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Abstract Stroke induces a local inflammatory reaction and a
plethora of innate immune responses in the brain where antigen-
presenting cells become prominent. However, to date, it is still
unclear whether antigen presentation is relevant to the neuro-
pathological and functional outcome of stroke. Stroke does not
trigger overt autoimmune reactions, but neural antigens have
been found in lymphoid tissues of patient with stroke and it is
unknown whether they promote tolerance or immune reactions
that under certain conditions might contribute to the functional
worsening observed in some patients. Autoantibodies to neural
molecules have also been reported in patients with stroke, but
the subclass of antibodies is important for their function, and the
contribution of such findings to stroke outcome is not yet clear.
Notably, stroke induces immunodepression highlighted by a
transient lymphopenia, lymphoid organ atrophy, and monocyte
deactivation. While these effects might reduce the chances of
autoreactivity, they increase the risk of infection in patients with
stroke and most frequently in those with severe stroke.
Therefore any potential brain protective effect of stroke-
induced immunodepression by attenuating or preventing
lymphocyte-mediated brain damage is confounded by stroke
severity and an increased incidence of infections. Systemic in-
flammation due to a number of comorbidities that are frequent
in patients with stroke is also associated to a poor outcome.
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Herein, we review some relevant findings regarding the identi-
fication of neural antigens in stroke and discuss their potential
contribution to the functional outcome of stroke.

Keywords Brain antigens - Inflammation - Innate immunity -
Adaptive immunity - Stroke

Introduction

Neuroinflammation is a hallmark of many acute and chronic
brain diseases. It comprises an enhanced release of several cy-
tokines in the brain tissue, the reaction of innate immune cells
resident in the brain parenchyma, i.e., the microglia, and often
involves the infiltration of myeloid cells, and adaptive immune
cells, i.e., lymphocytes. Under physiological conditions, im-
mune cells surveil the brain at the perivascular spaces, the
leptomeninges, and the choroid plexus, and, from these strategic
locations, they can sample the brain environment [ 1]. Following
acute stroke a variety of immune cells can access the brain
parenchyma in an orchestraded manner [2, 3]. Acute brain dam-
age generates a genuine inflammatory reaction triggered by
necrotic neuronal cells that leak their content to the extracellular
space and trigger strong innate immune responses involving
resident microglia and infiltrating leukocytes [4, 5]. Notably,
antigen-presenting cells (APC) accumulate in the brain paren-
chyma during the days that follow experimental stroke [6—10].
These cells express major histocompatibility complex (MHC)
class II and co-stimulatory molecules, as well as markers of
conventional dendritic cells (DCs). The presence of cells ex-
pressing MHC class II in the brain has also been reported in
human stroke [11]. T cells are known to have detrimental effects
in stroke by promoting leukocyte adherence to the brain vascu-
lature [12] and triggering thromboinflammation [13] in animals.
The presence of T cells and yd lymphocytes was also reported
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in mouse and human brain tissue 24 h after stroke [14]. These
effects are rapid and lack antigen specificity. In addition to this
early nonspecific effect of T cells, is there room for any antigen-
mediated responses in acute stroke? Several lines of experimen-
tal evidence suggest that this might be the case [15-21], but
further study is needed to confirm this possibility and dissect
its potential contribution to the brain tissue fate and the potential
relevance to human stroke. Indeed, our group described the
presence of several brain antigens in the draining lymphoid
tissue of patients with acute stroke that was correlated with the
functional outcome of the patients at follow-up [22]. Recently, a
study of brain ischemia in mice reported increased autoreactive
T and B cells to human neural antigens [20].

Besides the vascular route after leakage of the blood—brain
barrier (BBB) [23], brain antigens might reach the cervical
lymph nodes after stroke following several anatomical path-
ways identified in animals and humans. These routes allow
the drainage of interstitial fluid and solutes out of the brain
parenchyma through the glymphatic system [24—28]. Brain flu-
id and macromolecules can eventually reach the cervical lymph
nodes along extracranial nerves through the cribiform plate
[29-31], and through the recently described lymphatic vessels
in the dura matter of the mice [32, 33]. Thus, APCs would
capture neural antigens in the lymph nodes. Alternatively,
APCs could take up antigen in the brain and then travel to the
lymph nodes [34]. Expectedly, the presence of immature DCs
presenting brain antigens in the lymph nodes would induce
tolerance by causing anergy of T lymphocytes or by expanding
regulatory T cells (Tregs) [35]. Yet, antigen presentation and the
associated T-cell reaction depends on the local microenviron-
ment, and the presence of co-stimulatory molecules and Tregs.
Therefore, it is possible that effector T cells could be generated
under certain circumstances that are described following acute
stroke, i.e., inflammation or infection, thus breaking peripheral
tolerance and generating autoimmune responses.

Stroke induces depression of peripheral immune responses
through neurotransmitters released by the sympathetic ner-
vous system, as described in animals and humans [5, 36].
The interaction between the central nervous system (CNS)
and the immune system is complex as shown by the recent
observation that Treg cells in the gut regulate the infiltration of
v& T cells in the ischemic mouse brain tissue [37]. This
crosstalk could be an adaptive response to dampen brain dam-
age and limit harmful immune responses to brain-derived an-
tigens. Yet, a critical and unresolved question is whether pre-
sentation of CNS antigens actually drives an immune response
following brain ischemia. The identification of autoantibodies
in patients with stroke could be an indication of autoimmunity,
but this finding requires a cautious interpretation as not all
antibodies have similar functions. Classically, brain autoim-
munity is mediated by IgG autoantibodies [38], which are
rarely found in acute stroke. In contrast, the most frequently
reported autoantibodies are of the IgM or IgA subclass [39].
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As discussed below, the clinical impact of these autoanti-
bodies also remains to be established.

Innate Versus Adaptive Immunity in Stroke

Activation of innate immune cells in the damaged brain a few
hours after an ischemic event participates in infarct growth by
triggering inflammatory signaling [4, 40, 41]. Brain cell death
elicits the production of danger signals that activate innate im-
mune cells, in compliance with the danger model in immunity
[42]. Adenosine triphosphate, heat-shock protein, and high mo-
bility group box-1 are amongst the molecules described as
danger-associated molecular patterns released in brain ischemia.
Binding of these molecules to pattern recognition receptors,
such as Toll-like receptors (TLRs), displayed by microglial cells
and infiltrated innate immune cells, participates in the inflam-
matory response. An essential function of innate immunity is to
provide the informational input for adaptive immunity. APCs
play a critical role in initiating T-cell responses by taking up
protein antigens in tissues, processing them into small peptides
and then displaying them on their surface, physically associated
with MHC class I to activate CD8 T cells, or with MHC class 11
to educate CD4 T cells. Hence, danger-associated molecular
patterns could be acting as co-stimulatory molecules furnishing
the required signals to activate APCs fully.

DCs are the most potent APCs and provide a critical link
between innate and adaptive immunity. While microglial cells
were believed to be the main APC population in the CNS,
studies in experimental autoimmune encephalomyelitis
(EAE) established that a discrete population of vessel-
associated CD11c* cells is responsible for antigen presenta-
tion to myelin-reactive T cells [43]. Juxtavascular APCs are
also described in healthy rodent brains where they project
cellular processes into the glia limitans and could present brain
parenchyma-antigens to circulating T cells [44]. In addition,
populations of interferon-y responder mouse brain resident
DCs may behave as effective APCs [45]. Interestingly, these
cells resembled activated microglia, expressed Ibal and
CD11b markers, and had the ability to migrate and concentrate
in the choroid plexus, a critical region for the entry of periph-
eral T cell into noninflamed CNS [46]. Additional evidence
suggests that under physiological conditions the population of
Ibal*CD11b*CD11c* cells resident in the brain corresponds
to a subset of microglial cells [47]. Further study is needed to
clarify fully the identity and function of these DC-like brain
cells. Following stroke, microglia, infiltrated macrophages—
monocytes, and DCs express MHC class II, and co-
stimulatory molecules, thus they can act as APCs in the ische-
mic brain parenchyma [2, 8, 10]. However, antigen processing
differs between macrophages and DCs, as the latter regulate
lysosomal acidification better than the former in order to pre-
serve peptides for T-cell recognition [48]. Priming of T cells
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mainly takes place in the draining lymph nodes where migra-
tory DCs carrying the antigens get in close proximity to naive
T cells. In photothrombotic stroke models an increase in mi-
gratory CD11¢"CD103* cells has been reported [9]. Whether
these cells will reach the draining lymph nodes to present
antigen to T cells remains elusive, but our study of tonsils from
patients with stroke, i.e., lymphoid tissue located within the
draining pathways of the CNS, showed neural antigens on
migratory BDCAT1™* cells [22].

The way DCs are activated to present antigens could deter-
mine the initiation of immune reactions or the induction of
tolerance [49]. Immmature DCs are mainly responsible for an-
tigen uptake and migration to secondary lymphoid tissues.
Signaling through TLRs and inflammatory molecules induces
DC maturation, a process required for antigen processing and
antigen presentation [50]. Lymphocytic activation represents a
key step of the adaptive immune response. The molecular re-
quirements for full T-cell priming involve two signaling events,
recognition by the T cell receptor (TCR) of antigen presented on
a major histocompatibility complex (pMHC) on the surface of
an APC, as well as signaling from co-stimulatory and adhesion
molecules, and T-cell polarizing factors, all of them coming
from the same APC [51, 52]. In addition to these molecular
interactions, the physical forces created by T cell receptor—
pMHC interaction at the immune synapse also determine the
nature of T-cell activation [53, 54]. Activated T cells will then
migrate to the inflamed tissue where they need to re-encounter
their cognate antigen in the context of MHC-bearing APCs to
perform their effector function.

Neural Antigens in Stroke

Neural antigens such as myelin basic protein (MBP), neuron-
specific enolase, and S1003 can be found in the serum of pa-
tients with stroke, and their concentrations are correlated with
the severity and volume of infarction [55]. Several lines of evi-
dence suggest that stroke might trigger neural antigen presenta-
tion. However, this possibility is not fully demonstrated and
many questions must be resolved. How CNS antigens are deliv-
ered to APCs and whether antigen is captured and presented by
the same APCs to prime T cells in tissue-draining lymph nodes
are elusive. While DCs can transport antigens to the lymph
nodes, resident microglia are unlikely to traffick out of the
CNS. An increased presence of brain-derived antigens in mi-
grating DCs and macrophages at the draining lymphoid tissue
was described in rodent models of EAE, experimental stroke,
patients with multiple sclerosis (MS) [56], and patients with
stroke [22]. Besides trafficking of migratory DCs carrying neu-
ral antigens, soluble brain peptides could access the lymph
nodes (see above) and be taken up by APCs locally.
Interestingly, microscopic observations suggested that brain—an-
tigen immunoreactive macrophages contact lymphoid resident

DCs surrounded by some activated T cells [22]. These observa-
tions raise the possibility of cargo exchange between different
APCs enabling the resident professional APCs to present neural
antigens. The presence of activated T cells near the antigen-
bearing APCs might ensue T cell response to brain antigens.
Ortega et al. [20] further explored this notion in a mouse model
of experimental stroke and found that lymph node T and B cells
from ischemic mice showed autoreactivity to human CNS anti-
gens when re-stimulated in vitro. Therefore, adaptive immune
responses against CNS antigens could be initiated in the periph-
ery and subsequently propagated to the CNS by circulating
primed T cells, which would be re-stimulated by antigens within
the CNS [57]. Myeloid cells found in the meninges and choroid
plexus, as well as perivascular macrophages, could act as func-
tional APCs that could re-activate cerebrospinal fluid (CSF)
circulating primed T cells [46]. Functional characterization of
the T-cell immune response against brain-derived antigen is
needed because the APC challenge to T cells can elicit autoim-
mune response to self-antigens or a tolerogenic response, de-
pending on the co-stimulatory signaling and local microenviron-
ment. Furthermore, it is unknown whether any potential anti-
gen—T-cell autoreactivity influences stroke outcome, but several
studies have described an increased immunoreactivity to neuro-
nal protein microtubule-associated protein (MAP)-2 in lym-
phoid tissue that was associated with smaller infarcts [20, 22].
Interestingly, dampening MAP-2 degradation minimizes ische-
mic injury in the cerebral cortex [58]. MAP-2 autoimmune re-
sponse could either preserve the integrity or promote the recov-
ery of neurons at risk of dying in the injured ischemic tissue [20,
59]. In contrast, antigen responses to myelin proteins have been
associated to autoimmunity and exacerbation of the brain injury
in experimental stroke [60]. Accordingly, immunoreactivity to
myelin peptides in the human draining lymph nodes was asso-
ciated with greater infarcts and worse outcome [22].

The timing of any autoimmune response is also critical.
Whereas some authors reported CD8* and CD4™ T-cell re-
cruitment within 24 h in ischemic [61] or hemorrhagic [62]
stroke models, other experimental studies showed homing of
T lymphocytes [2] or Tregs [63] 4 days after stroke, or later
[64]. Also, the presence of T lymphocytes in human brain
tissue has been reported 3—4 days after stroke [11]. As
autoreactivity of T cells in the periphery was not observed
before 4 days [20], the assumption of an antigen-dependent
T-cell autoimmune response in the injured brain fits with a
delayed entry of lymphocytes into the ischemic tissue. This
finding does not exclude the possibility of priming and licens-
ing of T lymphocytes by APCs inside the injured brain paren-
chyma. However, in EAE, MBP-reactive lymphocytes must
be transferred into the peripheral circulation to induce clinical
symptoms. In the periphery, these encephalitogenic T cells
first enter secondary lymphoid tissues, where the expression
of activation markers and chemokine receptors is synchro-
nized and later on they are licensed in the lungs before
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entering the CNS [65]. Potentially, antigen-dependent T-cell
responses early after stroke onset could take place in the pres-
ence of memory T helper cells that might occur in patients
with a history of transient ischemic attacks or stroke.

DCs can be tolerogenic depending on their functional and
maturation status and are able to delete or silence autoreactive T
cells and facilitate the development of Tregs [66, 67]. A path-
way for DCs to traffic via the rostral migratory stream from the
brain to the cervical LN, where they present antigen to T cells
for inducing immune tolerance was observed in a mouse model
of MS [68]. The neuroprotective effect of these DC-mediated
Tregs could be negatively affected by local sequestration in-
duced by the immunomodulatory drug fingolimod [68].
Antigen can be processed and presented in a context that in-
duces Tregs, which exert an immunomodulatory effect in re-
sponse to antigen exposure and prevent activation of lympho-
cytes [69]. In experimental stroke, Tregs proliferate and accu-
mulate in the ischemic zone during the first month [64], and
increase in secondary lymphoid organs, suggesting participa-
tion in systemic immunodepression [70]. Nonetheless, the role
of Tregs in stroke outcome is controversial. While Treg con-
ferred neuroprotection in certain experimental stroke models
[63], they did not seem to affect the neurological outcome in
other studies [64]. Furthermore, some studies highlighted the
deleterious function of Tregs in acute stroke by inducing dys-
function of the cerebral microvasculature [71], also after Treg
boosting with CD28 superagonist [72]. However in other stud-
ies, a neuroprotective role of Tregs was observed when these
cells were expanded with CD28 superagonist [73], after
inhibiting histone deacetylases [74], or after Treg adoptive
transfer [74-76].

Autoantibodies

Antibodies against brain antigens have been found in CSF of
patients with stroke [77, 78], suggesting that the release of brain
antigens, especially when BBB dysfunction occurs, may be
followed by intrathecal B-cell production. The presence of
IgG, IgM, and IgA subtypes of autoantibodies has been de-
scribed [78]. Autoantibodies have also been reported in the
serum of patients with stroke, including antineurofilament anti-
bodies [79] and antibodies against the N-NR2A/2B subtype of
the N-methyl-D-aspartate receptor (NMDAR) [80, 81].
Nevertheless, the presence of some autoantibodies has been
described in many different pathological conditions, and also
in healthy subjects [82, 83], but their clinical significance is not
clear. It is possible that the loss of BBB integrity was critical to
enable pathogenic effects of circulating autoantibodies.
NMDARI1 autoantibodies seem to be beneficial or detrimental,
depending on the BBB integrity before stroke. Using APOE4
carrier status as an indicator of a preexisting leaky BBB, Zerche
et al. [39] observed greater infarct growth in patients with BBB
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disruption and autoantibodies against NMDAR, whereas pa-
tients without previous BBB disruption that had autoantibodies
showed the smallest infarct growth. Autoantibodies may also
have a role in the development of poststroke cognitive impair-
ment. In mouse models, infiltration by B lymphocytes occurred
weeks after cerebral ischemia, in parallel with the appearance of
signs of cognitive decline [84], and IgG autoantibodies against
MBP after stroke were more frequent in patients with cognitive
decline than in patients without it [85].

Nonetheless, it is important to note that the immunoglobu-
lin isotype of autoantibodies has relevant pathogenic implica-
tions [86]. The majority of the autoantibodies against extra-
cellular epitopes like NMDARI1, myelin oligodendrocyte gly-
coprotein, and contactin-associated protein-like 2 detected in
healthy subjects or in patients with different neurological dis-
eases, including stroke, are IgA- or IgM-positive, with very
few IgG-positive samples [83]. In contrast, only IgG autoan-
tibodies have been proven to be pathogenic in antibody-
mediated neurological autoimmune diseases, such as anti-
NMDAR encephalitis [87], whereas the clinical significance
of the presence of IgA or IgM autoantibodies is debated [88].

Systemic Inflammation

Inflammation is a classical response to infection and injury with
many beneficial effects, but inappropriate inflammation can
precipitate cerebral ischemia or aggravate it. Large community
studies have found associations between systemic inflammato-
ry conditions and cardiovascular disease, including stroke [89,
90]. Inflammation is one of the main pathogenic mechanisms in
atherosclerosis, and considering the interaction between the cir-
culation and the immune system, it is not surprising that there is
a tight association between atherosclerosis and systemic auto-
immunity. Cholesterol accumulation in macrophages and other
immune cells promotes inflammatory responses, including aug-
mentation of TLR signaling, inflammasome activation, and the
production of monocytes and neutrophils in the bone marrow
and spleen [91]. Antigen-specific adaptive immune responses
may also have a role in the atherogenic process [92], as sug-
gested by studies in mouse models of atherosclerosis and mice
deficient in both B cells and T cells [93, 94]. In turn, athero-
sclerosis may also enhance autoimmune responses in other or-
gans, including the brain. The production of interleukin (IL)-17
and IL-17-promoting cytokines is enhanced in atherosclerosis.
Macrophages and DCs produce IL-1x and IL-(3, while y4 T
cells and innate lymphoid cells produce IL-17 [95]. DCs also
exhibit increased expression of TLR4, IL-1R1, and caspase-1 in
atherogenic conditions [96]. Systemic levels of IL-17, IL-21,
and IL-23 are increased in patients with atherosclerosis [97].
These proinflammatory effects of atherosclerosis can enhance
autoimmune responses in the brain. In atherogenic mice, naive
autoreactive T cells preferentially differentiate into Th17 cells,
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leading to exaggerated autoimmune inflammation in CNS [98].
Rheumatic diseases are also an independent risk factor for
stroke [99]. The risk is higher in patients under 50 years and
is most probably related to inflammatory mechanisms, because
the risk of stroke is greater in inflammatory arthropaties com-
pared with noninflammatory osteoarthritis [ 100]. Inflammation
in rheumatic diseases is systemic, nonresolving, and often only
controlled with aggressive antirheumatic drugs. The risk of
stroke also seems to increase in other conditions associated with
excessive inflammation such as chronic obstructive pulmonary
disease in the weeks following an exacerbation [101].

The study of the effects of systemic inflammation over the
fate of cerebral ischemia is challenging because many experi-
mental studies are carried out in animals without comorbidities
that do not adequately mimick the presence of systemic inflam-
mation [102]. However, considerable evidence supports a rela-
tionship between systemic inflammation and poor outcome in
patients with stroke and in experimental stroke models. Many
components of the immune system are involved in the patho-
logical processes underlying the development of atherosclerosis
and its ischemic complications [103]. In patients, stroke can
produce an inflammatory response known as systemic inflam-
matory response syndrome, which is especially frequent in pa-
tients with severe stroke. Among patients treated with throm-
bolysis, those who developed systemic inflammatory response
syndrome were at greater risk of poor functional outcome even
after adjusting for relevant prognostic confounders [104].
Experimental models of stroke have shown that various system-
ic inflammatory mechanisms exacerbate brain damage and
worsen functional deficits. The mechanisms by which systemic
inflammation exhacerbates cerebral ischemia are diverse, in-
cluding reduced reperfusion after vessel recanalization [105],
increased BBB injury, and edema formation [106]. Raising sys-
temic inflammation in experimental ischemia through IL-1f3
administration, or in IL-10-deficient mice, or in mice with
chronic infection that have a T helper 1 (Thl)-polarized im-
mune response, has been associated to increased disruption of
tight junction proteins and basal lamina collagen, increased
platelet aggregation, microvascular injury, increased MMP ac-
tivation, and increased mortality after experimental ischemia
[102, 107, 108]. Tight junctions between endothelial cells and
the epithelial cells of the blood—CSF barrier limit access to the
CNS by circulating cells [109], but activated T cells can enter to
the CNS in inflammatory situations because they express adhe-
sion molecules, chemokine receptors, and integrins [110].

Stroke and Infection

Infections are frequent both before and after stroke [111], and it
is possible that the timing of the infections is a key factor in
modulating the immune response [112]. Both acute and chronic
infections like bronchial or dental infections can promote

atherosclerosis and be a precipitant of stroke both in the general
population [113] and in surgical patients, who have a 3-fold risk
of both arterial and venous thrombosis in case of preoperative
sepsis [114]. Strokes in patients with previous infection mani-
fest greater deficits, and increased platelet activation and plate-
let-leukocyte aggregation compared with patients without pre-
vious infection [115]. In young patients with stroke, previous
infection increased the risk of death and disability at 3 months
[116]. Thus, the presence of previous infections could facilitate
the occurrence of stroke and impair functional recovery.
However, stroke-associated infection (SAI) is the most frequent
medical complication of stroke, with an incidence that ranges
from 13 % to 45 % in most recent studies [117, 118], most often
involving respiratory and urinary tract infections associated
with significant mortality and increased costs [119].

Of general concern is that SAI may be a source of inflamma-
tion and autoimmunity as infection facilitates the maturation of
APCs into potent immunostimulatory cells [120], and is involved
in the development of autoimmune diseases [121, 122]. The
effects of infections in cerebral ischemia have often been tested
in experimental models by administration of bacterial lipopoly-
saccharide at the moment of cerebral ischemia.
Lipopolysaccharide increased the likelihood of developing a det-
rimental autoimmune response to brain antigens with higher
presence of B7.1 co-stimulatory molecules on APCs and greater
Thl responses to MBP [123—125]. Becker et al. [124] also
showed that patients who developed an infection after stroke
were more likely to show a Thl response to MBP and glial
fibrillary acidic protein, and stronger Th1 responses to MBP were
associated to poor functional outcome. Nonetheless, it is possible
that the induction of systemic inflammation or infection in ex-
perimental animals at the time of cerebral ischemia will mimic
better the clinical scenario of infections precipitating a stroke
rather than the infections occurring in the aftermath of stroke.

SAI and Brain Damage

SAl also increased the mortality rate and the risk of long-term
recurrent vascular events in some studies [116, 118].
However, studies aimed at analyzing the prognostic conse-
quences of SAI have often failed to find an independent del-
eterious effect of infections, suggesting that several con-
founders could sway [126]. The determinants of SAI are mul-
tifactorial and include the severity of neurological deficits,
dysphagia that favors bronchoaspiration, and a number of sys-
temic immune changes dubbed as stroke-induced
immunodepression syndrome [5]. Immunodepression has
been mainly related to the clinical severity of the stroke and
to the size of the brain lesion both after experimental and
clinical brain ischemia [127, 128]. This could have therapeutic
implications because the immunological features of small and
large infarctions may be different.
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Stroke-induced immunodepression was first described in a
murine model of cerebral ischemia where overactivation of the
adrenergic system caused lymphopenia, a shift from Th1 to Th2
cytokine production, and atrophy of primary and secondary
lymphoid organs [36, 70]. In addition to stress hormone release,
large stroke volumes could also propitiate a greater incidence of
SALI as the result of an increased release of danger signals. For
instance, high mobility group box-1 release from the ischemic
brain induced the proliferation of bone marrow-derived sup-
pressor cells, inhibiting the adaptive immune responses and
resulting in lymphopenia and functional exhaustion of mono-
cytes [74]. In patients with stroke, the best established features
of SAI are increased levels of stress hormones and anti-
inflammatory cytokines like IL-10 [124—131], decreased num-
bers of circulating lymphocytes [129, 131, 132], and monocyte
deactivation with reduced expression of human leukocyte
antigen-antigen D related and reduced capacity to produce in-
flammatory cytokines [129, 131].

Immunosuppression could be a compensatory response to
protect the ischemic brain from excessive inflammation, at ex-
penses of lowering the infectious threshold [133, 134]. Most
features of the stroke-induced immunodepression may favor
tolerogenic immune responses. Thus, catecholamines can in-
hibit the antigen-presenting capability via 32-adrenoceptors
[135—137], corticosteroids inhibit the production of inflamma-
tory cytokines in APCs and induce the development of
tolerogenic APCs [138, 139], and glucocorticoid-stimulated

Fig. 1 Stroke causes brain cell
death and the release of brain
antigens that can reach the lymph
nodes either as solutes in the
interstitial fluid or can be captured
by dendritic cells (DCs) or
antigen presenting cells
trafficking to the lymph nodes.
Antigen presentation to T cells
under inflammatory conditions
can trigger autoreactivity that can
exacerbate brain damage, or can
promote tolerance by regulatory T
cells (Treg) that will dampen
inflammation and exert beneficial
effects
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monocytes reduce the release of interferon-y and IL-17 in lym-
phocytes, favoring the generation of Tregs [140]. IL-10 also
inhibits autoimmune reactions acting on several immune cells,
including APCs inducing anergic T cells that are able to sup-
press activation, and function of T cells in an antigen-specific
manner [141]. In addition, other alterations in the numbers and
phenotype of circulating leukocytes, such as lymphocytopenia
and reduced human leukocyte antigen-antigen D related expres-
sion in monocytes, could further impair the activation of spe-
cific T-cell responses against brain antigens.

Interestingly, enhancing immunity after cerebral ischemia
may prevent infections at the expense of favoring autoimmunity.
The pharmacological blockade of the sympathetic nervous sys-
tem and the hypothalamic—pituitary—adrenal axis in a murine
model of cerebral ischemia reduced infarct volume, decreased
infection rate, and increased long-term survival, but increased
CNS antigen-specific Thl responses in the brain [21]. Even if
autoimmunity was not detrimental in this experimental model,
these results confirm the idea that the balance of proinflamma-
tory and anti-inflammatory mediators may be crucial in the ap-
pearance of antigen specific autoimmune responses after stroke.

The relationship between autoimmune responses and is-
chemic brain lesion is further complicated by the observation
that myelin oligodendrocyte glycoprotein-specific
autoreactive CD4 T cells are required for normal learning
behavior in experimental animals [142], and that, in the ab-
sence of infection, the brain self-antigen T-cell response is
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tolerogenic [143]. Some immune responses against self-
antigens may induce protective autoimmunity and hence
could be participating in CNS repair [144].

In theory, anti-inflammatory or immunosuppressive
treatments might further increase the risk of infections in
patients with severe strokes that spontaneously develop
systemic immunodepression but may benefit patients with
smaller ischemic lesions that are not at risk of infection.
Immunomodulatory drugs that are used in patients with
MS are now being tested in stroke. For instance,
fingolimod, a drug that induces lymphopenia and prevents
lymphocyte access to the brain, has shown beneficial ef-
fects in stroke animal models [145] and in small clinical
trials in ischemic patients with stroke [146, 147]. Also,
natalizumab, a drug that inhibits leukocyte infiltration,
seems to exert some benefits in human stroke (ACTION
trial), and a corresponding mouse anti-CD49d antibody
has shown protective effects but only in 1 of 2 experimen-
tal models of brain ischemia [148]. Larger studies in pa-
tients with stroke are needed to demonstrate efficacy and
safety of immunodulatory strategies. However, patient
stratification might be required to identify those subpop-
ulations that could benefit from immunomodulation.

Final Remarks

We have reviewed the current status of antigen presentation in
stroke and summarize it in Fig. 1. Overall, we described that
brain antigens have been detected in the draining lymphoid
tissue and the blood of patients with stroke and experimental
animals. Also, cells with features of APCs are found in the
injured brain tissue after stroke, but the nature of these cells
must be better characterized along time to understand their
function. Several lines of evidence suggest that brain antigens
are presented to T cells, and, under certain circumpstances
involving systemic inflammation, they can elicit autoreactive
responses that seem to impair the functional outcome of
stroke. Further studies are needed to unravel the actual mean-
ing of these observations. Deciphering complex brain—im-
mune system networks using currently available next-
generation sequencing, high throughput screening, and bioin-
formatics should contribute to understand the consequences of
the inflammatory and immune responses for the functional
outcome of stroke.
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