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Abstract

With IRB approval, digital breast tomosynthesis (DBT) images of human subjects were collected 

using a GE GEN2 DBT prototype system. Corresponding digital mammograms (DMs) of the 

same subjects were collected retrospectively from patient files. The data set contained a total of 

237 views of DBT and equal number of DM views from 120 human subjects, each included 163 

views with microcalcification clusters (MCs) and 74 views without MCs. The data set was 

separated into training and independent test sets. The preprocessing, object prescreening and 

segmentation, false positive reduction and clustering strategies for MC detection by three 

computer-aided detection (CADe) systems designed for DM, DBT, and a planar projection image 

generated from DBT were analyzed. Receiver operating characteristic (ROC) curves based on 

features extracted from microcalcifications and free-response ROC (FROC) curves based on 

scores from MCs were used to quantify the performance of the systems. Jackknife FROC 

(JAFROC) and non-parametric analysis methods were used to determine the statistical difference 

between the FROC curves. The difference between the CADDM and CADDBT systems when the 

false positive rate was estimated from cases without MCs did not reach statistical significance. The 

study indicates that the large search space in DBT may not be a limiting factor for CADe to 

achieve similar performance as that observed in DM.

Keywords

digital breast tomosynthesis; digital mammography; computer-aided detection; microcalcification; 
planar projection image

I. INTRODUCTION

Mammography has been the standard method for breast cancer screening. Major 

technological innovations for mammography have been transitioning from screen-film 

mammography (SFM) to full-field digital mammography (DM) and currently to digital 

breast tomosynthesis (DBT). DM was shown to have similar overall performance as SFM 

(Lewin et al., 2001; Lewin et al., 2002; Skaane et al., 2003; Skaane and Skjennald, 2004; 

Skaane et al., 2005; Pisano et al., 2005) with the advantages of lower recall rate, (Lewin et 
al., 2001; Lewin et al., 2002), better performance for women under the age of 50 years and 

women with heterogeneously dense or extremely dense breasts (Pisano et al., 2005), and 
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better image quality for microcalcifications (Fischer et al., 2002; Kim et al., 2006). DM 

provides the benefits of electronic storage and retrieval, image processing for signal 

enhancement, and contrast manipulation in real time. DBT generates a pseudo 3 dimensional 

(3D) volume of the breast, which is different from the typical 2D image presented by DM. 

Early prospective screening trials comparing DM with combined DM and DBT have 

demonstrated promising results. The Oslo study (Oslo Tomosynthesis Screening Trial: 

OTST) compared 12,631 examinations and concluded that the combined mode detected 

more invasive cancers and reduced pre-arbitration false positive (FP) scores (Skaane et al., 
2013a; Skaane et al., 2013b). In the screening with tomosynthesis or standard 

mammography (STORM) study (Ciatto et al., 2013), 7,292 examinations were analyzed. 

The study observed an increase in detection rate as well as a potential for reducing recalls by 

the combined DBT and DM reading. Several preliminary observer performance studies 

comparing DM and DBT for the same cases showed that the visibility of cancer in DBT is 

either equal or superior to DM (Andersson et al., 2008), DBT has the potential to reduce 

recall rate (Gur et al., 2009) and may offer greater benefits for less experienced radiologists 

(Wallis et al., 2012). For non-calcified cancer, DBT was shown to have higher accuracy 

compared to DM (Ciatto et al., 2013; Haas et al., 2013; Rose et al., 2013; Skaane et al., 
2013b). However, for evaluation of microcalcification clusters (MCs) there are mixed 

observations. Two studies showed that the microcalcifications in DBT had lower conspicuity 

(Poplack et al., 2007) and detection sensitivity (Spangler et al., 2011) than in DM. Another 

study showed that the detectability of microcalcifications in DBT was comparable to that in 

DM (Andersson et al., 2008). A study by Kopans et al (Kopans et al., 2011) found that the 

clarity of microcalcifications in DBT was comparable to DM in 50.4% of the cases while 

superior in 41.6% of the cases. These studies used relatively small data sets with different 

DM and/or different DBT systems so that the observations might be influenced by a number 

of factors and statistical variations. Further studies are needed to investigate the performance 

of DBT alone in comparison with DM in evaluation of MCs.

Computer-aided detection (CADe) of MCs for DM has been developed and used clinically 

for more than a decade (Lindfors et al., 2006; Giger et al., 2008). For DBT, CADe for MCs 

may potentially be even more useful because of the limitations in their visibility, which can 

be attributed to factors including large search space, lower signal-to-noise ratio due to 

cumulation of detector noise from multiple low-dose projections, blurring due to oblique 

incidence to the detector, potential patient motion due to relatively long scan time and 

reconstruction using thick slice spacing. For DBT systems with continuous x-ray source 

motion, focal spot blur may also affect the visibility of microcalcifications. DBT can reduce 

the tissue overlap and lead to better visibility than DM for soft tissue lesions such as masses, 

architectural distortion and focal asymmetry. It is also expected that future breast screening 

will entail usage of DBT alone in combination with ‘synthesized’ mammogram generated 

from DBT so as to avoid the additional dose in the combined DM and DBT approach. In this 

study, we compare the characteristics of CADe for DM and DBT for corresponding cases to 

evaluate the performance difference.

A brief overview of CADe for MCs on projection views or the reconstructed slices or 

volumes of DBT is shown in Table 1. For overview of the CADe work on DM the reader is 

referred to review articles (Giger et al., 2008; Elter and Horsch, 2009). In this study, along 
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with DM and DBT we also compared CADe for MCs on planar projection image (PPJ) 

generated from DBT volume enhanced with multiscale bilateral filtering (Lu et al., 2015). 

PPJ is a novel representation of DBT volume on a single plane introduced by our group 

specifically for MC detection. PPJ contains only the high frequency information, which is 

different from the C-view or ‘synthesized’ mammogram. Our laboratory has previously 

developed CADe systems for MCs in screen-film mammography and digital mammography 

(Chan et al., 1987; Chan et al., 1990; Chan et al., 1995; Gurcan et al., 2002; Sahiner et al., 
2006; Ge et al., 2006). We have been investigating enhancement (Lu et al., 2012b; Lu et al., 
2012a) and detection of MCs (Sahiner et al., 2012; Samala et al., 2012; Samala et al., 2013; 

Samala et al., 2014b; Wei et al., 2014) and mass (Chan, 2015; Samala et al., 2016) in digital 

breast tomosynthesis. In this work, we quantitatively assess the differences for different 

steps between detection of MCs in DM, DBT reconstructed volume and PPJ image (fig. 1).

DBT has the advantage of reducing tissue overlap and initial reader studies have shown that 

this feature can lead to improved sensitivity and specificity. In this study, we attempted to 

understand the advantages and challenges for detection of MCs in DM and DBT from a 

CADe perspective. The following sections are arranged as follows: description of the data 

set, DBT reconstruction and PPJ image generation methodology, followed by the description 

of the three CADe systems for DM, DBT and PPJ; the results section presents the 

quantitative analysis of signal characteristics and cluster detection performance and 

conclude with the discussion of the observed findings.

II. MATERIALS AND METHODS

II.A. Data set

With Institutional Review Board (IRB) approval, DM and DBT cases were collected in the 

Department of Radiology at the University of Michigan Health System. The DM images 

were obtained during the patients’ clinical care and retrospectively collected from the patient 

files for this study. General Electric (GE) FFDM systems were used for DM imaging. With 

written informed consent, the DBT scans were acquired from patients who were 

recommended for biopsy of a suspicious lesion (BI-RADS assessment of 4 or 5) using a GE 

GEN2 DBT prototype system. The DBT system uses a step-and-shoot design with a total 

tomographic angle of 60° and an angular interval of 3°. The x-ray source consists of an Rh 

anode and Rh filter. The projection views (PVs) are recorded by a CsI/a:Si flat panel 

detector with a pixel pitch of 0.1 mm × 0.1 mm. The DBT volume for a given view was 

reconstructed from the 21 projection views at 1 mm slice spacing using simultaneous 

algebraic reconstruction technique (SART) (Zhang et al., 2006) with multiscale bilateral 

filtering regularization (MSBF) (Lu et al., 2015). A PPJ image was generated (see Section 

II.B) from each DBT volume (Samala et al., 2014a). The PPJ image therefore has a one-to-

one correspondence with the DBT volume.

Each case consisted of craniocaudal (CC) and mediolateral oblique (MLO) views of the 

DBT, PPJ, and the available corresponding DM of a breast. A total of 231 views with MCs 

and 76 views free of MCs were collected for this study. A DBT scan for one of the cases was 

lost due to technical failure of the system. Fig. 2 shows the views for each of the training and 

testing sets of the CADe systems. For all views with MCs, a Mammography Quality 
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Standards Act (MQSA) radiologist marked the cluster based on biopsy location information 

in the DM and DBT using a 2D and 3D bounding box, respectively. The radiologist also 

provided a subtlety rating of each marked cluster on a scale of 1–10 with 1 being most 

visible, and the BI-RADS breast density category of the breast. Fig. 3 shows the histograms 

of the subtlety ratings of the MCs and the breast density of the data set. The data set was 

partitioned by case into training and test sets, with the two views of the same case always 

assigned to the same set.

Three systems, CADDBT, CADPPJ and CADDM were used for the detection of MCs in DBT, 

PPJ, and DM, respectively. The CADDBT and CADPPJ systems were trained on 127 views 

and tested on 180 views. The training set of 127 views has 63 corresponding DM views and 

the test set of 180 views has 174 corresponding DM views. The CADDM was previously 

trained and validated with a data set of 192 views (Ge et al., 2006) that were acquired with a 

GE Senographe 2000D system and were independent of the cases collected in the current 

study. The CADDM was not retrained using the current training set. For the discussion 

below, the training set refers to the 63 views in the current data set and the test set of 100 

views with MCs and 74 views without MCs. Of the 237 DM views, 32 were imaged using a 

GE Senographe 2000D and 205 using GE Senographe Essential system. The term ‘view’ 

indicates the CC or MLO view image (DM or PPJ) or a DBT volume. A medical physicist 

experienced in mammography marked individual microcalcifications in 40 corresponding 

DM and DBT views from the training set to analyze the differences in the contrast-to-noise 

ratios (CNRs) of microcalcifications. We did not attempt to identify corresponding 

individual microcalcifications in DM and DBT so that the analysis was only performed 

statistically as a group.

II. B. DBT reconstruction and planar projection image generation

An MSBF regularized SART (Lu et al., 2012a; Lu et al., 2015) was developed for DBT 

reconstruction. Our study showed that MSBF regularization is superior to total variation 

regularization in that it enhances microcalcifications while preserving the appearance of 

mass spiculations and fibrous structures. At the end of each SART iteration, a reconstructed 

DBT slice is separated into high and low frequency bands using Laplacian pyramid 

decomposition. The high frequency bands containing microcalcifications and noise are 

selectively enhanced using bilateral filtering. The domain and range filter parameters of the 

bilateral filter are optimized to suppress noise while increasing the CNR of 

microcalcifications. The reverse process recombines all levels of the Laplacian pyramid into 

an enhanced DBT slice and used as input to the next iteration. Two iterations were used to 

reconstruct the DBT and generate the PPJ in this study.

For each DBT volume, the PPJ image is generated from the high-frequency component of 

the DBT slices at the final iteration. After MSBF is applied, maximum intensity projection is 

applied to the stack of high frequency components of the DBT slices perpendicular to the 

detector plane to produce the PPJ image for the view (Samala et al., 2014a).
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II. C. CADe systems

The overall strategy for detection of MCs in DBT, PPJ, or DM is to enhance the 

microcalcifications from the background, detect and segment microcalcification candidates, 

reduce FPs, and form clusters. The major similarities and differences between the CADe 

methods are shown in fig. 4. The details of the CADe systems have been described 

previously (Ge et al., 2006; Samala et al., 2014b; Samala et al., 2014a). Each system is 

summarized briefly below.

II. C. 1. CADe for digital breast tomosynthesis and planar projection image—
For CADDBT, the DBT volume is first preprocessed using contrast-to-noise ratio (CNR) 

enhancement filters and multiscale calcification response (MCR). The MCR is the maximum 

response value of a response function calculated at multiple scales of the DBT volumes 

filtered with 3D Gaussian filters of a range of sizes. The response function is derived from 

the eigenvalues of the Hessian matrices and designed to have high values for objects that are 

approximately spherical in structure. The response values combined at multiple scales result 

in an MCR that enhances microcalcifications of various sizes. The CNR enhancement filter 

is a combination of three 2D boxcar filters designed to selectively enhance signals and 

suppress the background. The filter is convolved with the DBT volume slice-by-slice. The 

output of the MCR and CNR is combined voxelwise using a weighting function to generate 

an enhancement-modulated calcification response (EMCR) volume. The EMCR volume is 

subjected to a combination of iterative thresholding and region growing to detect the 

microcalcification candidates. In this process, the gray-level threshold automatically starts 

from the maximum value of the image histogram and segments objects above the threshold 

using 26-connectivity. The threshold is iteratively reduced until a predetermined number of 

MC candidates are detected. These objects serve as seeds for a refined segmentation, in 

which the local noise level and CNR of each voxel in a region around the seed is calculated 

adaptively and all connected voxels by 26-connectivity and greater than a CNR threshold 

value are segmented to form a microcalcification candidate. The maximum CNR value 

(CNRobj) and the size of the segmented object are determined and a set of adaptive 

thresholds of CNRobj are estimated from histogram analysis of the candidate objects in the 

DBT volume. During the cluster detection stage, the top N objects with the highest CNRobj 

are used as cluster seeds and the rest as potential cluster members. Dynamic conditional 

clustering starts from the cluster seed list and iteratively grows a cluster. After all potential 

clusters are formed, a decision-tree classifier that utilizes the adaptive thresholds of CNRobj, 

the size of the individual member objects, the number of objects in the cluster is employed 

to reduce FP clusters. As a final step, the cluster shape and object shape obtained by 

maximum intensity projection within the cluster are used to exclude FPs due to vascular or 

fibrous artifacts.

For CADPPJ, since the low frequency bands in the Laplacian pyramid are not used during the 

generation of the PPJ image, no preprocessing is needed for removing the background. The 

iterative thresholding and region growing for identifying candidates and the local object 

segmentation for refinement of the object, similar to those described above for the DBT 

volume except that 8-connectivity is used for a 2D image, are directly applied to the PPJ 

image to identify the microcalcification candidates. In a PPJ image, the microcalcification 
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candidates are screened for FPs using a convolution neural network (CNN) trained to 

differentiate microcalcifications from linear tissue structures and artifacts before dynamic 

conditional clustering. FP reduction is performed with a similar approach to that in CADDBT 

using a decision tree with adaptive CNRobj thresholds. All parameters were specifically 

designed for PPJ images.

II.C.2. CADe for Digital Mammography—For CADDM, the raw (“For processing”) DM 

image is preprocessed using an inverted logarithmic transformation and microcalcifications 

are enhanced using the CNR enhancement filter. The microcalcification candidates are 

identified by the combined iterative thresholding and region growing process, as described 

above. Refined segmentation of the candidate objects is performed by calculating the CNR 

values adaptively in the local region similar to the process described in Section II.C.1. The 

objects are screened using rule-based and CNN classifiers. Clusters are formed by dynamic 

regional clustering in a hierarchical order based on the number of objects from high to low 

in a local region. Morphological and CNN features extracted from the clusters are combined 

by a linear discriminant analysis (LDA) classifier into a decision variable to differentiate true 

and false MCs.

II. E. Evaluation methods

II. E. 1. Object-level performance evaluation—Signal characteristics are analyzed at 

microcalcification object level. For object-level detection, i.e., the detection of individual 

microcalcification candidates, the 2D image or 3D volume is enhanced to separate the 

microcalcification candidates from the background breast tissue. Once the candidates are 

detected, the candidate features can be used to assess the performance of enhancement and 

the ability to reduce the FPs. We observed that a high number of FPs at the candidate 

detection stage usually result in a high FP rate at the cluster detection stage. For the CADDM 

system, the most important object-level features are the CNN and CNR values of the 

detected objects. These features are useful for segmentation, FP reduction of individual 

microcalcification candidates and as predictor variables in the LDA function to generate a 

discriminant score. For CADDBT and CADPPJ systems, the CNR score of an object 

(CNRobj) is the most important feature for segmentation, classification of individual 

microcalcifications and classification of clusters. For all three CADe systems, the area under 

the receiver operating characteristic (ROC) curve (AUC) value is used for evaluation of the 

performance of object-level TP and FP classification.

II. E. 2. Cluster-level performance evaluation—After the microcalcification 

candidates are grouped to form MCs, cluster-based FP reduction methods are used to further 

reduce FPs. The performance of a CADe system is analyzed using a free-response ROC 

(FROC) curve. The FROC curve is used to assess the performance of a CADe system where 

the average FP rate is estimated from cases either with or without MCs. For CADDBT and 

CADPPJ, the decision variable is the maximum of the CNRobj of all objects within a cluster. 

For CADDM, the output of the LDA classifier is used as a decision variable. To assess the 

performance difference between the CADe systems using the FROC data, two approaches 

are used: (a) Jackknife free-response operating characteristic (JAFROC) (Chakraborty, 2008) 

where the figure-of-merit is the area under the alternative FROC curve with the FP rate 
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estimated from cases without MCs. JAFROC estimates the probability of a marked cluster 

having a score higher than the cluster on the normal views. (b) Non-parametric analysis 

(Samuelson et al., 2007; Samuelson and Petrick, 2006) where the figure-of-merit is the area 

under the FROC curve with the FP rate estimated from cases with MCs. This method uses 

permutation test to analyze the correlated FROC data at a threshold of number of FPs per 

view.

III. RESULTS

III. A. Comparison of object-level features

The number of microcalcification candidates extracted from the combination of iterative 

thresholding and region growing was chosen to be a maximum of 180, 800 and 300 for DM, 

DBT and PPJ, respectively. These numbers were experimentally designed for DM and based 

on the rank-sensitivity plot (Sahiner et al., 2012; Samala et al., 2014b) for DBT and PPJ. 

The evaluation at this stage is to assess the ability of the pre-processing methods in 

separating the candidates from the background and ranking them. A rank-sensitivity plot is 

similar to an FROC curve but is used to evaluate detection performance at the prescreening 

stage. The x-axis of the rank-sensitivity plot is the rank threshold R of the highest rank 

objects based on the EMCR score that are kept as cluster seeds at prescreening. The y-axis is 

the fraction (F) of true clusters in the data set that have at least one cluster seed within the 

bounding box of the true cluster at the rank threshold R. Comparing these plots for different 

parameter settings, the number of objects to be obtained to achieve the highest sensitivity at 

the prescreening stage is estimated.

The object-level features were compared using a subset of 40 training views (fig. 2, from the 

63 training views). In this subset, 545 and 324 microcalcifications are manually marked in 

the DM images and DBT volumes, respectively. The CADe-detected objects that did not 

overlap with the marked locations are considered FPs. The locations marked in the DBT 

volume were projected onto the PPJ image to obtain the same number of marked locations 

for PPJ. The CNN and CNR features of the CADDM and the CNR features of CADDBT and 

CADPPJ are compared using ROC curves shown in fig. 5. The AUC of the CNR features is 

0.84±0.01, 0.85±0.01 and 0.90±0.007 for DM, DBT and PPJ respectively. The AUC values 

of the CNN feature for DM is 0.86±0.01. The ROC curves were fitted with a “proper” 

binormal model using ROC analysis program (ROC library 1.0.3 v 2011, URL: http://

xray.bsd.uchicago.edu/krl/) by Metz et al (Metz and Pan, 1999). Note that the training set 

with manual microcalcification markings is used for only object-level feature analysis, the 

rest of the analysis and performance comparison were conducted on the test set.

III. B. Comparison of cluster-level performance

The number of microcalcification candidates in a cluster is an important feature that has 

been consistently used for CADe of MCs. The performance of this feature is compared using 

the ROC curves of the test set shown in fig. 6.

For evaluation of cluster detection performance, if the centroid of a detected cluster is within 

the radiologist-marked bounding box of a true cluster, the cluster is marked as TP. The view-
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based FROC curves of the three CADe systems for the test set are shown in Fig. 7. In view-

based evaluation, the MC on each view is considered an independent target and the 

sensitivity is determined as the fraction of true MCs in the test set that are detected. The 

results from statistical significance testing are shown in Tables II and III. At 85% sensitivity, 

the FP rates of the CADDM, CADDBT, and CADPPJ systems were 5.74, 2.19, 1.71 FPs/view, 

respectively, when the average FP rate was estimated from views with MCs. The result of 

significance testing by the non-parametric analysis method (Table II) shows that the 

differences between the performances of CADDM versus CADDBT and CADPPJ were 

statistically significant at an operating threshold of 1 FP/view. When the average FP rate was 

estimated from the views without MCs, which is the majority of the screening population, at 

85% sensitivity, the FP rates of the CADDM, CADDBT, and CADPPJ systems were 6.10, 2.19 

and 0.93 FPs/view, respectively. JAFROC analysis in Table III shows that the difference 

between CADDBT and CADPPJ was statistically significant with a p-value of 0.034. The p-

value for the difference between DM and PPJ just fell short of significance with a p-value of 

0.059. The difference between CADDM and CADDBT did not achieve statistical significance.

We evaluated the effect of breast density on the detection performances of the CADDBT, 

CADPPJ, and CADDM systems. Because of the small number of cases when they were 

separated into four BI-RADS categories, we grouped the BI-RADS 1, 2 cases into a low 

density category and the BI-RADS 3, 4 cases into a high density category based on the 

experienced radiologist’s density ratings on DMs. For the test set of 174 views, 28 views 

with MCs and 42 views without MCs were classified into the BI-RADS 1, 2 group, while 72 

views with MCs and 32 views without MCs were classified into the BI-RADS 3, 4 group. 

The same grouping of cases was applied to both the DM and DBT images. Fig. 8 shows the 

performance differences between the two breast density groups for the three CADe systems.

IV. DISCUSSION

DBT has been integrated into clinical use in recent years. It is essential to investigate the 

advantages or limitations of DBT when compared to DM. A number of preliminary studies 

have shown that DBT has the potential to detect more invasive cancers. Since CADe was 

routinely used for screening mammography, it can be expected that CADe may be useful for 

DBT interpretation, especially for MC detection. We analyzed the differences of MC 

detection among DM, DBT and PPJ using corresponding DM and DBT from the same 

patients.

The overall structure of a typical CADe system for MC detection includes (i) preprocessing, 

(ii) microcalcification candidate detection, (iii) candidate-based FP reduction, (iv) clustering, 

and (v) cluster-based FP reduction as shown in fig. 4. Although the general structure is 

similar between the CADe systems, each system uses techniques specifically trained 

according to the properties of each type of images. Due to the large search space in DBT, the 

preprocessing step in CADDBT is more complex than that in CADDM. Contrast- and shape-

based enhancement of candidates in the DBT volume and weighted fusion of the enhanced 

volumes are used to effectively improve the signal strength of microcalcifications. For DM, 

the CNR enhancement filter is used to enhance candidates and remove the low-frequency 

tissue background on the DM image. Since a PPJ image is derived from the high frequency 
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band of the decomposed bilateral filtering regularized DBT volume, the low frequency 

background is removed during the PPJ generation process, essentially eliminating the need 

for preprocessing steps. All three CADe systems use a combination of iterative thresholding 

and region growing followed by adaptive local gray level thresholding for segmentation. For 

the CADDBT and CADPPJ systems, the number of potential candidates to be obtained in the 

prescreening stage is estimated experimentally based on the rank-sensitivity plots from the 

training set. Because of the larger search space, the number of candidates for DBT is much 

higher, resulting in more complex FP reduction methods in the subsequent steps. Object-

based analysis is performed at this stage to evaluate the sensitivity of detecting 

microcalcifications while maintaining a low number of FPs. Fig. 5 shows the ability to 

discriminate between TP and FP objects in a training set of 40 views. For the CNR feature, 

CADDBT and CADDM are comparable and CADPPJ has the highest AUC showing a 

significant advantage to identify true microcalcifications. The CNR and CNN features of 

objects in DM are comparable in their discriminatory ability for distinguishing true and false 

microcalcifications. CADDM uses rule-based classifiers based on size and CNR of the 

objects detected to remove small objects, artifacts and large benign microcalcifications. For 

both CADDM and CADPPJ, a CNN was trained to reduce FP objects. In case of CADDM, the 

CNN was trained to separate microcalcifications from noisy linear structures. For CADPPJ, 

the CNN was trained to separate microcalcifications from linear structures, metallic-clip and 

blurring artifacts. No CNN was trained for FP reduction methods for DBT because of the 

contrast-and-shape-based enhancement at the preprocessing step.

To form clusters from the individual objects, dynamic conditional clustering is used in the 

CADDBT and CADPPJ systems to grow a cluster from the cluster seeds, and the priority is 

determined by the CNRobj ranking of the seed. CNR thresholds in CADDBT and CADPPJ are 

generated based on the histogram of the CNRobj of all the prescreened candidates and the 

CNR, size, and the number of the objects in the cluster are used to differentiate true and 

false clusters in a decision tree classifier. CADDBT has additional FP reduction steps using 

the shape of a cluster and a maximum-intensity-projection-based method. The highest 

CNRobj of all the candidates within an MC is used as decision variable to generate the 

FROC curves for CADDBT and CADPPJ. CADDM uses regional clustering in which the 

priority of forming cluster is determined by the number of the candidates within a local 

region on the image. For cluster-based FP reduction, CADDM uses a trained LDA classifier 

to reduce FPs and the discriminant score is used as decision variable to generate the FROC 

curve. From the FROC curves for the test set where the average FP rate is estimated from 

views without MCs (fig. 7(b)), in the region below about 65% sensitivity where the three 

curves intersect, DBT and PPJ have similar performance but inferior to DM. This indicates 

that the features selected by the LDA classifier in DM are more effective in differentiating 

obvious MCs from FPs. The LDA uses the number of calcifications in a cluster as one of the 

features (fig. 6). This feature has substantially higher discriminating power for DM than for 

DBT and PPJ. After the crossover point, the CADPPJ performed better than the other two, 

having 85% sensitivity at 0.93 FPs/view. JAFROC in Table III shows that CADPPJ is 

significantly better than CADDBT with a p-value of less than 0.05. The difference between 

CADPPJ and CADDM approaches significance with a p-value of 0.059. From the FROC 

curves for the test set with average FP rate calculated from views with MCs (fig. 7(a)), 
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CADDM shows a substantial difference from the other systems up to approximately 65% 

sensitivity. The non-parametric analysis in Table II shows that the difference between 

CADDM and the other CAD systems was statistically significant when the operating 

threshold was set to 1 FP/view but CADDM reached a maximum of only 81% sensitivity at 

higher FP rates, which was lower than the maximum sensitivities by CADDBT and CADPPJ 

systems. No significant difference was observed between CADDBT and CADPPJ.

Analysis of the reasons why some of the MCs were missed in some systems and some were 

missed in all three systems studied is difficult because of the complexity of the CADe 

methods and the relatively small data set. MCs could be missed due to fewer number of 

candidates detected, over or under-segmentation, failure to recognize TPs by CNN, the 

CNRobj falling below the thresholds, or loss of clusters due to cluster-based FP reduction 

steps. To gain an understanding of the performance of the CADe systems, we compared their 

performances in terms of the MC subtlety ratings by the experienced breast radiologist. The 

subtlety rating ranges from 1 to 10, with 1 being most visible. From the test set, CADDM lost 

16 MCs, CADDBT lost 9 and CADPPJ lost 12, as shown in the analysis in figure 9. Four of 

the lost MCs were missed by all systems. Most of the missed clusters are subtle with scores 

higher than 4 indicating that these are generally difficult cases to detect.

Breast density has been shown to affect the performance of CADe systems for detection of 

mass and MCs on DM (Brem et al., 2005). Similar results were observed in this study as 

shown in fig. 8. All the systems showed better MC detection performance in BI-RADS 1 and 

2 breasts. Fig. 10 shows an example of a ductal carcinoma in situ (DCIS) for which the MC 

had a subtlety rating of 5 in DBT and the cluster was relatively conspicuous in both the DBT 

and the PPJ images. The same MC on the DM image had a subtlety rating of 9 due to the 

dense overlapping tissue with a BI-RADS density rating of 3. The DCIS was detected by 

CADDBT and CADPPJ but missed by CADDM. Fig. 11 shows a benign cluster missed by all 

the CADe systems. The case has a BI-RADS density rating of 3 in DBT. Further study with 

a larger data set will be needed to evaluate the extent to which breast density will affect MC 

detection in DM, DBT and PPJ.

The JAFROC analysis shows that the difference between the comparison of the pair of 

CADDM-CADDBT and CADDM-CADPPJ systems did not achieve statistical significance. 

However, the individual FROC curves indicated that CADDBT and CADPPJ could reach 

higher sensitivity at larger FP rates compared to CADDM. For CADDBT, a decision-tree like 

approach was designed to stratify the cluster candidates into different classes. This approach 

allows the flexibility of using different criteria for FP reduction in each class, rather than 

applying a decision threshold to a single discriminant score for all clusters (Samala et al., 
2014a; Samala et al., 2014b). This may have reduced the false negatives for the subtle 

clusters.

The computation time for MC detection by CADDM and CADPPJ takes an average of less 

than 30 seconds per view while that by CADDBT takes an average of 3.8 minutes per view 

on a workstation with a CPU of 3.47 GHz and 24 GB of system memory. It may be noted 

that these CAD systems were implemented for experimental use and no attempt has yet been 

made to optimize the computation efficiency. In addition, the computation time does not 
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influence radiologist’s reading time because CAD processing generally is performed before 

the case is displayed and read by radiologists rather than concurrent with radiologist’s 

reading.

This study has a number of limitations. First, the DM and DBT were not acquired under the 

same compression and with the same imaging system. We did not request additional DM 

from the subject at the time of DBT imaging to minimize radiation dose, and clinical combo 

(DBT plus DM) cases were not available to us for this study. The variations in the 

compression and the difference in the imaging techniques may affect the detection of MCs 

to some extent. However, the variations between the DM and DBT images could go in either 

directions and might not specifically bias one modality or the other when the results were 

averaged over the cases. Second, the CADDBT and CADPPJ systems were trained with the 

training set described in the current study (fig. 3(b)). The CADDM system was trained 

previously with a different data set that did not have corresponding DBT (Ge et al., 2007). 

We did not retrain the CADDM system because the available DM in the current training set 

was smaller than the previous training set (Fig. 2). It is difficult to assess the effect of 

different training sets but in general more robust training should be achieved with a larger 

training set (Fukunaga and Hayes, 1989; Chan et al., 1999). Third, the data set in the current 

study is limited in size. In particular, it is not large enough to assess the differences between 

malignant and benign MCs. Nevertheless, all MCs in the data set had undergone diagnostic 

workup and were recommended for biopsy so that they were suspicious enough to warrant 

detection during screening.

V. CONCLUSION

DBT has the potential to replace DM for breast cancer screening in the near future. For MC 

detection, previous studies indicate that it is challenging and time consuming for radiologists 

to visually search for subtle MC clusters in the large volume of DBT. In this study, we 

compared the detection of MCs in DM and DBT or PPJ using a data set of corresponding 

cases. The results show that computerized detection of MC in DBT or PPJ is comparable to 

that in DM, indicating computer vision may not be subject to the same problems of visual 

search by human eyes in large image space for subtle MCs. Although in the current study 

the DM and DBT were not acquired under the same compression, the final analysis was 

provided based on results from the entire data set and not based on cluster-by-cluster 

comparison. In other words, the comparison was made based on the mean response of the 

system across different types of MCs from different breast density categories and over the 

variations in image quality due to different compression in individual cases. Further studies 

will be conducted to improve the performance of CADDBT and CADPPJ, and evaluate 

whether CADe can assist radiologists in MC detection in DBT.
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Fig. 1. 
Overview of the CADe systems comparison. DM: digital mammography, DBT: digital breast 

tomosynthesis, PPJ: planar projection image. PPJ image is generated from DBT volume. All 

three CAD systems were tested on corresponding patient cases.
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Fig. 2. 
Data sets for DM, DBT and PPJ CADe systems. DBT and PPJ CADe systems use the same 

data set. Data sets marked in gray boxes were used in this study. CADDM was trained and 

validated on an independent data set of 192 views in previous studies.
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Fig. 3. 
(a) BI-RADS breast density rating for the 237 views from the training and test set with and 

without MCs. (b) Subtlety rating for the MC clusters on 163 views from the training and test 

set with MCs. A subtlety rating of 1 refers to most visible cluster.
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Fig. 4. 
Flow diagram comparing different blocks of CADe systems between DM, DBT and PPJ. 

The dotted line separates the CADe systems and the blocks crossing the dotted line show 

methods common to the CADe systems in the columns. For example, the ‘CNN classifier’ 

block is used in both DM and PPJ CADe systems. Note that each block is specifically 

trained for each type of images although the general techniques are similar. (CNN: 

convolution neural network, LDA: linear discriminant analysis, MCR: multiscale 
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calcification response, CNR: contrast-to-noise ratio, EMCR: enhanced modulated 

calcification response)
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Fig. 5. 
ROC curves for CNRobj of corresponding objects between DBT and PPJ, and for CNN and 

CNR of objects for DM in the subset of 40 training views with manually marked 

microcalcifications. The CADe-detected candidates overlapped with manually marked 

objects are considered as TPs and the rest as FPs.
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Fig. 6. 
ROC curves of one of the features, number of candidates in a cluster, for the test set. The 

performances of the feature for the detected clusters in DM, DBT and PPJ are compared.
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Fig. 7. 
View-based FROC curves for the test set. (a) The average FP rate was estimated from views 

with MCs. (b) The average FP rate was estimated from views without MCs.
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Fig. 8. 
Effect of BI-RADS density on the detection of MCs in the test set with the average FP rate 

estimated from views without MCs. FROC curves of the test set for the two density 

categories for (a) CADDM, (b) CADDBT and (c) CADPPJ systems.
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Fig. 9. 
Histogram of subtlety ratings of all the false negative MCs by the CADe systems. CADDM 

alone lost 16 MCs, CADDBT alone lost 9 MCs and CADPPJ lost 12 MCs. Four of the lost 

MCs were missed by all systems.
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Fig. 10. 
A region of interest of size 15 × 15 mm containing a cluster of ductal carcinoma in situ 

(DCIS) on DM and in DBT slices 50 to 51, which were at depths of about 50 mm to 51 mm 

from the compression paddle. The subtlety rating was 9 and 5 for DM and DBT, respectively 

(a rating of 1 indicates most visible). The three microcalcifications on the DBT slices are not 

clearly visible on the DM image. The object at the center of slices 50 and 51 is the same 

microcalcification.
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Fig. 11. 
A region of interest of size 15 × 15 mm containing a benign microcalcification cluster on 

DM and in DBT slices 29 to 30, which were at depths of about 29 mm to 30 mm from the 

compression paddle. The subtlety rating was 4 and 7 for DM and DBT, respectively (a rating 

of 1 indicates most visible) with BI-RADS density rating of 3.
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Table I

Literature review of CADe for MCs on DBT. The view-based sensitivities and FP rates are summarized.

Author, year Type Properties Data size and
results

(Peters et al., 2006) PV For each PV image: multiscale wavelets for prescreening of
candidates, calculation of membership values from fuzzy
contours based on multilevel threshold, segmentation based
on fuzzy particle map, aggregation of different objects and
mapping to 3D locations.

Detection of
microcalcifications
only, not MCs. No
quantitative
results.

(Park et al., 2008) PV
and
RV

For each PV image or RV slice: threshold on the output of
Difference-of-Gaussian (DoG) for prescreening of objects,
multi-layer topographic region growing, labeling and
clustering to generate potential MCs, artificial neural
network for classification and generation of scores for
cluster, grouping methods to match clusters or identify
unique clusters.

V-96
For PV: 3.99 FPR
at 70% S
For RV: 15.85
FPR at 88% S

(Reiser et al., 2008) PV For each PV image: morphologic denoising followed by
DoG for detection of microcalcifications candidates,
segmentation using local thresholding and backprojected to
3D feature volume to reduce FPs, reprojected back to PV
images followed by linear discriminant analysis (LDA) and
round robin method for MC detection.

V-60
(M-21, B-9, N-30)
1.3 FPR at 86% S

(Bernard et al., 2008) RV Measure contrast of microcalcifications on each slice using
Mexican hat wavelet responses followed by FP reduction
methods based on difference in attenuation coefficients of
microcalcifications and breast tissue and also based on
background noise estimation, 3D connected component
analysis for segmentation and 3D clustering for MC
formation.

V-50
(N-37)
1.4 FPR at 85% S

(van Schie and Karssemeijer, 2009) RV Generate a noise model for iterative reconstruction
algorithm with MC detection as an evaluation method. Uses
a simple local contrast feature for segmentation and
clustering using a 5 mm radius sphere.

V-41 (N-29)
1.5 FPR at 95% S

(Chan et al., 2010) RV Two parallel processes involving 3D multiscale filtering
and signal-to-noise ratio enhancement filter combined to
generate enhancement-modulated calcification response
volume, followed by detection of microcalcifications and
3D dynamic clustering results in MCs, MCs screened using
cluster feature analysis to reduce FPs.

V-78 (M-33, B-41)
1.5 FPR at 82% S

(Sahiner et al., 2012) RV DBT volume is enhanced based on contrast and structure,
global thresholding and region growing followed by local
thresholding results in potential microcalcification
candidates, dynamic clustering to form MCs and rule-based
classifiers for FP reduction.

V-220
(M-34, B-110, N-
76)
3.4 FPR at 85% S

(Samala et al., 2014b) RV Similar to Sahiner et al (Sahiner et al., 2012), but DBT
volume enhanced using multiscale bilateral filter
regularization during reconstruction, weighted combination
of contrast and structure enhanced volumes, thresholds for
cluster formation are adaptively generated based on DBT
volume, additional maximum-intensity-based FP reduction
method.

V-384
(M-68, B-240, N-
76)
2.16 FPR at 85% S

(Wei et al., 2014) PV Each PV slice enhanced using CNR enhancement filter,
iterative thresholding to detect initial MC candidates,
decompose candidates using multichannel response
analysis, the 2D response is backprojected into the 3D
volume based on geometry of the DBT system, coincidence
counting method for FP reduction, dynamic clustering
results in MCs.

V-82
(M-32, B-10)
1.55 FPR at 90% S

(Samala et al., 2014a) PPJ Introduction of PPJ image, a new representation of DBT
volume generated from bilateral filtered high-frequency
band extracted from regularized SART. High CNR objects
screened through a convolutional neural network, clusters
formed through dynamic conditional clustering followed by

V-307
(M-67, B-157, N-
76)
0.71 FPR at 85% S
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Author, year Type Properties Data size and
results

feature-based FP reduction.

(Xu et al., 2014) RV Uses microcalcification candidates from Sahiner et al
(Sahiner et al., 2012), clusters formed by iterative clustering
are classified using random-forest and rule-based classifier,
FP reduction achieved through combination of the two
classifier outputs.

V-80
0.5 FPR at 92% S

(Samala et al., 2015) RV
and
PPJ

Combines the detection in RV (Samala et al., 2014b) and
PPJ (Samala et al., 2014a) for a narrow tomographic angle
DBT system. Combination of RV- and PPJ-specific
detection strategies to improve the detection sensitivity of
the joint-CAD system.

V-307
(M-67, B-157, N-
76)
1.72 FPR at 85% S

PV – projection view, RV – reconstructed volume, PPJ – planar projection image, V – number of views, M – number of malignant MCs, B – 
number of benign MCs, N – number of views without MCs, FPR – number of false positives/DBT view, S – sensitivity.
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Table II

Non-parametric analysis of the significance of the differences in MC detection performance of the three CADe 

systems, CADDBT, CADPPJ and CADDM, for the test set where the FP rates were estimated from views with 

MCs. The operating threshold was set at 1 FP/view for the analysis. The figure-of-merit (FOM) is the 

difference in the areas under the two FROC curves being compared, CI: 95% confidence interval.

CADe FOM CI p value

DM
DBT

0.169
(DM > DBT)

(0.05, 0.29) 0.013*

DBT
PPJ

0.010
(PPJ > DBT)

(−0.08, 0.1) 0.847

DM
PPJ

0.159
(DM > PPJ)

(0.04, 0.27) 0.006*
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Table III

JAFROC analysis of the significance of the differences in MC detection performance for three CADe systems, 

CADDBT, CADPPJ and CADDM, on the test set, where the FP rates were estimated from views without MCs. 

FOM: figure-of-merit, CI: 95% confidence interval.

CADe FOM CI p value

DM 0.67 (0.58, 0.75) 0.924

DBT 0.67 (0.59, 0.75)

DBT 0.67 (0.59, 0.75) 0.034*

PPJ 0.74 (0.67, 0.82)

DM 0.67 (0.58, 0.75) 0.059

PPJ 0.74 (0.67, 0.82)
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