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Abstract It is well established that post-stroke inflammation
contributes to neurovascular injury, blood–brain barrier dis-
ruption, and poor functional recovery in both animal and clin-
ical studies. However, recent studies also suggest that several
leukocyte subsets, activated during the post-stroke immune
response, can exhibit both pro-injury and pro-recovery pheno-
types. In accordance with these findings, B lymphocytes, or B
cells, play a heterogeneous role in the adaptive immune re-
sponse to stroke. This review highlights what is currently un-
derstood about the various roles of B cells, with an emphasis
on stroke risk factors, as well as post-stroke injury and repair.
This includes an overview of B cell functions, such as anti-
body production, cytokine secretion, and contribution to the
immune response as antigen presenting cells. Next, evidence
for B cell-mediated mechanisms in stroke-related risk factors,
including hypertension, diabetes, and atherosclerosis, is
outlined, followed by studies that focus on B cells during
endogenous protection from stroke. Subsequently, animal
studies that investigate the role of B cells in post-stroke injury
and repair are summarized, and the final section describes
current B cell-related clinical trials for stroke, as well as other
central nervous system diseases. This review reveals the com-
plex role of B cells in stroke, with a focus on areas for

potential clinical intervention for a disease that affects millions
of people globally each year.
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Introduction

Nearly 800,000 people in the USA experience a new or recur-
rent stroke every year, making stroke the fifth leading cause of
death and a major cause of long-term adult disability in the US
[1]. Tissue plasminogen activator is currently the only Food
and Drug Administration (FDA)-approved post-stroke thera-
peutic [2], but delivery is required within the first 3 to 6 hours
of stroke onset. Therefore, identifying mechanisms that
contribute to the evolution of stroke-related injury and re-
pair—occurring over the course of days and weeks—could
expand the available window for therapeutic interventions.
As highlighted by this special issue, recent focus on under-
standing the role of the immune system following stroke has
identified several mechanisms, involving both the adaptive
(e.g., B and T cells) and innate (e.g., monocytes, microglia)
immune systems, that could develop into efficacious therapeu-
tic targets. This review focuses on the roles of B cells in stroke
risk and post-stroke injury and repair, with an emphasis on
potential clinical interventions.

A Review of B Cell Functions

B Cells as Antibody Producers

Figure 1 pictorializes the different aspects of B cell function
summarized in this section. B lymphocytes (i.e., B cells) play
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a significant role in humoral immune responses. Naïve B cells
express the primary effector molecules IgM and IgD. Upon
activation, B cells switch their expression to a high-affinity,
antigen-specific IgG antibody and differentiate into either
memory cells or primary plasma cells (see review [3]). The
Bswitching^ to high-affinity antibodies is dependent on inter-
actions with CD4 T cells (i.e., helper T cells), expression of
CD40 on B cells, and contact with surrounding cytokines such
as interferon IFN-γ or interleukin IL-4. These linked recogni-
tions further activate both T and B cells to proliferate and
clonally expand.

The spleen is compartmentalized into different areas, such
as follicular regions (mainly contains B cells), the marginal
zone (MZ) surrounding the follicles (consists of T cells, mac-
rophages, and B cells), the red pulp (functions as a red blood
cell disposal site), and the paracortical region (consists mostly
of T cells). Upon B cell activation in the spleen, there is an
extrafollicular response in splenic regions, such as the red pulp
and a follicular germinal center response [4, 5]. In the
extrafollicular response, B cells proliferate and differentiate
into short-lived, antibody-secreting plasmablasts [6]. Some
of the activated B cells enter the B cell follicles and divide
rapidly to form germinal centers. B cells entering germinal
center reactions are known as B2 cells [7]. The germinal cen-
ter provides the optimal microenvironment for various B cell
processes, including proliferation, somatic hypermutation, af-
finity maturation, and isotype switching, all of which are es-
sential for generating antibody diversity. B cells rearrange
their DNA and alter the immunoglobulin heavy chain constant

region (i.e., class-switch recombination or isotype switching)
to induce different effector functions (IgA, IgG, IgM, IgD,
IgE). The germinal center consists of 2 areas, a dark zone
comprised of rapidly proliferating B cells, and a light zone
where B cells interact with follicular dendritic cells and CD4
T cells. B cells in the light zone compete for survival signals
from these dendritic cells and T cells, and are susceptible to
apoptosis unless selected and expanded. This process of se-
lective survival of B cells is termed Baffinity maturation^ [8].
B cells then either differentiate into plasma cells, which mi-
grate to the bone marrow, where they continue producing
higher-affinity and isotype-switched antibodies, or they differ-
entiate into memory B cells.

Other heterogeneous populations of B cells, like B1 cells
and MZ B cells, also produce antibodies to play an essential
role in innate sensing of pathogens. B1 cells are generated
during fetal and neonatal developmental stages and are mainly
present in peritoneal and pleural cavities [9]. These innate-like
B1 cells secrete broad reactivity and low-affinity natural IgM
(nIgM) antibodies. In addition, MZ B cells, which are mainly
present in the MZ of the spleen, also secrete nIgM [10]. These
antibodies typically bind pathogens or receptors to act as their
ligand (see review [11]), or activate the complement system,
leading to the release of anaphylatoxins, C5a and C3a.
Release of anaphylatoxins increases secretion of proinflam-
matory cytokines and attracts other effector cells to the site
of inflammation. Polyreactive, nIgM antibodies bind and
thereby coat apoptotic cells to also increase the clearance of
dying or dead cells [12, 13].

Fig. 1 Summary of various B
cell functions. TH = T helper;
TCR = T cell receptor;
MHC = major histocompatibility
complex; BCR = B cell receptor;
nIgM = natural IgM;
MZ = marginal zone; IL =
interleukin; BDNF = brain-
derived neurotrophic factor; IFN
= interferon; TNF = tumor
necrosis factor; DC = dendritic
cell; Breg = regulatory B cell;
TGF = transforming growth
factor; GC = Germinal center
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B Cells as Antigen-Presenting Cells

B cells in the secondary lymphoid organs, like spleen and
lymph nodes, are exposed to antigens that either enter through
the afferent lymphatics, or are presented on the neighboring
cell surface [14]. The B cell receptor (BCR) is an immuno-
globulin on the B cell plasma membrane, which binds anti-
gens with varying affinity, resulting in an engulfment of the
antigen. The BCR works in concert with downstream signal-
ing cascades, leading to the transcription of genes necessary
for B cell function (see review [15]). The antigen, along with
the BCR, is internalized in endosomal and lysosomal vesicles
and the antigen is processed into peptide fragments.
Accessory enzymes like proteases aid the assembly of these
peptide fragments onto major histocompatibility class
(MHC)-II molecules, which then traffic to the B cell’s surface
to become an antigen-presenting cell (APC). The peptide frag-
ments bound to MHC II molecules are presented to CD4 T
cells for further antigen-specific T cell receptor interactions
[16].

B Cells as Cytokine Producers

Apart from antibody production and antigen presentation, B
cells also play a major role in modulating immune responses
through cytokine secretion, as demonstrated through various
animal models, especially those for autoimmune [17–19] and
inflammatory [12] diseases. B regulatory cells (Bregs) sup-
press the immune system through the production of anti-
inflammatory cytokines such as IL-10, IL-35, and
transforming growth factor (TGF)-β. Bregs indirectly exert
suppressive activity in a cell contact-dependent manner
through the expression of inhibitory molecules, including
CD40, on their surface. Bregs inhibit the expansion of inflam-
matory and autoreactive Tcell and B cells [20–22], but require
activation for cytokine production [23, 24]. Innate Bregs, de-
rived from B1 cells, rapidly produce high amounts of IL-10
and IgM antibodies [25], while adaptive Bregs display antigen
specificity and are activated by both BCR and CD40 stimula-
tion [21]. In addition to innate and adaptive Bregs, MZ pre-
cursor B cells secrete IL-10 exclusively in response to CD40
stimulation [26].

Apart from the immunosuppressive cytokines like IL-10
and TGF-β, B cells also secrete proinflammatory cytokines,
including tumor necrosis factor (TNF)-α and IFN-γ.
Expression depends on the inflammatory environment or the
level of anti-inflammatory cytokines such as IL-4, IL-5, and
IL-13 [27]. The overall function of these cytokines is to direct
Ig isotype production (i.e. IgG1 versus IgG4) [28].
Additionally, activated B cells from both humans and mice
have been shown to produce neurotrophic growth factors,
such as brain-derived neurotrophic factor (BDNF) and nerve
growth factor (NGF), to promote the survival and

differentiation of neuronal populations during central nervous
system (CNS) injury [29–31].

Memory B Cells

After the initial immune response to invading pathogens, the
germinal center B cells, which have undergone several rounds
of positive selection (see BTolerance Mechanisms in B
Cells^), differentiate either into antibody-secreting plasma
cells or memory B cells. Long-lived plasma cells home to
the bone marrow, where they secrete antibodies and act as a
first line of defense upon reinfection [32–34]. Memory B cells
are also antigen specific, but while they express surface im-
munoglobulin, they do not secrete antibody at a high rate (see
review [35]). Memory B cells are derived from the B cells that
have undergone affinity maturation and isotype selection.
Memory B cells are heterogeneous in nature, with subtypes
including traditional germinal center-derived B cells, germinal
center-independent memory B cells, and IgM class-switched
memory B cells [36–38]. IgG+ memory B cells differentiate
into plasmablasts, while IgM+ memory B cells expand during
germinal center reactions [39, 40]. Chronic infection exhausts
memory B cells and limits functionality [41].

Tolerance Mechanisms in B Cells

Early B cell development occurs within the bone marrow
where B cells undergo both positive and negative selection,
as bone marrow stromal cells provide signals to lymphoid
progenitor cells through cytokine secretion and cell–cell con-
tacts (see review [42]). These interactions prime progenitors to
differentiate and commit to various lineages and start the ex-
pression of recombinase enzymes during both early and late B
cell developmental stages [43]. Recombinase enzymes are
involved in somatic recombination processes, which lead to
either productive or non-productive B cells based on the pres-
ence of a functional heavy and light chain. B cells with un-
successful rearrangements and improper immunoglobulin sur-
face expression undergo apoptosis [44]. However, when B
cells successfully express the cell surface receptor, signaling
through the antigen receptor provides survival signals.
Furthermore, multiple checkpoints during B cell development
eliminate strongly self-reactive cells.

At the first checkpoint, B cell precursors expressing immu-
noglobulin heavy chain (IgH) are subjected to the surrogate
light chain’s maintenance [45]. The surrogate chain checks
how well IgH can pair with the immunoglobulin light chain
(IgL) and, if paired appropriately, form the pre-B cell receptor.
The light chain rearrangements, which are more complex,
occur in 4 stages involving the paternal and maternal k and l
loci [45, 46]. Together, B cells with a BCR comprised of light
chain and heavy chain are presented with autoantigens and
reach another checkpoint. Higher-affinity autoreactive B cells
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are deleted, while lower-affinity autoreactive B cells, particu-
larly gut- and lung-associated B1 cells, enter the peripheral
autoreactive cell pool [45]. B cells that do not recognize
autoantigens home to the B cell follicles of spleen and lymph
nodes to become mature B2 cells [45].

Thus, through receptor editing, B cells undergo several
rounds of rearrangements, followed by positive and negative
selection to ensure minimal loss of B cells while eliminating
any potentially pathogenic, high-affinity, autoreactive cells.
Nearly 75% of early immature B cells in humans are
autoreactive, so receptor editing removes a third of these cells
from the autoreactive repertoire [47]. This optimizes the
chance of survival for the majority of pre-B cells, allowing
them to mature into naïve B cells. However, if the initial
autoreactive chains are not properly deleted during receptor
editing, these B cells can revert and express the original
autoreactive receptor and induce autoimmune responses
[48]. With respect to autoimmune diseases, B cells are usually
considered to be pathogenic owing to the secretion of autoan-
tibodies that exacerbate tissue damage [49, 50]. Apart from
secreting autoantibodies, B cells may also contribute to auto-
immune disease through pro-inflammatory or anti-
inflammatory cytokine production, presentation of self-anti-
gens, regulation of other immune cells, and development of
ectopic germinal centers (see reviews [51, 52]).

Downstream BCR Signaling

BCR signaling determines the selective survival of B cells
based on their antigen specificity. The BCR is complexed with
Igα and Igβ heterodimers [53].When the BCR is cross-linked
upon binding a receptor-specific antigen, tyrosine residues
(e.g., Syk, Lyn) in the cytoplasmic BCR complex are phos-
phorylated by kinases to assemble adaptor proteins, kinases,
guanine exchange factors, and G proteins (see reviews [54,
55]). Signal transduction processes that occur after antigen
recognition by the BCR determine the magnitude of the BCR
signaling. The strength of these signal transduction processes
is, in turn, determined by the surface receptor density, valence,
and antigen affinity of the BCR. Syk phosphorylates the Igα
and Igβ complexed with the BCR, and Lyn forms a complex
with the costimulatory B7 molecules and surface CD19 to
reduce the activation threshold [52, 56–58]. Multiple pathways
result in BCR signal transduction, including secondmessenger
signaling and mitogen activated protein kinase pathway acti-
vation. These second messengers further activate downstream
transcription factors essential for B cell function and calcium
fluxes [59]. Ultimately, the B cell state and maturation stage,
together with the type of antigen activating the BCR, decides
the specific pathway activated downstream.

Apart from the positive signaling on antigen recognition,
inhibitory receptors such as Fcγ receptors, programmed cell
death 1 (CD28 homolog), and CD31 limit the intensity and

duration of B cell activation through negative regulatory func-
tions [60]. These are essential for restricting responses to for-
eign pathogens and discriminating against autoantigens. The
disruption of these inhibitory receptors and other B cell intrin-
sic signaling components have been implicated in the devel-
opment of autoimmune responses [61]. As discussed previ-
ously, apart from antigen recognition and binding, B cells
further require secondary signals from CD4 T cells to mount
a successful antigen response. MHC-II on the B cell surface
binds its respective CD4 T helper cell to induce the secretion
of cytokines. These cytokines trigger B cell proliferation and
other downstream differentiation processes. Therefore,
autoreactive B cells that escape all tolerance checkpoints and
manage to enter the periphery can reach a state of unrespon-
siveness called anergy. Anergic B cells cannot sustain the
initial antigen recognition owing to the lack of co-
stimulation from CD4 T cells [47].

B Cells Contribute to the Development of Stroke
Risk Factors

Clinical studies show that particular risk factors, including
disease, lifestyle, sex, and age, increase the likelihood of
stroke [62]. Of these risk factors—hypertension, diabetes,
and atherosclerosis—are known to be potent predictors of
stroke incidence, outcome, and recurrence [62]. These dis-
eases have all been linked to changes in B cell function and
phenotype, with much of the research suggesting that B cells
contribute to disease development and progression [63–66]
(as summarized in Fig. 2). Despite the largely deleterious ef-
fect of B cells, newer studies identify particular B cell subsets
that may also be protective [65–68]. In addition to these dis-
eases, other factors (e.g., sex, obesity, age) contribute to stroke
prevalence [62], and induce both beneficial and detrimental
changes to B cells [69–71], but are not specifically reviewed
in this section.

Many stroke risk factors are highly comorbid [72]. For
example, hypertension and diabetes are the leading risk fac-
tors for atherosclerosis, and worsen associated disease out-
come [72, 73]. In line with this finding, one study showed that
57% of patients with stroke had multiple risk factors, includ-
ing hypertension and diabetes, and these risk factors were also
associated with increased incidence of secondary stroke [74].
The high frequency of comorbid stroke risk factors has led to
the development of the Bcommon soil^ hypothesis, which
suggests shared disease mechanisms for hypertension, diabe-
tes, and atherosclerosis [75, 76], including disease-induced
immune dysregulation [75]. This section will review the cur-
rent research regarding B cells in hypertension, diabetes, and
atherosclerosis, including B cell production of autoantibodies
to disease-associated antigens as a common mechanism to
these major stroke risk factors [64, 65, 77].
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High Blood Pressure and Hypertension

Approximately 80 million adults in the US have hypertension
(systolic blood pressure ≥ 140 mmHg) with the prevalence of
this disease, and associated deaths, on the rise [62]. At the time
of first stroke, approximately 77% of individuals have high
blood pressure, and prehypertension is a robust predictor of
future strokes [62]. For nearly 50 years, it has been known that
the immune system contributes to the progression of this dis-
ease. During hypertension, there is dysregulation of the adap-
tive immune system, leading to global inflammation and ox-
idative stress in the kidneys and vasculature [78]. This inflam-
mation has largely been attributed to a greater activation of
proinflammatory T cells, suppression of regulatory T cells,
and increased cytokine production [78].

Despite evidence that the immune system plays an impor-
tant role in hypertension, the contributions of B cells have
only recently come to light [63]. B cells isolated from patients
with hypertension exhibit enhanced proliferation and activa-
tion in response to in vitro stimulation compared with normo-
tensive individuals [79, 80]. Murine studies confirmed that
immunodeficient mice that lack B cells and T cells have at-
tenuated disease in response to angiotensin-II (Ang-II), a com-
mon rodent model of hypertension [81, 82]. B cells are also
cr i t ical for the development of hypertension, as

pharmacologic depletion of B cells protects against Ang-II-
induced increases in systolic blood pressure, while adoptive
transfer of naïve B cells restores the development of disease
[63]. Additionally, B cell-deficient mice had fewer macro-
phages and decreased stiffening in the aorta, which is clinical-
ly an independent predictor of fatal stroke [83].

Hypertension-induced antibody productionmay also play a
key role in pathogenesis. In hypertensive mice, there are ap-
proximately twice as many plasma cells and plasmablasts, as
well as greater levels of circulating IgG and IgG deposits in
the aorta, compared with wild-type (WT) mice [63]. Multiple
studies corroborated that patients with hypertension have in-
creased serum levels of IgG [84, 85], and immortalized B cells
from patients have greater IgG production in vitro [79].
Patients with hypertension also present with IgG autoanti-
bodies targeting Ang-II receptors [77, 86], with antibody titers
correlated to disease severity [87]. Treatment with Ang-II re-
ceptor antagonists decreases rates of first and recurrent stroke
in hypertensive patients [88], as well as reducing infarct vol-
umes in mice [89]. These findings suggest that a further un-
derstanding of B cells in hypertension, particularly antibody
production, is needed. The multiple sclerosis (MS) B cell-
depleting drug, rituximab, a therapeutic antibody that targets
CD20 on the B cell surface to induce apoptosis [90], has
already been suggested as a therapy for patients with hyper-
tension but has yet to be tested in the clinic [63, 91].

Diabetes Mellitus

Type 1 diabetes (T1D) is largely considered to be an incurable
autoimmune condition that typically develops during child-
hood. It is characterized by the destruction of pancreatic
insulin-secreting β cells by autoreactive T cells [64, 92].
Diabetes increases the risk of stroke regardless of age [93],
and nearly triples the stroke risk in patients with a history of
transient ischemic attack [94]. In addition to increasing the
risk of stroke, diabetes increases stroke volume and impairs
recovery [95, 96].

While Tcell-mediated destruction ofβ cells is undoubtedly
important to T1D, B cells are also critical for the development
of T1D.Mice that lack B cells or receive anti-IgM therapies do
not develop insulitis or diabetes [97, 98], whereas reconstitu-
tion of B cells leads to rapid expansion of pathogenic T cells
[99]. Multiple methods of pharmacological depletion of B
cells delay disease onset, prevent disease development, and
induce long-term reversal of disease in mice (see review [90]).
In new-onset patients, 4 weeks of treatment with rituximab
reduced islet autoantibodies and delayed the decline of C-pep-
tide, a protein produced during endogenous insulin secretion
[100, 101]. However, this improvement was transient; by 2
years after therapy cessation, the benefits of rituximab treat-
ment were lost [101]. It has been suggested that greater

Fig. 2 Role of B cells in risk factors for stroke Ang II = angiotensin II;
MS = multiple sclerosis; FOB = Follicular B cells; MZ = marginal zone;
nIgM = natural IgM
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understanding of the timing and dosing of rituximab during
diabetes could improve efficacy [90].

Mechanistically, B cells contribute to diabetes in several
ways. MZ and FOB expand during diabetes development
[102]. These subsets serve two functions. First, they differen-
tiate into plasma cells to produce autoantibodies against insu-
lin and other pancreatic islet antigens [103, 104]. These auto-
antibodies trigger a cascade of events, ultimately resulting in
increased activation of cytotoxic activity of natural killer cells
and CD8 Tcells, which, in turn, exacerbatesβ cell death [103,
105]. In patients with diabetes, the presence of autoantibodies
is highly predictive of T1D and often present at high levels at
the time of disease onset [104, 106]. Second, MZ B cells
migrate to the pancreatic lymph node where they present
autoantigens to self-reactive CD4 T cells [102]. Autoreactive
T cells from the serum of patients with T1D exhibit enhanced
proliferation in response to islet antigens associated with dia-
betes pathogenesis [107–109]. Interestingly, patient with dia-
betes also have CNS-reactive T cells that increase the risk of
developing CNS autoimmune diseases (e.g. MS [110]).

Atherosclerosis

Atherosclerosis is a condition in which lipids accumulate in
medium to large arteries [111]. Intracranial atherosclerosis oc-
curs when plaques develop in the arteries of the brain and limit
blood flow throughout the brain [111]. As of 2004, approxi-
mately 70,000 ischemic strokes each year occurred owing to
intracranial atherosclerosis, making it a potent risk factor for
stroke [112]. Intracranial atherosclerosis is associated with
high rates of recurrence, and nearly half of recurrent strokes
in these patients are disabling [113]. Atherosclerosis is con-
sidered to be a chronic inflammatory disease, with lipid accu-
mulation and adhesion of leukocytes, in particular T cells,
linked to arterial inflammation [114]. T cells accumulate in
vascular lesions, where they are activated by antigens [115].
In response to activation, they secrete proinflammatory cyto-
kines that worsen inflammation and contribute to disease de-
velopment [116].

Like many other risk factors for stroke, the role of B cells in
atherosclerosis has, until recently, been largely overlooked.
The primary B cell Bplayers^ in atherosclerosis are B1 and
B2 cells, which play protective and pathogenic roles in ath-
erosclerosis, respectively [65]. As mentioned previously, B1
cells are a small population of Binnate-like^ B cells that pro-
duce low-affinity natural antibodies with broad reactivity [23].
While B1 cells are a small population in mice (2–3% in spleen
[117]), a similar population of B1 cells (5–10% of B cells in
cord and adult blood) has been found in healthy humans [9].
The protective benefits of B1 cells are believed to be predom-
inantly mediated through production of nIgM. In atheroscle-
rosis, nIgM specifically targets epitopes present on damaged
lipids, apoptotic cells, and necrotic cells [118]. In patients,

high levels of IgM against damaged lipoproteins correlated
with slower progression of atherosclerosis and low levels of
nIgM against phospholipids increased the risk of stroke [119,
120]. Production of IgM appears to be necessary for protec-
tion, as adoptive transfer of IgM-deficient B1 cells into ath-
erosclerotic mice did not reduce lesion size compared with
WT B1 cell transfer [121]. In addition to IgM production,
B1 cells promote clearance of apoptotic and necrotic debris
in lesions [122, 123] and produce IL-10 in vivo [25].

In contrast to the protective benefits of B1 cells, B2 cells
play a predominantly pathogenic role in atherosclerosis [65].
B2 cells may contribute to pathology, as depletion of B cells
using a murine monoclonal anti-CD20 antibody ameliorated
disease in 2 different preclinical models of atherosclerosis
[124, 125]. It is interesting to note that anti-CD20 treatment
selectively depletes B2 cells, while B1 cell populations are left
intact [124]. Furthermore, B2-depleted mice have reduced
proinflammatory cytokine production [124]. Another study
showed that reconstitution of B cells in atherosclerotic mice
with B cell-deficient bone marrow worsened disease [126].
While less is known about B2-mediated pathogenesis, there
is some evidence that secretion of IgG autoantibodies target
epitopes present on damaged lipids, such as plaque antigens,
to promote inflammation. These autoantibodies are present in
human atherosclerosis lesions [127], and increased levels of
IgG are positively associated with disease progression in ca-
rotid atherosclerosis [128, 129]. Therefore, a partial explana-
tion for the benefits of B cell depletion may be a reduction in
pathogenic IgG autoantibodies [124], but more extensive
studies are needed to determine how, if at all, IgM and/or
IgG contribute to protection against atherosclerosis and dis-
ease pathology, respectively.

B Cells Also Contribute to Prestroke
Neuroprotective Mechanisms

While B cells play a pathogenic role in many stroke risk fac-
tors, alterations to B cells also contribute to endogenous pro-
tection from stroke injury in animal studies [130, 131]. One
method for inducing endogenous neuroprotection against
stroke is preconditioning [132, 133]. Preconditioning is a
prestroke intervention in which animals or patients receive
brief exposure(s) to noxious stimuli that Breprogram^ the
way the body responds to injury [133, 134]. This
reprogramming results in profound protection from stroke in
animal models, including reduced infarct volumes, decreased
blood–brain barrier disruption, and improved functional and
neurocognitive recovery [135–137]. Many preconditioning
paradigms have proven efficacious in protecting against
stroke, including hypoxic preconditioning, exercise precondi-
tioning, and ischemic preconditioning (see reviews [133, 138,
139]). Interestingly, despite the diversity of preconditioning
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methods, there is significant overlap in the mechanisms re-
sponsible for preconditioning-induced ischemic tolerance
[132].

One way in which preconditioning protects is through
modulation of the immune system (see reviews [140, 141]).
Preconditioning stimuli exert stress on the body, triggering a
cascade of inflammatory events that are vital for protection
[141–143]. Blocking proinflammatory signaling pathways ab-
lates the benefits of preconditioning on the brain [142–144].
Paradoxically, many of the proinflammatory pathways acti-
vated by preconditioning contribute to injury during stroke
[141, 145]. Understanding how the immune system contrib-
utes to preconditioning-induced neuroprotection may further
elucidate the complex interplay between the protective and
pathogenic roles of the immune system in stroke. The next
section will address how prototypical paradigms of precondi-
tioning (hypoxia, exercise, and ischemia) modulate the adap-
tive immune system, particularly B cells.

Hypoxic Preconditioning

Many animal studies demonstrate that a single hypoxic expo-
sure (8–11% O2) for 2–4 h induces endogenous neuroprotec-
tion (i.e., ischemic tolerance) against transient and permanent
strokes [143, 146–151]. Single-exposure hypoxic precondi-
tioning (SHP) protects against stroke by reducing infarct vol-
umes, edema, and neurologic deficits after stroke [151]. SHP
significantly modulates the immune system, altering cytokine
production, chemokine expression, and overall leukocyte pop-
ulations [143, 152], including an upregulation of CCL2 in
cortical neurons and endothelium [143]. The chemokine
CCL2 is responsible for recruitment of leukocytes to sites of
inflammation in the CNS [153]. SHP upregulated CCL2
mRNA and protein at 12 h and did not induce neuroprotection
in CCL2-deficient mice, revealing a necessary role for this
proinflammatory chemokine [143, 154]. However, SHP also
altered leukocyte populations in the blood independently of
CCL2, including a significant increase in circulating B cells at
12 h after SHP, concomitant with reductions in circulating T
cells, monocytes, and granulocytes [143].

While SHP induces robust protection against stroke, this
protection is brief. SHP protects for a maximum of 72 h [146,
150]. However, repetitive hypoxic preconditioning (RHP)
greatly extends the window of protection [155]. During
RHP, mice receive hypoxic exposures varying in duration (2
or 4 h) and intensity (8% or 11% O2) for 2 weeks. RHP
reduced infarct volumes by nearly half at 2 weeks after the
last exposure, and, remarkably, neuroprotection persisted for 8
weeks following RHP. Despite the global effects of hypoxia,
immunomodulation by RHP remained CNS-specific. RHP
significantly inhibited diapedesis of CD4 T cells, monocytes,
and activated macrophages into the ischemic brain, while
recruiting B cells into the injured CNS [130]. Increased B cell

representation may be due to an RHP-induced upregulation of
vascular CXCL13, a chemokine responsible for B cell recruit-
ment to the CNS during neuroinflammation [130, 156, 157].
A follow-up study found that RHP also upregulates cortical
expression of CXCL12, a chemokine that inhibits leukocyte
extravasation into the CNS [157, 158]. Blocking post-RHP
CXCL12 expression with a CXCL12 receptor (CXCR4) an-
tagonist AMD-3100 disrupted beneficial CXCL12/CCR4 sig-
naling after RHP, and attenuated the anti-inflammatory effect
of RHP in the post-stroke brain [130, 158]. While B cells
remained elevated in RHP/AMD3100-treatedmice, this influx
did not exhibit beneficial effects on acute infarct volume.
However, higher B cell representation did negatively suppress
recruitment of CD4 T cells, which play a pathogenic proin-
flammatory role in stroke [159]. This confirms the anti-
inflammatory effect of RHP-treated B cells, but raises the
question of the efficacy on overall neurovascular protection
against stroke. Figure 3 depicts the RHP-induced upregulation
of CXCL12 at the BBB, and resulting minimizing of BBB
disruption, edema, and infiltration of leukocytes in the RHP-
treated brain.

While preventative treatment with hypoxia has not been
tested in patients with stroke, a longitudinal study from
Switzerland found that individuals who were born at higher
altitudes, and thus had early exposure to hypoxic conditions,
had a decreased risk of stroke [160]. Furthermore, within this
population, increasing altitude correlated with decreased mor-
tality from stroke [160]. In healthy individuals, brief repetitive
exposures to hypoxia decreased circulating TNF-α for up to 1
week after final exposure, with a concomitant increase in IgG,
IgM, and IgA for 4 weeks after the final exposure [161].
Although no clinical studies have specifically examined the
effect of repetitive hypoxia in patients with stroke, repetitive
hypoxia (alternating 1-min exposure of 9% O2 and 21% O2

for 15 min) has been used as a therapeutic in individuals with
spinal cord injury. This therapy improved somatic motor func-
tion, walking speed, and walking endurance [162, 163]. Given
impairments in motor function in patients with stroke, it has
been suggested that repetitive hypoxia could be used as a
therapeutic to improve post-stroke recovery and reduce long-
term disability in this patient population [164].

Exercise Preconditioning

Individuals who exercise regularly exhibit reduced stroke risk,
milder stroke injury, and greater functional recovery
[165–167]. Exercise is particularly clinically relevant given
that it is a noninvasive, easy way to promote protection from
cerebral ischemia. Therefore, many clinical studies have in-
vestigated exercise as a preventative intervention in individ-
uals at high risk of future strokes (see review [168]). Given the
benefits of exercise in clinical populations, animal studies
have sought to determine the mechanisms by which prestroke
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exercise protects against injury and promotes recovery (see
reviews [169, 170]). In animal studies, two main methods of
exercise are used for preconditioning: forced exercise (short
bouts of treadmill running) and voluntary exercise (unrestrict-
ed access to running wheels). These two paradigms differen-
tially affect stroke injury and recovery. Forced exercise results
in greater reduction of infarct volume, according to a recent
meta-analysis, but voluntary exercise in rats leads to greater
improvements in motor recovery after stroke [137, 171].

Immunomodulation is a critical component of exercise-
induced neuroprotection. Like other forms of preconditioning,
ischemic tolerance after exercise preconditioning relies on ac-
tivation of pro-inflammatory pathways. Over the course of 3
weeks of treadmill running, there is a progressive increase in
levels of TNF-α and intracellular adhesion molecule (ICAM)-
1, a protein that promotes leukocyte extravasation, in the

brains of uninjured rats [172]. However, after stroke,
exercised animals have decreased inflammation compared
with sedentary controls. Exercise preconditioning decreased
levels of endothelial ICAM-1, reduced expression of TNF-α
receptors, and diminished leukocyte infiltration into the post-
stroke brain [142, 173, 174]. Inhibition of inflammation with a
TNF-α antibody in exercised animals reversed improvements
in neurological outcome and infarct volume after stroke,
supporting previous findings that TNF-α signaling plays a
critical role in ischemic tolerance induced by preconditioning
[142].

Acute exercise mobilizes B cells through activation of β2-
adgenergic receptors by epinephrine, with greater lymphocy-
tosis after high intensity exercise [174]. Similarly, voluntary
exercise increases circulating IgM in rats, as well as enhancing
B1 cell populations in the peritoneal cavity [175, 176]. In line

Fig. 3 Upregulation of CXCL12
at the blood–brain barrier reduces
infiltration of leukocytes
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with this finding, multiple animal studies have found that ex-
ercise improves antigen-specific antibody responses and ex-
tends the half-life of serum IgG [177–179]. Exercise also re-
duces apoptosis in splenic B cells isolated from mice that
underwent 10 weeks of voluntary wheel running [180].
While alterations in B cell numbers can be difficult to detect
in humans, there is evidence that exercise modifies B cell
function, specifically increased IgM concentration following
mitogen-stimulation (see review [174]). However, the benefits
of exercise may be contingent on exercise intensity and dura-
tion, as sustained high-intensity exercise suppresses immune
function and increases the likelihood of infection in humans
[174]. This is of particular relevance as post-stroke infections
worsen clinical outcomes and increase the risk of mortality for
stroke patients [181].

Ischemic Preconditioning

Ischemic preconditioning is one of the oldest and most trans-
lational paradigms of preconditioning to date. Originally dis-
covered as a way to protect against myocardial infarction in
dogs, ischemic preconditioning protects against ischemic in-
jury in other organs, including the brain (see reviews [182,
183]). Ischemic preconditioning can be achieved by 1 of 2
methods: cerebral ischemia or remote limb ischemia.
Cerebral ischemic preconditioning is a method used in rodent
studies in which the animal is given either a brief focal ische-
mic exposure or global ischemic exposure [141]. A transient
occlusion of the femoral, mesenteric, or renal artery in ani-
mals, for example, induces remote ischemic preconditioning
(rIPC) [169]. In clinical populations, the typical protocol for
rIPC is 3 to 5 inflations of a blood pressure cuff to 200 mmHg
on the forearm or leg, separated by brief periods of reperfusion
[184–190]. rIPC has since been used as a safe, noninvasive
method to reduce injury during coronary artery bypass sur-
gery, abdominal aortic injury repair, pediatric cardiac surgery,
and liver resection, as well as to enhance athletic performance
and motor learning in healthy individuals [191–195]. Given
its efficacy in decreasing ischemia–reperfusion injury, there is
significant interest in application as a pre- and post-stroke
intervention during ischemic stroke [196], especially in light
of promising results using rIPC in other CNS diseases
[187–190]. However, some clinicians express concern about
our incomplete understanding of the mechanisms behind is-
chemic preconditioning-induced neuroprotection [190].

Our knowledge of the mechanisms of neuroprotective
immunomodulation by cerebral ischemic preconditioning is
limited, hindering our understanding of howB cells contribute
to immune-mediated neuroprotection [141]. Ischemic precon-
ditioning upregulates IL-1β protein, a proinflammatory cyto-
kine that can induce B cell activation and antibody production
[197, 198], and activates Toll-like receptor (TLR)-4 increases
B cell proliferation, migration, and immunoglobulin secretion

[199]. rIPC increases B cell populations after stroke in rats
[131], mirroring our findings that B cell populations are en-
hanced following RHP in healthy mice. Interestingly, these
findings contradict studies surrounding preconditioning that
largely describe activation of acute proinflammatory signaling
pathways [141], as both rIPC and RHP have, instead, an anti-
inflammatory effect on the immune system that may unique to
repetitive preconditioning stimuli [134].

The Role of B Cells in Stroke Injury and Recovery

Immediately after stroke there is tissue damage due to absence
of blood supply to the cells. Following primary cell death,
BBB integrity is compromised, with secondary reperfusion
injury due to the infiltration of immune cells and the ensuing
inflammatory cascade [200]. Activated endothelial cells lining
the BBB express adhesion molecules to recruit peripherally
circulating immune cells to bind to the endothelium and infil-
trate into the brain parenchyma. This immediate and early pro-
inflammatory response to stroke is mainly mediated by innate
immune cells (i.e., not antigen specific) and induces cell death,
tissue damage, and behavioral dysfunction [201]. This section
will summarize what is known about B cell-mediated mecha-
nisms in post-stroke injury and recovery.

CNS Immune Responses after Stroke

Infiltrating immune cells and activated tissue resident immune
cells (e.g., microglia) constitute immediate, acute post-stroke
inflammation [202]. In this acute phase, lymphocytes like B
cells and T cells secrete cytokines and produce reactive oxy-
gen species without regard to antigen specificity [203, 204].
Molecular signals known as danger-associated molecular pat-
tern molecules, released by the damaged and dead neurons
and other cells in the ischemic hemisphere, bind to TLRs,
scavenger receptors, and other receptors on the surface of
APCs for activation [205]. Dead and dying cells break down
within the ischemic area within hours after stroke onset [206,
207]. Owing to BBB disruption, these cell fragments, which
are normally sequestered from the peripheral circulation, act
as CNS-specific antigens and elicit delayed, antigen-specific
adaptive immunity after stroke [208–211]. Primed APCs pres-
ent these CNS antigens to T cells and B cells in both the
draining cervical lymph nodes and the spleen, and initiate
the development of an adaptive immune response specific
for the CNS antigens [212]. Even though by central and pe-
ripheral tolerance mechanisms most autoreactive cells have
been eliminated, a few still escape into the periphery and re-
spond to the CNS antigens [208–210, 213]. However, these
post-stroke antigen-specific immune responses are largely un-
defined. Additional studies are required to understand if they
potentiate further CNS tissue damage following stroke [208,
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214–216], particularly owing to the recent identification of
lymphatic vessels within the meninges [217, 218].

Post-stroke Protective Effects of B Cells

There is no clear consensus on the role of B cells in post-stroke
recovery, though several animal studies propose a protective
role for B cells in neuronal injury following stroke. μMT–/–

mice, which have a nonsense mutation introduced into the
transmembrane exon of the IgM heavy chain resulting in the
total deletion of B cells [219], have larger infarct volumes,
worse functional deficits, and a higher mortality rate after
middle cerebral artery occlusion [220]. The ischemic hemi-
sphere also exhibited higher numbers of activated T cells,
macrophages, microglial cells, and neutrophils thanWTmice.
Prestroke adoptive transfer of highly enriched populations of
WT B cells to μMT recipient mice was protective. Protection
may be contingent on cytokine secretion, as the same neuro-
protective phenotype was not observed when IL-10-deficient
B cells were adoptively transferred prior to stroke [220].

Mice receiving B cells as a neurotherapeutic exhibited
higher numbers of peripheral regulatory cells concomitant
with lower numbers of activated pro-inflammatory T cells
[221]. Regulatory T and B cells attenuate post-stroke inflam-
mation by producing anti-inflammatory cytokines (e.g., IL-
10, TGF-β). During CNS pathology, IL-10 expression in the
brain increases regulatory lymphocytes and reduces CNS in-
flammation [51, 222–224]. LPS stimulation of B cells prior to
adoptive transfer enhances IL-10 production and reduces in-
farct volumes, increases regulatory T cell numbers, and atten-
uates peripheral pro-inflammatory responses [224]. Given
glatiramer acetate (i.e., copaxone) increases Breg populations
in the blood and production of IL-10 [225], it has been inves-
tigated in preclinical studies of focal stroke. While Ibarra et al.
found that glatiramer acetate reduced post-middle cerebral
artery occlusion infarct volumes [226], this neuroprotective
result has been questioned by lack of efficacy in other murine
studies [227].

Post-stroke Detrimental Effects of B Cells

Other animal studies have indicated B cells as either unin-
volved in, or actively injurious during post-stroke functional
recovery. Mice deficient in lymphocytes [i.e., recombination
activating gene (Rag1)–/–], or only deficient in CD4 T cells,
CD8 T cells, B cells, or IFN-γ, were used to determine the
contributions of specific lymphocyte populations to ischemia–
reperfusion injury and recovery. The Rag1–/– mice had lower
infarct volumes and reduced neurological deficits, but B cell-
deficient mice failed to show improvements post-stroke, sug-
gesting B cells did not significantly contribute to infarct pro-
gression [228]. Furthermore, reconstitution of RAG1−/− mice

with B cells did not significantly induce post-stroke neuropro-
tection [229].

The occurrence of stroke increases susceptibility to demen-
tia, in particular vascular dementia, with respect to other risk
factors like diabetes, hypertension, age, and hypercholesterol-
emia [230–234]. However, the signaling pathways leading to
post-stroke dementia development are not completely under-
stood. Recent data report the development of cognitive defi-
cits 7 weeks after stroke in mice [233]. In correlation with
cognitive deficits, B cells aggregated in the infarct region 4
to 7 weeks post-stroke, and produced IgA and IgG antibodies.
This has been verified in 4 stroke models in 2 different mouse
strains. Patients with stroke also demonstrate immunoglobulin
synthesis in the cerebrospinal fluid for months after stroke
[235–237]. These antibodies may result in neuronal damage
and further cognitive impairment by binding to the Fc recep-
tors and activating the complement pathway, as seen in lesions
of patients with MS [238]. Moreover, these antibodies could
exacerbate disease by egressing into the adjacent, unaffected
healthy tissue.

B cell antibody production can also directly alter neuronal
function. Antibody accumulation correlated with impairments
in hippocampal long-term potentiation, resulting in short-term
memory deficit weeks after stroke [233]. Additionally, μMT
mice did not develop delayed cognitive deficits, and rituximab
attenuated cognitive decline. As opposed to the beneficial role
of B cells for neuroprotection in the acute phase of stroke,
these lymphocytes may play a detrimental role in post-stroke
long-term cognitive impairment [233, 239]. Further studies
will elucidate the dependence of CNS injury on the magni-
tude, location and timing of B cell subsets, in order to deter-
mine whether B cells induce neuroprotection, supporting
functional plasticity, or exacerbate post-stroke recovery.

Current Stroke Clinical Trials That Potentially
Impact B Cell Function

Of the clinical trials related to acute ischemic stroke, only a
select few exhibit potential B cell implications in stroke.
Table 1 summarizes the existing stroke clinical trials that pro-
vide reasonable sources of speculation for the role of B cells in
functional recovery. To begin, several FDA-approved thera-
pies for the treatment of MS, including fingolimod,
natalizumab, and IFN-β, are now being applied to patients
with acute ischemic stroke (AIS) [240]. A phase II clinical
trial of natalizumab (Table 1, study 1) that assess efficacy in
patients with AIS was recently completed, though the final
data have not been released. However, evidence indicates that
natalizumab can have a suppressive effect on B cells by
inhibiting functional antibody synthesis in patients with MS
[241], and thus the effect of natalizumab on B cells during AIS
should be investigated. Fingolimod is now in a recruiting
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phase II clinical trial (Table 1, study 2) as a treatment during
AIS [242]. In MS and intercerebral hemorrhage studies,
fingolimod improves neurological function [243], reduces
memory B cells [244], and promotes Breg phenotype and
function [245]. A completed phase I clinical trial using
IFN-β, with results unavailable (Table 1, study 3), investigat-
ed its safety in AIS. IFN-β knockout mice exhibit increased B
cell proliferation in the blood, weight loss, and reduced
strength post-stroke [246], indicating that IFN-β may attenu-
ate inflammation in a manner related to B cell activity.

The third part of this review highlights studies that use
preconditioning to minimize post-stroke injury, potentially
through modulation of the adaptive immune system.
Currently, several clinical trials are investigating if ischemic
conditioning can decrease blood pressure (Table 1, study 4), or

if postconditioning reduces infarct volume in patients with
AIS (Table 1, study 5). Both studies aim to monitor serum
levels of inflammatory markers that are potentially relevant
to B cells, such as TNF-α, IL-6, IL-8, and IL-10, or TNF-α,
ICAM-1, and glial fibrillary acidic protein, respectively.
Interestingly, the interaction of LFA-1 and ICAM-1 on B cells
lowers B cell activation levels [247, 248].

BImmunological Biomarkers in Patients With Acute
Ischemic Stroke^ is a completed clinical trial that focused on
discovering immunological biomarkers in AIS in order to tai-
lor therapy to ameliorate negative stroke outcome (Table 1,
study 6). They measured circulating B cells, serum cortisol,
IL-10 levels, monocyte expression of TLR4, human leukocyte
antigen–antigen D-related (HLA-DR), CD86, a co-
stimulatory molecule necessary for T cell activation, and very

Table 1 Clinical stroke trials related to B cells

Clinical study Trial ID/status Purpose/aim Methodologies

Effect of Natalizumab on Infarct
Volume in Acute Ischemic Stroke
(ACTION)

NCT01955707/phase
II: completed

Assess natalizumab efficacy on
change in:

• infarct volume
• clinical measures of stroke outcome
• safety in patients with AIS

• Brain MRI
• mRS

Efficacy and Safety of FTY720 for
Acute Stroke

NCT02002390/phase
II: currently
recruiting

Test immune modulation of
fingolimod in AIS

• Brain MRI
• Flow cytometry of IV blood

Safety Study of Interferon Beta 1a
to for Acute Stroke

NCT00097318/phase I:
completed

Investigate the safety of IFN-β1a in
patients with AIS

• Brain MRI/CT
• Blood tests (serum)

The IMPULSE Study: Pilot
(IMPULSE)

NCT02044471/
currently recruiting

Investigate if ischemic conditioning
will lower blood pressure

• Monitor blood pressure
• Monitor inflammatory markers: TNF-

α, IL-6, IL-8, IL-10

Protective Effects of Remote Limb
Ischemic Preconditioning on Acute
Cerebral Infarction

NCT01672515/phase
I/II: not yet recruiting

Investigate whether postconditioning
can reduce infarct
volume of patients with ischemic
stroke

• Remote ischemic postconditioning
• Assess serum CRP, TNF-α, ICAM-1,

and GFAP

Immunological Biomarkers in Patients
With Acute Ischemic Stroke

NCT01894529/
completed

Link immune markers previously
associated with AIS clinical
outcomes as potential biomarkers
to tailor therapy

• Serum cortisol and IL-10
• Circulating B cells
• Monocyte TLR-4, HLA-DR, CD86,

and VLA-4 expression
• Ex vivo TNF-α production

The Role of HMGB-1 in Chronic
Stroke

NCT01705353/
currently recruiting

Measure blood HMGB-1 at different
time points after stroke
to determine if its presence corre-
lates with rate of stroke recovery

Measure serum cytokine levels

White Blood Cell Counts and Onset of
Cardiovascular Diseases: a CALIBER
Study (CALIBER)

NCT02014610/active:
not recruiting

Investigate if particular types of
WBC types are associated
with a range of cardiovascular
diseases (including stroke)

Measure lymphocytes, neutrophils,
eosinophils, monocytes, and basophils

Inflammation and Post-stroke Depression NCT02368145/
ongoing: not
recruiting

Determine if a relationship exists
between stress/inflammatory
blood compounds and the pres-
ence, absence, or degree of
depression in patients with AIS

• Measure blood proinflammatory
cytokines/glucocorticoids

• Measure depression

AIS = acute ischemic stroke; MRI = magnetic resonance imaging; mRS = modified Rankin Score; IV = intravenous; IFN = interferon; CT = computed
tomography; TNF = tumor necrosis factor; IL = interleukin; CRP = C-reactive protein; ICAM-1 = intercellular adhesion molecule 1; GFAP = glial
fibrillary acidic protein; TLR = Toll-like receptor; HLA-DR = human leukocyte antigen–antigen D-related; VLA-4 = very late antigen 4; HMGB-1 =
high mobility group box 1; WBC = white blood cell

B Cells and Stroke 739



late antigen 4, an integrin that regulates the migration of leu-
kocytes to sites of injury. When the results are published, this
study will shed light on how variations in circulating B cells
and their secreted cytokines can serve as biomarkers of func-
tional recovery [249]. A clinical trial is investigating the role
of serum cytokine, high motility group box 1 (Table 1, study
7). High motility group box 1 is primarily produced bymature
dendritic cells to activate B cells and increase T cell reactivity,
including the promotion of autoreactive B cell responses to
TLR-9 ligands and DNA immune complexes by T cells [250,
251].

Associating specific white blood cell types to the pathology
of AIS could ultimately allow for optimal targeted therapy,
and is therefore being pursued in the CALIBER trial
(Table 1, study 8). White blood cell counts can predict disease
progression and outcomes of AIS [252, 253], with evidence of
reduced lymphocyte circulation (B cells included) in the blood
of patients following stroke [254]. Unfortunately, no clinical
studies show a link between AIS, cognitive decline, and B
cells, though an ongoing clinical trial (Table 1, study 9) seeks
to uncover the possible relationship between inflammatory/
stress compounds and post-stroke depression. It is possible
that CNS-derived B cells release cytokines or antibodies that
are relevant to depression [255], which will hopefully be elu-
cidated in future clinical trials.

FDA-Approved B Cell Targeting Therapies Used
in Other CNS Diseases

As described in this review, there is clear evidence in both
human and mouse studies that B cells can either mediate or
suppress stroke-induced pathology. By understanding the role
of B cells in other CNS diseases, we may discover how B cells
may truly benefit the recovering brain after stroke. In the clin-
ic, therapies targeting B cells are used to treat CNS diseases,
particularly the prototypical CNS autoimmune disease, MS.
Rituximab was approved by the FDA in 1997 for follicular
non-Hodgkin’s lymphoma. More recently, rituximab was
found to be efficacious in patients with relapsing–remitting
MS [18, 256, 257], and also reduces neurological dysfunction
in the primary progressive form of MS [258].

B cell depletion successfully treats another CNS disease,
anti-N-methyl-D-aspartate receptor (NMDAR) encephalitis,
which is caused by antibodies directed against the NR1 sub-
unit of the NMDAR [259]. Patients with anti-NMDAR en-
cephalitis may have neurological disturbances such as sei-
zures, catatonia and coma [260, 261]. First-line treatment in-
cludes the use of cortisteroids, plasmapheresis (i.e., promotes
removal of circulating autoantibodies), and intravenous ad-
ministration of immunoglobulin in order to elicit an
immuno-modulatory effect. A combination of rituximab and
cyclophosphamide may be used as secondary treatment to

deplete all circulating B cells and induces a generalized
immune-suppressive effect, but initiation of clinical trials has
not yet begun [261, 262]. Through studying B cell therapies
for other CNS diseases, we may be able to differentiate be-
tween pathogenic and therapeutic B cells and determine how
to promote the latter, resulting in effective CNS therapies in
stroke.

Conclusions

The Bcommon soil^ hypothesis, first mentioned in the second
section, suggests that shared disease mechanisms for hyper-
tension, diabetes, and atherosclerosis as the greatest risk fac-
tors for stroke [75, 76]. B cell functions, in particular antibody
production, are the perfect candidates to mediate these shared
mechanisms. However, as outlined in this review, this com-
monality could also extend to protective B cell mechanisms
that create an endogenous ischemic tolerance to ultimately
reduce stroke injury and promote repair. Understanding how
the adaptive immune system shifts from harm to benefit, and
particularly which B cell functions in the at-risk or injured
CNS should be therapeutically attenuated, could prove effica-
cious in treating a disease that affects millions globally on an
annual basis.
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