesion in marine and 
freshwater caulobacters (Merker & Smit 1988), and the 
similarities found to chitin binding protein in the aqueous 
glue coating the silk fibres of spiders (Choresh et al. 2009). 
In the adhesive secreted by Hydra, this protein domain is 
likely to bind chitin that would be highly useful in its func-
tion to crosslink with other structural adhesive protein(s).

Based on morphological evidence, detachment in 
Hydra was proposed to be driven mainly by mechanical 
forces (Rodrigues et  al. Forthcoming). In other model N
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domains and gain insight into the relationship between 
sequence structure and protein function.

In conclusion, this is the first report of integrated differ-
ential transcriptomic and mass spectrometry data aiming 
at discovering the adhesive protein precursors of the fresh-
water cnidarian Hydra. Based on sequences assembled 
from an Illumina-generated transcriptome dataset the 
unbiased differential expression enabled the authors to 
pinpoint matches with secreted proteins. Therefore, tran-
scripts potentially involved in the temporary bioadhesion 
mechanism of Hydra were identified. Functional confir-
mation of the proteins coded by the basal disc specific 
transcripts identified in the present study will be essential 
for the development of an adhesion model mechanism.  
A better understanding of the Hydra adhesive will provide 
valuable biotechnological resources and guide efforts to 
develop synthetic adhesives.
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