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Abstract

Objective—Electrocorticography (ECoG) has become an important tool in human neuroscience 

and has tremendous potential for emerging applications in neural interface technology. Electrode 

array design parameters are outstanding issues for both research and clinical applications, and 

these parameters depend critically on the nature of the neural signals to be recorded. Here, we 

investigate the functional spatial resolution of neural signals recorded at the human cortical 

surface. We empirically derive spatial spread functions to quantify the shared neural activity for 

each frequency band of the electrocorticogram.

Approach—Five subjects with high-density (4mm center-to-center spacing) ECoG grid implants 

participated in speech perception and production tasks while neural activity was recorded from the 

speech cortex, including superior temporal gyrus, precentral gyrus, and postcentral gyrus. The 

cortical surface field potential was decomposed into traditional EEG frequency bands. Signal 

similarity between electrode pairs for each frequency band was quantified using a Pearson 

correlation coefficient.

Main results—The correlation of neural activity between electrode pairs was inversely related to 

the distance between the electrodes; this relationship was used to quantify spatial falloff functions 

for cortical subdomains. As expected, lower frequencies remained correlated over larger distances 

than higher frequencies. However, both the envelope and phase of gamma and high gamma 

frequencies (30-150Hz) are largely uncorrelated (<90%) at 4mm, the smallest spacing of the high-

density arrays. Thus, ECoG arrays smaller than 4mm have significant promise for increasing 

signal resolution at high frequencies, whereas less additional gain is achieved for lower 

frequencies.

Significance—Our findings quantitatively demonstrate the dependence of ECoG spatial 

resolution on the neural frequency of interest. We demonstrate that this relationship is consistent 

across patients and across cortical areas during activity.
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1. Introduction

Electrocorticography (ECoG) is a method of recording electrical neural signals from the 

cortical surface and is a well-established clinical tool for localizing seizure foci in epileptic 

patients. Clinical ECoG records neural activity using electrodes positioned in a grid 

arrangement, usually spaced 1cm apart. More recently ECoG has found utility in both 

scientific and engineering applications due to its high spatial and temporal resolution relative 

to noninvasive imaging approaches. In research applications, high frequency neural 

responses have been shown to be informative for task-related neural decoding, while low 

frequency bands can serve as markers for neural states (N. E. Crone, Korzeniewska, & 

Franaszczuk, 2011; Engel & Fries, 2010; Fries, Nikolić, & Singer, 2007; Kellis et al., 2010; 

Lachaux, Axmacher, Mormann, Halgren, & Crone, 2012; Miller et al., 2007; Ray, Crone, 

Niebur, Franaszczuk, & Hsiao, 2008; Womelsdorf & Fries, 2007). Moreover, high frequency 

neural signals have been described to be more spatially discrete than low frequency 

signals(Buzsaki & Draguhn, 2004; Edwards et al., 2009; Leski, Lindén, Tetzlaff, Pettersen, 

& Einevoll, 2013; Pesaran, 2010; Viventi et al., 2011). However, the spatial resolution of 

neural signals from the human cortical surface with respect to these functional neural 

frequency bands has never been fully quantified in humans.

Higher density ECoG grids collect more information from the cortical surface than the 

standard 1 cm grids, leading to better decoding performance in brain machine interface 

applications(Blakely, Miller, Rao, Holmes, & Ojemann, 2008; Breshears et al., 2011; 

Flinker, Chang, Barbaro, Berger, & Knight, 2011; Kellis et al., 2010; Khodagholy et al., 

2015; Leuthardt, Freudenberg, Bundy, & Roland, 2009; Wang et al., 2009). In most cases, 

these high density arrays have covered a very small area of cortex, and therefore large scale 

comparisons of shared signal in space have not been evaluated. Recently, correlations in the 

raw signal have been explored with respect to distance using a clinical ECoG array and a 

microwire ECoG array(Kellis et al., 2015). However, the measured signals from the 

microwire array are inherently different from those of the clinical array due to filtering 

effects of electrode size and shape(Kent & Grill, 2014; Lempka et al., 2011). Furthermore, 

the microwire array can examine signal similarity only within a very small area of cortex, 

while the clinical array sparsely samples a wide expanse of cortex that may or may not be 

actively engaged at the time of recording.

Ultra high-density, low impedance electrode arrays for chronic human recordings are not 

presently FDA approved in the United States, which is a dilemma for empirically deriving 

spatial resolution values for this work. Work in animal models can give us some insight into 

spatial correlations at higher electrode density(Kajikawa & Schroeder, 2011; Katzner et al., 

2009; Xing, Yeh, & Shapley, 2009); however, it may be that spatial correlations in human 

cortex differ due to differences in underlying cytoarchitecture, cortical thickness, and 
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differences in cortical folding across species(Elston, 2003). Thus, we hope that this study 

serves to illustrate the utility of moving toward higher-density arrays in human subjects as 

well. A high-density ECoG grid with 4mm spacing of electrodes offers a unique opportunity 

to identify shared signal at close spacing of electrodes, over a broad area of active cortex, 

and across neural frequency bands. We describe frequency band-specific spatial spread at the 

cortical surface in patients performing speech-related tasks. We use these observations to 

compare spatial spread functions across patients and across functional areas during speech 

perception and production tasks.

2. Materials and Methods

2.1 Experimental setup

2.1.1. Subjects—Experimental procedures were approved by the Committee for Human 

Research at the University of California, San Francisco, and all participants provided written 

informed consent. Patients undergoing ECoG grid implantation for epilepsy focus 

localization (N=5, 0M/5F, 25 – 41 years old) volunteered to participate in this research 

study. Patients were implanted with 256 channel high-density subdural electrode arrays 

(AdTech, Racine, WI or Integra, Plainsboro, NJ) with 4mm center-to-center spacing 

(1.17mm exposed diameter). Electrodes were positioned according to clinical criteria but 

included coverage over the superior temporal gyrus and the ventral sensorimotor cortex (pre- 

and post-central gyri). An electrode in the sub-galeal space served as the reference electrode 

and ground.

2.1.2. Tasks and stimuli—The patients either spoke or listened to sentences taken from 

the TIMIT database (Garofolo, 1993; Wrench, 1999). In the listening task, patients heard a 

subset of 125 sentences drawn pseudo-randomly from a list of 499 sentences spoken by 354 

male and 145 female speakers. In the speaking task, patients were instructed to read a set of 

50 sentences, presented visually on a laptop screen at a user-driven pace. In both tasks, 

sentences were chosen to evenly sample the distribution of phonemes present in English. 

These tasks lasted approximately 5-10 minutes each. Presentation of experimental stimuli 

was synchronized to neural recordings and controlled using custom MATLAB software 

running on a Windows laptop.

2.2 Recording and data processing

Signals were acquired at a sampling rate of 3051.8 Hz and were amplified and digitized 

using a Tucker-Davis Technologies (Alachua, FL, USA) neural recording system (RZ2 DSP 

combined with a 256-channel PZ2 amplifier). Manual artifact and channel rejection was 

performed, followed by common average referencing (CAR) (N. Crone, Boatman, Gordon, 

& Hao, 2001). The CAR consists of the mean across sixteen-channel banks of non-rejected 

electrodes that are spatially arranged in a row that spans 6cm. The CAR approximates the 

activity contributed by the original reference, so subtracting the CAR from each channel 

largely removes contributions of the original reference electrode and electrical artifacts that 

are often present in groups of sixteen channels due to shared connectors and cabling (see 

Crone et al. 2001 for a discussion of CAR in ECoG recordings). The CAR can also be 
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thought of as the spatial DC portion of the signal, and CAR-re-referencing as a typical mean 

or DC removal.

The signal from each electrode channel was filtered into 40 frequency bands using an FFT 

followed by a Hilbert transform with logarithmically increasing center frequencies (range of 

CF = 4.07 Hz – 193.8 Hz). The analytic amplitude, also known as the envelope, and the 

phase were calculated for each (Edwards et al., 2009). The filtered frequencies were then 

averaged into frequency bands corresponding to the traditional theta (4 – 7 Hz), alpha (7 – 

14 Hz), beta (15 – 30 Hz), gamma (30 – 60 Hz), and high gamma (70 – 150 Hz) bands. This 

signal was then z-scored with respect to rest (no-task) epochs within the same recording. 

The anatomical location of electrodes was determined with the aid of co-registered brain CT 

and MRI images. The precentral gyrus (preCG), the postcentral gyrus (postCG), the 

suprasylvian region, the superior temporal gyrus (STG), and the middle temporal gyrus 

(MTG) were grouped and evaluated separately for some analyses.

2.3 Analytical methods

Electrodes were chosen for analysis within an anatomically defined area using a bootstrap t-

test to find electrodes that responded significantly to speech over silence in the high gamma 

band. The high gamma band was chosen because it has been shown to exhibit specificity in 

activation to speech sounds in eloquent cortex. Electrode responses during speech were 

compared to responses during silence using short consonant-vowel syllables as the stimulus. 

The threshold p-value for inclusion was p<0.001 over 10,000 bootstrap iterations. Of the 256 

electrodes on the grid, an average of 80±6 electrodes were anatomically localized to the 

superior temporal gyrus, which is expected to respond to speech sounds. Of these 

anatomically localized electrodes, an average of 87% showed significant responses to speech 

over silence.

A Pearson correlation coefficient was calculated between the time series of either the 

analytic amplitude or the phase of each electrode pair within the anatomically and 

functionally defined subset (described above) and associated with the Euclidean distance 

between the electrodes. Figure 1 shows representative data along with its subsequent 

comparison for two nearby electrodes. For simplicity, the term ‘component’ will be used to 

refer to either the analytic amplitude or the phase of a single frequency band for a single 

patient. The entire 5-10 minutes of data from each task were used to derive the correlation 

coefficient for the aforementioned subsets of electrode pairs. Both the electrode subset and 

the time series used to derive correlation coefficients varied by task. The datasets for the two 

tasks were analyzed independently. We calculated chance level correlations for each 

frequency band by randomizing the data for each component in time for each electrode 

separately and repeating the correlation measures for all distances. Correlations for the 

randomized data fell very close to zero (± 5×10−4) irrespective of frequency band and 

distance.

To define the spatial relationship of correlation between electrode pairs, we modeled the 

falloff of the electrode correlations vs. distance, using the interquartile range of the data for 

each component. We tested exponential (equation 1), Lorentzian (equation 2), Gaussian 

(equation 3), and power law (equation 4) functions to describe this falloff. These equations 
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were chosen to fit the data because they are typical equations that describe non-linear fall 

offs and that allow for the necessary observation that when distance is zero, correlation is 

one. A constant term was added where necessary to correct for the noise floor of the 

correlation dataset, which is most likely due to either shared activity from the reference 

electrode or shared noise (Bruns, Eckhorn, Jokeit, & Ebner, 2000). In each case, the number 

of free parameters was limited to two to avoid over-fitting of the function to the data.

(1)

(2)

(3)

(4)

These functions were fit separately for each component, allowing maximum goodness of fit 

and equal opportunity for different functions to describe the different frequencies. The best-

fit equation was chosen as the one with the highest R-squared value using a least-squares 

method. For each component, the best-fit function across patients was chosen to represent 

the average falloff of correlation versus distance. To adequately capture the curvature of the 

falloff, we used only pairwise correlations at distances of 20mm and below. Using data in 

this range minimizes the contribution to the fit from the noise floor of low correlation, which 

is also captured in the constant c. The fits with the highest R-squared values were 

corroborated by visual inspection; the data were well approximated by the chosen fit for 

every patient at every frequency.

3. Results

The goal of our study was to quantify the average spatial spread at the cortical surface for 

each functional frequency band. Using high-density ECoG arrays and data from human 

intracranial recordings, we applied a correlation-based analysis to determine the extent of 

shared signal across the cortical surface for the amplitude and phase content of five 

frequency bands.

A natural starting point for estimating spatial falloff is to look at that of the raw signal before 

decomposing the signal into frequency bands. This is shown in Figure 2, where for each 

distance of separation on the electrode grid, the interquartile range of data points is plotted 

as a box plot. The majority of electrode pairs are correlated above noise floor only within 

Muller et al. Page 5

J Neural Eng. Author manuscript; available in PMC 2017 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



2cm; after this distance of separation between electrodes the plot approximates a horizontal 

line. Therefore, only electrodes located 2cm or less from one another were used for analyses. 

We then fit curves to the data points corresponding to electrode pair correlations to describe 

the falloff of correlation with distance. The best fit in this example is plotted with a dashed 

line. Note that the curve continues to points that are unobservable by the high-density grid, 

including distances less that 4mm. This part of the curve is extrapolated, and it can give us 

intuition about what correlations would be observed in the raw signal with more closely 

spaced electrodes, with the caveat that correlations at distances below 1.17mm (the contact 

diameter of the electrode) are underestimated.

Correlations at low frequencies are higher in magnitude and more widespread than at high 

frequencies. This is shown in Figure 3 for the theta and the high gamma frequency bands. 

The high gamma band signals at nearby electrodes show a lower maximum correlation in 

comparison to the theta band signals, and the spatial spread of notable correlations 

encompasses less area on the cortical surface than that of theta. As expected, we observe a 

decrease in correlation between pairs of electrodes as the distance increases between them.

The correlations between electrode pairs differ predictably not only by frequency band but 

also by whether or not the patient was engaged in a task. The tasks that we examined were 

speech perception and production. The rest versus task distinction is particularly evident in 

the high gamma band for electrodes that are considered active (see Methods for details in 

determining which are active). Figure 4 shows the drastic difference in correlation patterns 

with distance for electrodes in the STG when the patient listened to speech versus when the 

patient sat quietly. Points at each distance are represented in a distribution plot to compare 

the shape of distributions. The correlations are more variable and on average higher during 

rest than when the patient is listening to speech. Both the median and the mean are lower 

during activity than during rest at all distances. A paired t-test was performed for the 

correlation values at each distance, and at all distances shown (distance<20mm) there were 

statistically significant differences in correlations for task vs. rest (p<0.05). Similar 

differences in correlation with activity have been described elsewhere (Buckner & Vincent, 

2007; Cohen & Kohn, 2011; Fukushima, Saunders, Leopold, Mishkin, & Averbeck, 2012). 

Because correlations decrease with activity, the spatial spread function shows a steeper fall 

off during activity than during rest. Considering this fact, and additionally considering that 

the neural signal of interest is most likely elicited while a subject is engaged in a task of 

some sort, we decided to base the remainder of our analyses on electrodes that are 

considered active in an anatomical area, during a stimulus that elicits that activity.

As mentioned in Section 2.3, four functions were fit to the data. Representative data from 

the theta band of one subject is shown with all fit lines superimposed in Figure 5. The 

Lorentzian and exponential forms were similar in shape and in goodness-of-fit, and the R-

squared value for goodness-of-fit was quite high for both (R2
Lorentzian = 0.93, R2

exponential = 

0.92). Indeed, the best fit choice was either Lorentzian or exponential for all components 

tested; however, the difference between R2 values for these models increased for high neural 

frequencies (gamma and high gamma). Regardless of whether the function tested was 

Lorentzian or exponential, the resulting fit lines for correlation decrease with distance 

differed only slightly. In all cases, the Lorentzian and exponential forms were greatly 
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superior to the Gaussian and Power Law forms in describing the falloff in correlation for 

each component.

Across frequency bands there is a nonlinear falloff of correlation with distance for both 

amplitude and phase of the signal. The falloff becomes steeper as the neural frequency 

increases. This is shown in Figure 6 where best fits are averaged over five patients. The fits 

shown are for electrodes in the STG while the patients listened to sentences. There is a clear 

similarity in falloff pattern for theta and alpha bands and for gamma and high gamma bands. 

In the analytic amplitude data, correlation falloffs were best fit by a Lorentzian function in 

individual patients as well as the subject-pooled data. For phase correlations, theta and alpha 

were best fit by an exponential function, whereas beta, gamma, and high gamma were best 

fit by the Lorentzian. Importantly, the best fit function in each case was identical across 

patients. This did not have to be the case, since the analytic amplitude and phase for each 

frequency band for each patient were fit separately. The functional form of best fit for any 

patient could have differed from that of the other patients for the same component; however, 

all components of the same class were fit best with the same functional form across all five 

patients. This made the task of defining a best fit curve for each component easy because we 

simply average the coefficients of best fit for each component across patients.

To determine if the form or slope of the best fit function differs by anatomical location, we 

then took correlations between electrodes overlying the preCG and postCG while the patient 

spoke sentences, a task that evokes reliable activity in the sensorimotor cortex(Bouchard, 

Mesgarani, Johnson, & Chang, 2013). The correlation analysis was repeated for these 

anatomical areas. Again we found the same effect: a steeper correlation falloff with 

increasing neural frequency. On closer comparison of fits between areas, we found that the 

spatial correlation falloff fit lines for preCG, postCG, and STG did not differ significantly 

(p>0.05, paired t-test with Bonferroni correction for multiple comparisons). Therefore, the 

presented results also apply to the pre- and post-central gyri as well as to the STG. This is 

shown in Figure 7 as a function of the coefficient B, which represents the steepness of 

descent of the fits. This coefficient value is conserved over patients and anatomical areas, but 

notably not across frequency bands. The shift in value can be noted best for the same 

function form for all analytic amplitude fall offs. The B values shift from a relatively high 

value to a lower value as frequency band increases, corresponding to the increased steepness 

of the fall off with distance. The same pattern is seen with best fits in the phase data.

Our estimations to this point were mostly constrained to a single gyrus and by nature assume 

a continuous surface. We next wanted to determine how anatomical factors such as cerebral 

convolutions and lobar divisions affect spatial correlations. We therefore analyzed the spatial 

correlations between electrodes that were within a single gyrus, across a sulcus (the superior 

temporal sulcus between the STG and MTG), and across brain lobes (the Sylvian Fissure, 

between the frontal and temporal lobe). We hypothesized that spatial correlations within the 

STG would be significantly greater than across the superior temporal sulcus, and even more 

so than across the Sylvian Fissure. To test this prediction, we shifted our focus from the 

interquartile range to the upper quartile range of values so that high correlation values were 

preserved. We observed that correlations were higher between electrodes within a gyrus and 

that patterns of correlation seemed to cluster with anatomical boundaries such as sulci. This 
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relationship was quantified for electrodes in the STG to electrodes in the MTG and for 

electrodes in the STG to electrodes across the Sylvian fissure. An ANOVA was performed 

between groups for each distance, followed by post-hoc pairwise t-tests where applicable. 

The most convincing differences were in the low neural frequencies. The theta band 

observations are shown in Figure 8. For the theta frequency band at near distances, the STG-

STG electrodes were more highly correlated than the STG-MTG electrodes and the STG-

IFG (suprasylvian) electrodes. At distances of 5.65mm (for diagonally adjacent electrodes) 

and 4 mm, the STG-STG electrode correlations differ from STG-IFG correlations but do not 

differ significantly from the STG-MTG electrodes. This pattern is also seen for the alpha 

band. The pattern of significance suggests that within-gyrus correlations are highest, 

followed by within-lobe correlations, and finally across-lobe correlations on gyri. The 

pattern was not statistically significant for the beta to high gamma band. We surmise that 

this is due to the already-low correlations that are observed at the shortest observable 

distance of 4mm in these bands. We postulate that if the density of the grid were high 

enough, the same pattern would be observed in higher frequency bands as in the theta band; 

within-gyrus correlations are highest, followed by within-lobe correlations, and finally 

across-sulcus correlations.

4. Discussion

This study was done to empirically define the spatial spread function of ECoG signals 

towards understanding the relationship of neural frequency with spatial spread of activity 

across electrodes. We quantitatively defined the relationship of neural signal correlation and 

spatial distance. We further quantified how frequency band components affect this 

relationship, as higher frequencies have higher spatial resolution than low frequencies. We 

compared the spatial spread function across patients and across functional gyri, and noted 

consistency in the spatial fall off across patients and across functionally distinct areas. We 

then examined the effect of gyral and sulcal structural anatomy on spatial correlations.

There are three major contributions to the observed positive spatial correlations, not 

including artifact or a common reference. First, there are correlations that are due simply to 

the physical properties of the measured electric field; this is referred to as volume 

conduction. The magnitude of electric fields decrease as a function of one over distance 

squared(Cybulski et al., 2014). Second, there are functional correlations in neural networks 

due to synaptic connectivity. These functional correlations could appear in regions far away 

from each other because networks are not constrained to neighboring areas. Third, there are 

correlations due to the properties of the underlying neurophysiological generators of electric 

signals. While the neural origins of the various canonical frequency bands are still a topic of 

debate, one theory is that low frequency signals are due to the spatial summation of 

synchronous dendritic inputs and that high frequency signals are the fields produced by 

spiking sub-populations and fast ionic and synaptic currents(Edwards et al., 2009, 2010; 

Lempka et al., 2011; Pesaran, 2009). If this is the case, low frequency correlations are more 

widespread than high frequency correlations because their generators act as a synchronous 

unit over a larger area than a high frequency spiking subpopulation. All three major 

categories of correlation are presumably represented in the dataset that we have analyzed in 

this paper.
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To date, the closest study to the one presented here was a spatial correlation analysis of 

ECoG signals across different electrode types in various places on the human cortex(Kellis 

et al., 2015). This was done using small microwire arrays in addition to large clinical arrays 

with 1cm spacing. The findings in this paper suggest similar patterns in spatial correlation 

fall off with distance for both tested arrays, for raw data. However, the reported spatial 

correlation fall offs are shallower than we observe. This is probably due to recording while 

the patient was not engaged in a task to specifically elicit activity in the recorded area. In our 

own analysis of correlations during rest versus activity, we observed a similar shallow fall 

off curve during rest. Interestingly, high-frequency modulation, which is believed to 

represent the activity of spatially localized neural processes, shows a greater change in 

correlation for rest versus task conditions than low frequency data. This is consistent with 

the idea that spatially discrete high frequency generators are recruited for a task, while low 

frequency generators maintain a brain state or modulate attention(Donner & Siegel, 2011; 

Engel & Fries, 2010). Importantly, our finding of stronger falloff of correlations during 

activity suggests that higher electrode densities may add specificity to observed task-related 

signals. Since distinct patterns of evoked activity may be observed even at small distances, 

increased spatial resolution may improve decoding of task-related output. Determining the 

optimal spacing between electrodes would allow us to determine at what spatial scale neural 

signals are redundant for a given task.

It would seem that the optimal spacing of electrodes would simply be to use the smallest 

inter-electrode distance possible that avoids shunting. However, there are other factors to 

consider. First, as density increases, electrode size necessarily decreases to make space and 

indeed to avoid electrical shunting. Smaller electrodes may not be ideal for 

electrocorticography recordings because they measure integrated activity of a smaller body 

of neural generators, and they potentially lose sensitivity to deeper cortical 

sources(Wodlinger, Degenhart, Collinger, Tyler-Kabara, & Wang, 2011). Furthermore, as 

electrodes become smaller their impedance increases, making the signal-to-noise ratio lower 

than similar electrodes of a larger scale. Second, higher channel counts mean more wires, 

connectors, amplifiers, and data storage units. This is not trivial as channel counts increase 

into the thousands, though it may not be necessary if a more efficient use of materials can 

give a similar picture of the neural activity.

Considering the above as motivation, it is clear that determining the falloff of signal 

correlations over cortical distance has implications for the design of ECoG grids. Freeman et 

al. performed a study on the optimal spacing of electrodes in ECoG for signals recorded 

from the human STG and motor cortex(Freeman, Rogers, Holmes, & Silbergeld, 2000). The 

study was done with a linear microwire array, and it examined the spatial frequency of 

neural oscillations up to 50 Hz. The conclusion was that for these frequency bands, the 

smallest spatial frequency observed above the noise floor was one that corresponds to 

2.5mm per cyclic spatial change. This correlates well with our shared variability observation 

for low frequency neural signals. Another more recent study(Slutzky et al., 2010), used 

modeling of neural dipoles to estimate the optimal spacing of surface electrodes for human 

cortex. The resulting recommendation for electrode spacing was 1.4mm correcting for 

Nyquist sampling, a measurement that again corresponds roughly to our observed and 

extrapolated correlations for low frequency neural data in the theta and alpha bands.
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We have demonstrated the relationship between neural frequency and the spatial spread of 

signals at the cortical surface. Whether the application is during rest or active behavior will 

change the expected signal correlation over distance. The phase and amplitude observations 

have similar dependencies; however, phase correlations decrease more quickly with distance. 

This is of particular importance in the theta and alpha bands where phase is a common 

signal of interest.

Although this study included areas that were both sensorimotor and higher-order processing, 

correlations were computed for speech-related tasks in speech-related areas. Cortical 

encoding and tuning might be at different scales in other brain regions or even for other 

types of stimuli. A potential limitation of the fitting approach is that it leans toward the 

average of many data points, and therefore the resulting fit can over- or underestimate the 

activity spread from any one specific point. The results are an estimated fit averaged over 

several patients; as such, the cortical resolution suggested by these results should be 

interpreted as an average, not an absolute minimum. By the same token, taking the 

interquartile range leaves out the most highly correlated electrodes at each distance and can 

therefore be considered a conservative measure of shared signal.

Furthermore, our results provide novel information about the spatial spread of local field 

potential signals at the cortical surface. With ECoG grids of sufficient density and area, 

analysis of cortical activity can better describe the dynamics and functional connectivity of 

the cortex. Future studies can reveal if there are truly separable functional areas that respond 

to similar stimuli. The identification of functional areas corresponding to frequency of 

neural signal can shed light onto the origin of neural oscillations of various frequencies, 

most of which are not currently well understood.

5. Conclusions

The optimal spacing of ECoG electrodes depends heavily on the neural frequency band. The 

shape of the curve that defines this relationship is consistent across patients, but differs 

depending on which frequency band is represented and on which feature, amplitude or 

phase, is being represented. The dependence of this correlation falloff function on 

anatomical region is minimal, but falloff is stronger during speech-related tasks compared to 

rest. Correlations within functionally defined gyri are higher than those across sulci for low 

frequency oscillations.
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Figure 1. 
Comparing ECoG signals from adjacent electrodes. (A) MRI reconstruction with CT co-

registered electrode positions. (Inset) Two adjacent electrodes are spaced 4mm apart on the 

STG (green and blue). (B) Sound waveform of example sentence presented aurally. (C) Raw 

ECoG signal from green electrode (after notch filtering and common average referencing). 

(D-E) Time-locked neural signal from the blue (D) and the green (E) electrodes in the theta 

range. Light color shaded lines are bandpassed signal in the theta range, while dark colored 

lines are the analytic amplitude of the signal. (F) Analytic amplitudes are overlaid, and show 

high correlation (R=0.83, over approximately 5 minutes of data) (G) Phase traces for the 

same electrodes show high correlation (R=0.65, also over approximately 5 minutes of data).
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Figure 2. 
Raw signal correlation decreases with distance. The falloff of correlation coefficient for pairs 

of neural signals as distance between electrode pairs increases. Blue outline represents the 

interquartile range of data. Red lines are the median of each plot. Black whisker lines 

represent the upper and lower quartiles of data. Black dashed line shows the exponential fit, 

chosen as such because it has the highest R2 value of the functions that attempted to fit the 

data. There are no observations below 4mm, the closest spacing of electrodes.
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Figure 3. 
Comparison of ECoG spatial spread for low and high spectral frequency bands. The part of 

the brain that is represented in the insets is shown in the boxed portion of the full brain 

above. In the inset to the left, correlations in analytic amplitude for the theta band are shown 

for one electrode. The same electrode is shown at right, along with correlations in the 

analytic amplitude of the high gamma frequency band. The theta band (left) shows higher 

correlations over a larger area than the high gamma band (right). The electrode to which all 

pairwise correlations are made is shown in blue for each.
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Figure 4. 
Distributions of high gamma correlations for rest versus activity. Correlations decrease 

markedly in the high gamma frequency when the subject performs a task. Distributions at 

each distance are shown for the high gamma analytic amplitude activity for active electrodes 

in STG of one patient during a listening task. The gray plots show the distributed values of 

correlations between electrodes at each distance during rest, while the green plots show this 

distribution during the task. At each distance, the same number of data points are used to 

create the distributions in gray and green.
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Figure 5. 
Best fit functions approximate representative data (theta band analytic amplitude) for a 

single subject. A distribution plot of pairwise correlations at each distance are shown in blue. 

The best fit line for this component is a Lorentzian fit, shown by the line in blue. The 

Lorentzian form is followed closely in goodness-of-fit by the exponential form, shown by a 

dashed line. The goodness-of-fit further decreases for the Gaussian fit, and finally for the 

Power Law.
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Figure 6. 
Electrode pair correlations decrease predictably as a function of distance. A curve-fitting 

algorithm was used to fit four equations to the data. The fit with the highest R-squared value 

was chosen to represent the frequency band. Fit lines become steeper with increasing neural 

frequency for all patients, indicating a sharper falloff of shared variability for high frequency 

bands with distance. The result is averaged over five patients for active electrode pairs over 

the STG. Dark lines indicate the mean fit across patients; lighter background fill indicates 

standard error across patients. The gray shaded region is the region of the fit in which there 

were no neighboring electrode pairs below 4mm.
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Figure 7. 
The steepness of correlation falloff values are conserved across patients and cortical regions, 

but differ by frequency band. (A) The Lorentzian equation (see Methods, equation 2) is the 

equation of best fit to represent falloff of correlation with distance for all frequency bands. 

The B value is representative of the steepness of the curve. The mean and standard error of 

the B value across patients for each cortical area is represented with a center point and error 

bars at each frequency band. The error bars and points are color coded by cortical area. A 

representative curve is shown above for each frequency band to give an idea of the curve that 

is constructed with the average B value. (B) The exponential equation (see Methods, 

equation 1) is the equation of best fit to represent falloff of correlation with distance for theta 

and alpha frequency bands, while the Lorentzian fit best describes falloff of correlation with 

frequency for beta, gamma, and high gamma bands. The B value is representative of the 

steepness of the curve. The mean and standard error of the B value across patients for each 

cortical area is represented with a center point and error bars at each frequency band. The 

error bars and points are color coded by cortical area. A representative curve is shown above 

for each frequency band to give an idea of the curve that is constructed with the average B 

value.
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Figure 8. 
Within gyrus, across sulcus, and across fissure correlation patterns for the theta band. 

Correlations within a gyrus trend higher than correlations across a sulcus or the Sylvian 

fissure. Mean and standard error of correlations over patients are plotted for electrodes 

within the STG (blue solid line), STG to MTG (dotted line), and STG to IFG (dashed line). 

This effect is more pronounced for amplitude correlations than phase correlations. Statistical 

significance, determined with an ANOVA followed by paired t-tests at each distance, is 

denoted by markers above each distance. An asterisk denotes a significance of p<0.05 

between groups ‘Within STG’ and ‘STG to suprasylvian.’ A circle denotes significance of 

p<0.05 between groups ‘Within STG’ and ‘STG to MTG.’
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