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We report on the sequencing of 10,545 human genomes at 30×–
40× coverage with an emphasis on quality metrics and novel var-
iant and sequence discovery. We find that 84% of an individual
human genome can be sequenced confidently. This high-confidence
region includes 91.5% of exon sequence and 95.2% of known
pathogenic variant positions. We present the distribution of over
150 million single-nucleotide variants in the coding and noncoding
genome. Each newly sequenced genome contributes an average
of 8,579 novel variants. In addition, each genome carries on aver-
age 0.7 Mb of sequence that is not found in the main build of the
hg38 reference genome. The density of this catalog of variation
allowed us to construct high-resolution profiles that define geno-
mic sites that are highly intolerant of genetic variation. These re-
sults indicate that the data generated by deep genome sequencing
is of the quality necessary for clinical use.

genomics | noncoding genome | human genetic diversity

Recent technological advances have allowed for the large-
scale sequencing of the whole human genome (1–7). Most

studies generated population-based information on human di-
versity using low to intermediate coverage of the genome (4× to
20× sequencing depth). The highest coverage (30× or greater)
was reported for the recent sequencing of 1,070 Japanese sub-
jects (6), 129 trios from the 1000 Genomes Project (3), and 909
Icelandic subjects (4). High coverage, also described as deep
coverage, may be needed for an adequate representation of the
human genome. This shift in paradigm is only made stronger by
the recent release of the Illumina HiSeq X Ten, which allows the
sequencing of up to 160 genomes at 30×mean depth in 3-d cycles,
at an average cost of $1,000–$2,000 per genome.
In an effort to evaluate the capabilities of whole human genome

sequencing using short-read sequencing in full production mode,
we first measured accuracy and generated quality standards by
analysis of the reference material NA12878 from the CEPH Utah
Reference Collection (8). We then assessed these quality stan-
dards across 10,545 human genomes sequenced to high depth and
representative of the main human populations (SI Appendix, Fig.
S1). This generated a reliable representation of human single-
nucleotide variation (SNV) and the reporting of clinically relevant
SNVs. We confronted, like other groups, the limitations of short-
read sequencing for accurate calling of structural and copy-number
variation; even with a variety of methods, resolving structural
variation in a personal genome remains a challenge (9).

Results
Reproducibility of Sequencing on a Reference Genome. We assessed
the extent of genome coverage using data from 325 technical
replicates of NA12878 at different depths of read coverage. The
canonical NA12878 Genome in a Bottle call set (GiaB v2.19; ftp://
ftp-trace.ncbi.nlm.nih.gov/giab/ftp/release/NA12878_HG001/) de-
fines a set of high-confidence regions that corresponds to ∼70% of
the total genome. Regions of low complexity (e.g., centromeres,
telomeres, and repetitive regions) and those challenging for
sequencing, alignment, and variant-calling methods are excluded
from the GiaB high-confidence region. At the target mean

coverage of 30×, 95% of the high-confidence region of one
NA12878 genome is covered at least at 10×. In contrast, at a
target mean coverage of 7× used by several genome projects,
only 23% of the high-confidence region of one NA12878 genome
is sequenced at an effective 10× (Fig. 1A).
We next assessed reproducibility on variant calling for the

whole genome by restricting the analysis to a set of 200 samples of
NA12878 that were sequenced at a mean coverage of 30× to 40×.
Due to the manufacturer’s changes in clustering reagents, we
analyzed 100 samples prepared with v1 and 100 with v2 (SI Ap-
pendix). After applying quality filters, passing genotype calls were
compared for consistency (Fig. 1B). For v2 chemistry, 2.51 billion
positions passed, and were called with 100% reproducibility in all
replicates. An additional 210 Mb of genome positions yielded
passing reproducible genotypes in more than 90%. Only 184 Mb
of genome positions was sequenced with lower reproducibility
(<90%). Similar results were obtained for v1 chemistry. The
analysis of 100 unrelated genomes (25 individuals for each of the
three main populations, African, Asian, and European, and 25
admixed individuals) confirmed the consistency of SNV calls
across genomes (Fig. 1B). Overall, a total of 2,157 Mb (97.3%) of
the GiaB high-confidence region could be sequenced with high
reproducibility (SI Appendix, Table S1) with a low false discovery
rate of 0.0008, precision of 0.999, and recall of 0.994. Details on
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the 2.7% of the GiaB high-confidence region that is not reliably
sequenced are presented in SI Appendix. Overall, these analyses
indicate that the current technology and sequencing conditions
generate highly accurate sequence data and SNV calls over a
large proportion of the genome.
The full extent of sequence generated for a single genome is

greater than what is defined by the boundaries of GiaB. It should
be noted that the various genome-sequencing initiatives use
different reporting of what is sequenced (“accessible genome”),
what is sequenced confidently, and whether these estimates are
reported for an individual genome or for the collective analysis
of multiple genomes. Our work specifically presents the genome
calls for a single individual benchmarked against the complete
sequence [total chromosomal length of autosomes and chro-
mosome (Chr)X, 3,031 Mb] and against the community standard
(GiaB; on autosomes + ChrX, 2,215 Mb) (SI Appendix, Table
S2). For a single individual, we map the sequence on 90–95%
of the genome—and 84% of a single genome is reported at
high confidence (see below). In contrast, several published
sequencing projects (2–5) describe genome coverage com-
puted from the combination of all genomes—not for an in-
dividual genome. Using similar metrics as those in the current
work for one 7× mean coverage 1000 Genomes Project sample
(HG02541), we find that the loss of coverage genome-wide
translates into severe loss of coverage of genes and variants
(SI Appendix, Fig. S2). For example, the American College of
Medical Genetics and Genomics recommends that laborato-
ries performing clinical sequencing seek and report mutations
of 56 genes (10). At 7× mean coverage, none of the exonic
bases for those genes in HG02541 would be covered at 30×,
30% would be covered at 10×, and 84% would be covered at 5×.
Therefore, low-coverage genomes are not suitable for clinical use
because they can only generate confidence sequence for a frac-
tion of the genome.
We also undertook the analysis of structural and copy-number

variation using the set of 200 NA12878 replicas (SI Appendix). For
short indels, the average precision and recall rates were 97.80%
and 86.32%, respectively, but with unsatisfactory reproducibility
(SI Appendix, Table S3). For structural variation larger than 50 bp
and for copy-number variation, precision estimates were below
77%, recall was below 36%, and less than 53% of the calls could
be highly reproduced (SI Appendix, Table S1). Overall, these re-
sults indicate that the identification of structural and copy-number

variation using this short-read technology is unsatisfactory for
clinical use if not supported by orthogonal technologies.

The Metrics of 10,000 Genomes. The confidence regions established
from sequencing of NA12878 and for 100 unrelated genomes
served to guide the analysis of 10,545 human genomes. These
samples cover various human populations, admixture, and an-
cestries (SI Appendix, Fig. S1). We first defined an extended
confidence region (ECR) that includes the high-confidence GiaB
regions and the highly reproducible regions extending beyond
the boundaries of GiaB (SI Appendix, Fig. S3). The ECR en-
compasses 84% of the human genome, and includes 91.5% of
the human exome sequence (GENCODE; 96 Mb), which is
consistent with recent reports on coverage of the human exome
in whole-genome analyses (11). We also examined the relevance
for clinical variant calls: 28,831 of 30,288 (95.2%) unique ClinVar
(https://www.ncbi.nlm.nih.gov/clinvar/) and HGMD (www.hgmd.
cf.ac.uk/ac/index.php) pathogenic variant positions are found in
the ECR. We have now confirmed that 373 Mb (86%) of the
additional 435 Mb of confident sequence in the ECR is also de-
fined as high-confidence in the recently released GiaB v3.2.
For 10,545 genomes, the ECR included over 150 million SNVs

at 146 million unique chromosomal positions. The mean SNV
density in the ECR is 56.59 per 1 kb of sequence. However, there
are differences across chromosomes: Chr1 is the least variable
(55.12 SNVs per kb) and Chr16 the most variable (61.26 SNVs
per kb) of the autosomal chromosomes. SNV density on ChrX is
35.60 SNVs per kb, but this estimate only considers female ge-
nomes (n = 6,320). A lower mutation rate of variation on the X
chromosome than on autosomes is thought to reflect purifying
selection of deleterious recessive mutations on hemizygous
chromosomes (12). Diversity is further reduced by the effective
population size of the X chromosome, because males only carry
one copy (13). The SNV density on ChrY is 12.70 SNVs per kb,
also consistent with previous research (14); however, only male
genomes (n = 4,225) are considered here, and only 15% of the
single Y chromosome is included in the ECR (SI Appendix, Fig.
S4). The definition of ECR allowed for more high-confidence calls
than those identified in GiaB (SI Appendix, Table S4). This is il-
lustrated by the confident identification of 3,390 ClinVar and
HGMD pathogenic variant sites identified in the 10,545 genomes:
2,628 (77.5%) were called in the GiaB region, whereas 3,191
(94.1%) could be called in the ECR (SI Appendix, Table S4).

A B

Fig. 1. Effective genome coverage and sequence reproducibility. (A) Analysis of the relationship of mean coveragewith effective genome coverage uses 100 NA12878
replicates with coverage <30×, 200 replicates with mean coverage 30× to 40×, and 25 replicates with coverage >40×. Vertical gray lines highlight mean target coverage
of 7× and 30×. Each sequencing replicate is plotted at 10× (blue) and 30× (orange) effective minimal genome coverage. (B) Analysis of reproducibility uses NA12878
genomes at 30× to 40× mean coverage (two clustering chemistries, v1 and v2, each n = 100 replicas) to assess the consistency of base calling at each position in the
whole genome. The analysis of reproducibility is then extended to 100 unrelated genomes (25 genomes permain ancestry group, African, European, and Asian, and for
25 admixed individuals). The color bars represent degree of consistency (blue, 100%; light blue, ≥90%; orange, ≥10 to <90%; red, <10%; black, failed).
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Fig. 2. Single-nucleotide variant distribution and metaprofiles in the coding and noncoding genome. (A) Distribution of SNVs in selected genomic elements
(genomic, protein-coding, RNA-coding, and regulatory elements; see SI Appendix for details). The genome average of 56.59 SNVs per kb is indicated by the
horizontal dashed line. (B) The metaprofiles of protein-coding genes are created by aligning all elements of six different genomic landmarks (TSS, start codon,
SD, SA, stop codon, and pA) for all 10,545 genomes. The y axis (Upper) describes the enrichment/depletion of SNV occurrence per position (count score; SI
Appendix, Fig. S7), normalized to the mean of the protein-coding score (indicated by the horizontal dashed line); the y axis (Lower) describes the percent of
SNVs at each position with an allelic frequency higher than 1 in 1,000 (frequency score; SI Appendix, Fig. S8). The x axis represents the distance from the
genomic landmark. The vertical lines indicate the genomic landmark position. The SD and SA metaprofiles highlight the strong conservation of the splice sites
(Upper) and the difference in SNV allele frequency between exons and introns (Lower). (C) The metaprofile of transmembrane domains is created by aligning
all single domains at their 5′ and 3′ ends. The figure highlights that every amino acid in the transmembrane domain is conserved compared with the sur-
rounding structure of the protein. (D) The metaprofiles of TFBSs are created by aligning all of the binding sites of four transcription factors (FOXA1, STAT3,
NFKB1, and MAFF) for all 10,545 genomes. The x axis represents the distance from the 5′ end of the TFBS. The vertical lines indicate the 5′ and 3′ ends of the
TFBS. (E) Ranking of 39 TFBSs by conservation (minimum score for the motif; i.e., the nucleotide with the lowest tolerance to variation). For C–E, the y axis
describes the normalized enrichment/depletion of SNV occurrence per position, normalized to the mean of the protein-coding score (indicated by the
horizontal dashed line). AE, alternative exon; AI, alternative intron; CE, constitutive exon; CI, constitutive intron; oriC, origin of replication; pA, poly-
adenylation site; SA, splice acceptor site; SD, splice donor site; TSS, transcription start site.

Telenti et al. PNAS | October 18, 2016 | vol. 113 | no. 42 | 11903

G
EN

ET
IC
S

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1613365113/-/DCSupplemental/pnas.1613365113.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1613365113/-/DCSupplemental/pnas.1613365113.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1613365113/-/DCSupplemental/pnas.1613365113.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1613365113/-/DCSupplemental/pnas.1613365113.sapp.pdf


Patterns of Genetic Variation in the Coding and Noncoding Genome.
The volume of data presented here provides careful detail on the
pattern of sequence conservation and SNVs across the human
genome. We compared the rates of diversity in protein-coding,
RNA-coding, and regulatory elements (Fig. 2A and SI Appendix,
Fig. S5 and Table S5). On average, protein-coding elements are
more conserved than intergenic regions and, as previously
reported, alternative exons are the least variable (15). Alterna-
tive introns of long noncoding RNA (lncRNAs) are the most
conserved, and small nucleolar RNA (snoRNA) is the most
variable of RNA-coding elements. Among the analyzed DNA-
regulatory elements, repressed chromatin is the most conserved
and promoters are the least conserved (Fig. 2A). There is an
extensive literature on the uneven distribution of SNV density
across the genome. Positive selection, nucleotide composition,
recombination hot spots, and replication timing are considered
to be contributing factors (16–18). More recently, the sequence
context has been shown to explain >81% of variability in sub-
stitution probabilities (19). These considerations notwith-
standing, the pattern of SNV density is relatively stable across
chromosomes (SI Appendix, Fig. S6). However, we identified
three unique hypervariable megabase-long regions on autosomes
(SI Appendix, Fig. S7). We observe the depletion of enhancer-
associated histone marks (H3K4me1, H3K4me2, H3K4me3,
H3K27me3, and H3K27ac) in these regions. The hypervariable
regions are also gene-poor and depleted in chromatin loops,
leading us to infer that these are domains that are not involved in
long-distance interactions between regulatory elements and tar-
get genes. The enrichment of variation suggests there is limited
purifying selection compared with other regions in the genome.
To explore the pattern of variation in the human genome in

depth, we built “SNV metaprofiles” by collapsing all members of a
family of genomic elements into a single alignment (SI Appendix,
Fig. S8). Metaprofiles of protein-coding genes used GENCODE-

annotated TSS, transcription start sites (TSSs) (n = 88,046), start
codons (n = 21,147), splice donor and acceptor sites (n = 137,079
and 133,702, respectively), stop codons (n = 30,742), and poly-
adenylation sites (n = 88,103) (see SI Appendix for details). For
each nucleotide aligned against these landmark positions, all of the
genomes in this dataset (n = 10,545) were used to generate a
precise representation of the pattern of conservation and allele
spectra (Fig. 2B). A pattern is built by incorporating up to 1.4
billion data points (number of aligned elements × 10,545 samples)
per genomic position. For example, the analysis captures the de-
crease in variant-allele frequency in exons, with the maximum drop
occurring at the splice donor site (Fig. 2B). Positions that do not
tolerate human variation can be interpreted as essential and pos-
sibly linked to embryonic lethality. In addition, the metaprofiles
reveal discreet patterns, including with great precision the peri-
odicity of conservation in coding regions due to the degeneracy of
the third nucleotide in the codon in every exon window. The pre-
cision of the approach is also illustrated by the metaprofile of
19,304 transmembrane domains from 4,719 proteins. The con-
straint of maintaining alpha-helices (or other structures) and the
hydrophobic (or polar) nature of the transmembrane domain result
in all amino acids being distinctively conserved (Fig. 2C).
Many differences across individuals and species occur at the

level of transcription-factor binding (20). We use the binding-site
core motifs for metaprofile landmarking to identify signatures
that include both variation-intolerant and hypertolerant positions
at the binding site (Fig. 2D). Ranking of 39 transcription-factor
binding sites (TFBSs) by the minimum score of the metaprofile (i.e.,
the nucleotide with the lowest tolerance to variation) emphasizes
profound differences in the requirements for conservation across
transcription factors (Fig. 2E). Although the identification of
conserved, intolerant sites is expected, the biology behind unique
hypertolerant positions at transcription binding sites remains to
be investigated.

A
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Fig. 3. Relationship of a metaprofile tolerance score
with variant pathogenicity and gene essentiality. (A)
Metaprofile of the transition between introns and exons
expressed as the tolerance score (TS). The TS is the product
of the normalized SNVdistribution value by the proportion
of SNVs with allele frequency ≥0.001 (Fig. 2B). The exon
sequence highlights the conservation and tolerance to
variation of the third position in codons (red). The pattern
of higher tolerance to variation every third nucleotide is
lost in introns. The TS is lowest at the splice donor and
acceptor sites and highest in introns. (B) The distribution of
ClinVar andHGMDpathogenic SNVs (n= 29,808 in SD; n=
30,369 in SAmetaprofiles) reflects a significant enrichment
of pathogenic variants at the sites of lowest TS. Consis-
tently, the exon sequence highlights the enrichment for
variation at the first position in codons (blue), as it results
in amino acid change or truncation. (C) Relationship of
tolerance score and enrichment for pathogenic variants.
Represented on the x axis are the mean TS values for the
coding region (±10 bp of intergenic or intronic bound-
aries); each dot represents the mean of 10 positions. The
y axis represents the fold enrichment in pathogenic variants.
local regression (LOESS) curve fitting is represented by the
solid line; the shaded area indicates the 95% confidence
interval. (D) Less essential genes tolerate variation at sites
with lowest TS values. The x axis represents three different
classes of genes according to their having evidence for
splice acceptor/donor variation. The y axis represents es-
sentiality scores of Bartha et al. (21) (yellow) and Exome
Aggregation Consortium (ExAC) pLI (probability that a
gene is intolerant to a loss of function mutation) (22)
(purple). The large majority of genes that tolerate splice-
site variants are not essential; in contrast, there is amarked
shift to higher essentiality values for genes that are not
observed to be variant at the splice sites.
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Metaprofile Tolerance Score and Variant Pathogenicity. Rare human
variants at intolerant sites may carry a greater fitness cost and
associate with greater phenotypic consequences, and thus can
be prioritized for clinical assessment. To apply metaprofiles for
scoring of functional severity of variants, we established a toler-
ance score (Fig. 3A) that summarizes the rates and frequency of
variation at a given position and for a given landmark. Using this
approach, Fig. 3B illustrates the accumulation of pathogenic
variant calls at sites with the lowest metaprofile tolerance scores.
To formalize this analysis, we calculated the tolerance score at
positions aligned to the main coding-region landmarks:10 posi-
tions upstream and downstream of the TSS, start codon, splice
donor and acceptor, stop codon, and polyadenylation site. At the
lowest tolerance score, we observe up to 12-fold enrichment for
pathogenic variants (Fig. 3C). To understand the characteristics
of genes that tolerate variants at privileged sites, we used an
orthogonal assessment of gene essentiality (21, 22). The set of
essential genes includes highly conserved genes that have fewer
paralogs and are part of larger protein complexes. Essential
genes also display a higher probability of CRISPR-Cas9 editing
compromising cell viability (23), and knockouts in the mouse
model are associated with increased mortality (24). Essential
genes are endowed with a distinct coding metaprofile (SI Ap-
pendix, Fig. S9). Fig. 3D supports the concept that the less es-
sential genes can tolerate variation at sites with low metaprofile
tolerance scores.
An important feature of metaprofiling is that it predicts

functional consequences of variation solely on the basis of hu-
man diversity. In contrast, the Combined Annotation-Dependent
Depletion (CADD) score (25) uses evolutionary information,
annotation from the Ensembl Variant Effect Predictor, and ex-
tensive information from University of California Santa Cruz
(UCSC) Genome Browser tracks. Despite these profoundly
different approaches, the tolerant scores obtained from meta-
profiles in protein-coding regions perform similarly to CADD for
the identification of functional variants (SI Appendix, Fig. S10).
This observation underscores the potential of metaprofiling to
analyze the genome with minimal preexisting knowledge—in
particular in the noncoding genome, as metaprofile tolerance
scores only rely on human variation.

Variant Discovery Rates per Individual. The large number of ge-
nomes, and the coverage of various human populations, served to
describe the rate of newly observed, unshared SNVs for each ad-
ditional sequenced genome. We restricted the analysis to the 8,096
unrelated individuals among the 10,545 genomes (SI Appendix).
There is an expectation of 500 million variants identified after
sequencing the genomes of 100,000 individuals (Fig. 4A). This
analysis establishes at the whole-genome level prior estimates from
the study of a limited set of genes or using exome analysis (22, 26).
Unrelated individuals were assigned to five superpopulations or

to an admixed or “other” population group on the basis of genetic
ancestry (SI Appendix, Fig. S1). Each subsequently sequenced
genome contributes on average 8,579 novel variants, which varied
from 7,215 in Europeans and 10,918 in admixed to 13,539 in in-
dividuals of African ancestry (Fig. 4B). This reflects the current
understanding of Africa as the most genetically diverse region in
the world (5). Of the 150 million SNVs observed in the ECR, 82
million (54.7%) have not been reported in dbSNP of the National
Center for Biotechnology Information (NCBI) or in the most
recent phase 3 of the 1000 Genomes Project (3). The proportion
of novel variants increases with decreasing allele frequency—as
expected, there is a negligible number of “novel” variants with
allele frequencies greater than 1% (SI Appendix, Fig. S11).

A

B

C

Fig. 4. Novel variants and genome sequences. (A) SNV discovery rate for
8,096 unrelated individual genomes contributing over 150 million SNVs (blue
line). The projection for discovery rates as more genomes are sequenced is
represented without (dashed black line) and with correction for the empir-
ical false discovery rate of 0.0025 (dashed orange line). The number of SNVs
in dbSNP is represented by the horizontal gray line. (B) The number of newly
observed variants as more individuals are sequenced is determined by the
ancestry background and number of participants in the study. Shown are the
rates of identification of novel variants for each additional African genome
(13,539 SNVs) and for each additional genome of admixed individuals
(10,918 SNVs). The most numerous population in the study, Europeans,
contributes the lowest number of novel variants (7,215 SNVs). (C) Unmapped
sequence from the analysis of 8,096 unrelated individual genomes contrib-
uting over 3.2 Mb of nonreference genome. The 4,876 unique nonreference
contigs had matches in the NCBI nt database as human, or nonhuman

primate, and with hominins. There are contigs with human-like features that
do not have a known match in databases.
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Unmapped Human Genome Sequences. In addition to new variants,
we identified 4,876 unique human, or human-like, contigs (SI Ap-
pendix) assembled from 3.26 Mb of nonreference (hg38 build) se-
quences (“unmapped reads”). On average, we identified 0.71 Mb
of nonreference sequences per genome. A total of 1.89 Mb of the
nonredundant sequences could be mapped to known human se-
quences in GenBank (although not in the hg38 reference assem-
bly). An additional 0.18 Mb mapped to primate sequences in the
NCBI nucleotide (nt) database. There is 1.17 Mb that did not have
a known match in the nt or nonredundant sequence (nr) databases.
The GC content and dinucleotide bias of the unknown contigs
reflect the patterns of human sequences. However, we also
identified successfully mapped eukaryotic, prokaryotic, and viral
contigs that had indistinguishable metrics from human contigs (SI
Appendix, Fig. S12). Therefore, it remains difficult to solve bio-
informatically the nature of unmapped human-like reads—they
may simply result from contamination (27). Much of the non-
reference sequence is shared with hominins. The unmapped con-
tigs were compared with Neanderthal and Denisovan sequencing
reads that did not map to hg38. There were 0.96 Mb covered by
Neanderthal reads and 1.18 Mb covered by Denisovan reads. In
addition, 0.82 Mb is not in the hg38 primary assembly but in the
“alt” sequences or subsequent patches (Fig. 4C). The presence in
some individuals of novel sequence content that is also found
among unmapped reads from Denisovan and Neanderthal ge-
nomes and in nonhuman primates reinforces the notion that the
human genome is larger and more distributed than what is cur-
rently represented by a single (hg38) reference genome.

Conclusions
The goal of clinical use of the genome requires standards for
sequencing, analysis, and interpretation. Our work specifically
addresses the first two steps: sequencing and sequence analysis.
The performance of the platform, implemented in full pro-
duction mode, improves on recent benchmarks for the accurate
interpretation of next-generation DNA sequencing in the clinical
setting (22, 28, 29). This is needed for laboratory standards,
regulatory purposes, and clinical diagnostics and research. The

third step—interpretation—remains a major issue given the
many types of genetic evidence that laboratories consider. Ini-
tiatives such as ClinVar and policies and guidelines (10, 30) set
standards for clinical interpretation.
This report also extends prior efforts at genome and exome se-

quencing by detailing the distribution of human variation in the
noncoding genome. The amount of data supports the discovery of
sites in the genome that are intolerant to variation. The 10,545 ge-
nomes provide estimates of the rate of discovery of new SNVs, and
complements the human genome by more than 3 Mb through the
identification of nonreference and putative human-like sequences.
These data anticipate the relentless accumulation of rare variants
and the scale of observable mutagenesis of the human genome.

Materials and Methods
Detailed information is provided in SI Appendix, Materials and Methods. All
research involving human subjects was performed, and informed consent
was obtained, under protocols approved by the Western Institutional Re-
view Board. Participants were representative of major human populations
and ancestries. The study population was not ascertained for a specific
health status. Institutional review board-approved consent forms for par-
ticipation in research and collection of biological specimens and other data
used in this publication were confirmed to be appropriate for use. All
samples were sequenced on the Illumina HiSeq X sequencer using a 150-base
paired-end single-index read format. Reads were mapped to human refer-
ence hg38 using ISIS analysis software. Bam files were characterized using
Picard and input to the ISIS Isaac Variant Caller to generate genomic variant
call format (VCF) files. Admixture analysis used ADMIXTURE. Kinship analysis
used KING. Sample contamination was assessed with verifyBamID. Struc-
tural variation analysis used MANTA; copy-number variation analysis used
CANVAS. Annotation was based on the ClinVar and HGMD databases. SnpEff
was used for genomic annotation and predicting effects of SNVs. Exomic
regions for protein-coding genes were extracted from GENCODE. Iden-
tification and assembly of nonreference sequences used SOAPdenovo2,
BLASTN, and DIAMOND. Web addresses and references for the software
described above are found in SI Appendix. Neanderthal and Denisovan se-
quence data were downloaded from cdna.eva.mpg.de.
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