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We describe a metabolic disorder characterized by lipodystrophy,
hepatic steatosis, insulin resistance, severe diabetes, and growth
retardation observed in mice carrying N-ethyl-N-nitrosourea (ENU)–
induced mutations. The disorder was ascribed to a mutation of
kelch repeat and BTB (POZ) domain containing 2 (Kbtbd2) and
was mimicked by a CRISPR/Cas9-targeted null allele of the same
gene. Kbtbd2 encodes a BTB-Kelch family substrate recognition
subunit of the Cullin-3–based E3 ubiquitin ligase. KBTBD2 targeted
p85α, the regulatory subunit of the phosphoinositol-3-kinase
(PI3K) heterodimer, causing p85α ubiquitination and proteasome-
mediated degradation. In the absence of KBTBD2, p85α accumu-
lated to 30-fold greater levels than in wild-type adipocytes, and
excessive p110-free p85α blocked the binding of p85α-p110 heter-
odimers to IRS1, interrupting the insulin signal. Both transplan-
tation of wild-type adipose tissue and homozygous germ line
inactivation of the p85α-encoding gene Pik3r1 rescued diabetes
and hepatic steatosis phenotypes of Kbtbd2−/− mice. Kbtbd2 was
down-regulated in diet-induced obese insulin-resistant mice in a
leptin-dependent manner. KBTBD2 is an essential regulator of the
insulin-signaling pathway, modulating insulin sensitivity by limiting
p85α abundance.
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The insulin-signaling pathway regulates energy homeostasis by
promoting glucose and triglyceride uptake into fat, muscle, and

other insulin-sensitive cells, stimulating lipogenesis and inhibiting
lipolysis, glycogenolysis, and gluconeogenesis (1, 2). Insulin re-
sistance, present in metabolic disorders including obesity and
type 2 diabetes, dysregulates these processes and results in chronic
elevation of circulating glucose and lipids. Insulin signaling depends
on several downstream pathways, including the phosphoinositol
3-kinase (PI3K) pathway, in which PI3Ks are recruited to the plasma
membrane by tyrosine-phosphorylated insulin receptor substrates
(IRS1 and 2). PI3Ks catalyze the phosphorylation of phosphoino-
sitide 4,5-bisphosphate (PIP2) to produce phosphoinositide 3,5-
triphosphate (PIP3). PIP3 recruits to the cell membrane and
activates pleckstrin homology domain-containing proteins, in-
cluding PDK1 and AKT, ultimately leading to glucose transport,
lipid and glycogen synthesis, and regulated gene expression.
Class IA PI3Ks, which mediate signaling from the insulin receptor,

are heterodimers of a p85 regulatory subunit and a p110 catalytic
subunit (3). Although p85 binds and stabilizes p110, p85 also
conformationally inhibits p110 catalytic activity (4–8). On activation
by insulin, binding to tyrosine-phosphorylated IRS1 relieves the in-
hibitory conformation of p85, resulting in activation of p110 catalytic
activity (4, 8–10). Previous reports have suggested that when present
in the cell in excess of stoichiometric amounts, p110-free p85 can
bind to tyrosine-phosphorylated IRS1, sequestering IRS1 from
prospective catalytically active p85-p110 heterodimers and
thereby inhibiting PI3K (11–13).
Here we report a Cullin-3 (Cul3)-based ubiquitination mech-

anism that limits p85α protein abundance and is essential for
normal insulin signaling.

Results
Diabetes, Lipodystrophy, and Hepatic Steatosis in teeny Mice. A
phenotype observed among third-generation (G3) C57BL/6J
mice homozygous for mutations induced by N-ethyl-N-nitrosourea
(ENU), termed teeny (tny) (14), was characterized by reduced body
size and weight within the first few days and throughout postnatal
life (Fig. 1 A and B and Fig. S1 A and B). Normal amounts of IGF1
were detected in the serum of homozygous tny mice (Fig. S1C),
which consumed more food and water per gram of body weight and
produced more urine than wild-type (WT) mice (Fig. S1 D–F).
Between 4 and 8 wk of age, fasting blood glucose and insulin
concentrations increased dramatically in tny/tny mice compared
with WT mice; thereafter, hyperglycemia persisted, whereas in-
sulin levels declined to near those of WT mice (Fig. 1 C and D
and Fig. S1 G–I). Insulin tolerance testing showed insulin re-
sistance in 8-wk-old tny/tny mice (Fig. 1E). We also found that
even at 4 wk of age, liver and inguinal white adipose tissue
(iWAT) of tny/tny mice failed to respond to insulin, as indicated
by impaired phosphorylation of AKT Ser473 (Fig. S1J). These
data demonstrate altered glucose metabolism, characterized by
hyperglycemia, hyperinsulinemia, and insulin resistance, in ho-
mozygous tny mice.
Necropsy revealed that adipose tissue beds of tny/tny mice

were reduced in size relative to those in WT mice, a finding most
evident in epididymal white adipose tissue (eWAT) but also
apparent in iWAT (Fig. 1 F and G). Hematoxylin and eosin
(H&E) staining revealed irregular and shriveled adipocytes
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(Fig. 1 H–M). Magnetic resonance imaging (MRI) showed that
tny/tny mice were lean throughout life compared with WT litter-
mates (Fig. 1 N and O). Presumably as a result of lipodystrophy,
tny/tny mice had reduced adipokines, such as leptin and adipo-
nectin, in the serum (Fig. 1 P and Q). In addition, 8-wk-old tny
mice had large, pallid livers (Fig. 1 R and S), and Oil Red O
(ORO) staining showed an abundance of stored lipid (Fig. 1 T–
W), possibly a consequence of compromised adipose tissue fat
storage caused by impaired insulin signaling (15). Liver extracts of
fasting tny mice showed increased stored triglyceride compared
with WT mice (Fig. 1X). Both aspartate aminotransferase (AST)

and alanine aminotransferase (ALT) were increased in the serum
of tny mice, suggesting liver damage caused by lipid accumulation
(Fig. 1 Y and Z).
Both male and female tny homozygotes were infertile; females

became pregnant but failed to deliver pups. Crosses of hetero-
zygous mice yielded a non-Mendelian birth ratio among off-
spring (Table S1), suggesting prenatal attrition of homozygotes.

Tny Phenotypes Are Caused by a Kbtbd2 Mutation. Tny was earlier
mapped to a premature stop codon in kelch repeat and BTB (POZ)
domain containing 2 (Kbtbd2) using body weight as a quantitative
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Fig. 1. The teeny phenotype. (A) Photograph of a male tny homozygote (tny/tny) and WT (+/+) littermate at 8 wk of age. (Scale bar: 1 cm.) (B–D) Body weight (B),
blood glucose (C), and serum insulin (D) of 8-wk-old mice. Glucose and insulin were measured after a 6-h fast. (E) Insulin tolerance test. Blood glucose was measured at
indicated times after i.p. insulin injection in 8-wk-old male mice (n = 3). The baseline blood glucose levels (0 min) of tny/tny andWT littermates were 626 ± 31mg/dL and
168 ± 8 mg/dL, respectively. (F) Representative photographs of BAT, eWAT, and iWAT from 20-wk-old male mice. (Scale bars: 1 cm.) (G) Weights of BAT, eWAT, and
iWAT normalized to body weight in 20-wk-old male mice (n = 3). (H–M) H&E staining of sections from different adipose tissues of 20-wk-old male mice. (Scale bars:
30 μm.) (N and O) Fat weight (N) and lean weight (O) normalized to body weight of male mice at indicated ages by MRI (n = 3). (P and Q) Serum leptin (P) and
adiponectin (Q) in 8-wk-old male mice. (R) Representative photographs of liver from 8-wk-old male mice. (Scale bar: 1 cm.) (S) Liver weight normalized to body weight in
8-wk-old male mice (n = 3). (T–W) Liver sections of 20-wk-old male mice stained with H&E (T and U) and Oil red O (V andW). (Scale bars: 30 μm.) (X–Z) Liver triglyceride
(X), serum ALT (Y), and AST (Z) in 8-wk-old male mice. In B–D, N–Q, S, and X–Z, data points represent individual mice. P values were determined by Student’s t test.
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trait under a recessive model of inheritance (Fig. 2A) (14). No
tny phenotypes were observed in heterozygous mice (Fig. S1 K
and L). Although normal levels of Kbtbd2 mRNA were de-
tected in Kbtbd2tny/tny liver (Fig. 2B), expression of endogenous
KBTBD2 was undetectable by immunoblotting in Kbtbd2tny/tny

liver or mouse embryonic fibroblast (MEF) lysates (Fig. 2 C and
D), and no full-length protein was detected when a tagged ver-
sion of KBTBD2tny was overexpressed in 293T cells (Fig. 2E).
We confirmed that the tny phenotype was caused by Kbtbd2
mutation in mice homozygous for a second null allele of Kbtbd2

A C E

DB

GF H I

Fig. 2. Mutations of Kbtbd2 cause the tny phenotype. (A) Protein domains of WT mouse KBTBD2 (Upper) and position of tny mutation (Lower). The tny
mutation is an arginine to premature stop codon substitution at position 121 of the protein. (B) Relative Kbtbd2 mRNA level (normalized to Actb mRNA)
measured by RT-qPCR of mRNA isolated from livers of three male homozygous tny mice or WT littermates. (C and D) Immunoblots of liver (C) and MEF (D)
lysates from two male homozygous tny mice and WT littermates. (E) Immunoblots of lysates of 293T cells expressing 3×FLAG-tagged full-length WT KBTBD2
or KBTBD2tny. GFP was coexpressed as a loading control. (F–H) Body weight (F), blood glucose (G), and serum insulin (H) values in 6-wk-old male homozygous
Kbtbd2 KO (Kbtbd2−/−) and WT littermates. Glucose and insulin were measured after a 6-h fast. (I) Insulin tolerance test. Blood glucose was measured at
indicated times after i.p. insulin injection in male Kbtbd2−/− mice (n = 4) and WT littermates (n = 3) at 16 wk of age. The baseline blood glucose levels (0 min)
of Kbtbd2−/− mice and WT littermates were 728 ± 18 mg/dL and 298 ± 28 mg/dL, respectively. In F–H, data points represent individual mice. P values were
determined by Student’s t test.
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Fig. 3. WT adipose tissue transplantation rescues the tny phenotype. Surgery was performed at 4 wk of age, andmice receivedWT adipose tissue (AT+) or PBS (n =
4 mice of the indicated genotype per condition). (A and B) Blood glucose (A) and serum insulin (B) in mice before (0 wk) and at the indicated times after adipose
transplantation. (C) HbA1c in blood of mice 8 wk after transplantation. (D and E) H&E staining of sections from liver of Kbtbd2−/− or Kbtbd2−/− AT+ mice at 12 wk
after transplantation. (Scale bars: 30 μm.) (F–H) Liver weight normalized to body weight (F), representative photograph (G), or body weight (I) of mice at 12 wk after
transplantation. (Scale bar in G: 1 cm.) Data points represent individual mice (C, F, and H). P values were determined by Student’s t test.
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generated by CRISPR/Cas9 gene targeting (Kbtbd2−/−), which
fully recapitulated all aspects of the tny phenotype (Fig. 2 F–I).
Taken together, these findings indicate that insulin resistance,
diabetes, lipodystrophy, and fatty liver stem from a homozygous
null allele of Kbtbd2 in tny mice.

Rescue of the tny Phenotype by WT Adipose Tissue. Lipodystrophies
are often associated with insulin resistance, diabetes, dyslipidemia,
and hepatic steatosis. Thus, we tested whether s.c. implantation of
WT adipose tissue into 4-wk-old Kbtbd2−/− mice could rescue the
hyperglycemia, hyperinsulinemia, and hepatic steatosis observed
in these mice. At 12 wk after surgery, transplanted eWAT grafts
had a healthy, vascularized appearance, indicating host accep-
tance of the tissue (Fig. S2). Strikingly, by 2 wk postsurgery,
blood glucose and insulin in transplanted Kbtbd2−/− mice had
decreased to concentrations similar to those in WT mice, and
were maintained through 8 wk postsurgery (Fig. 3 A and B).
HbA1c levels were normal in transplanted Kbtbd2−/− mice at
8 wk postsurgery (Fig. 3C). Moreover, hepatic steatosis in
Kbtbd2−/− mice was reversed by adipose transplantation (Fig. 3 D
and E); liver weight was similarly restored toward WT levels (Fig.
3F). Adipose transplantation also partially rescued the growth
retardation of Kbtbd2−/− mice (Fig. 3 G and H). Thus, adipose
tissue expressing functional KBTBD2 is by itself sufficient to
rescue hyperglycemia, hyperinsulinemia, and hepatic steatosis in
Kbtbd2−/− mice.

Elevated p85α Expression in KBTBD2-Deficient Mice.The 623-aa KBTBD2
protein, for which no function has been reported previously, contains
BTB (Broad-complex, Tramtrack, and Bric à brac) and BACK (BTB
and C-terminal Kelch) domains at its N terminus and four tandem
Kelch motifs at its C terminus (Fig. 4A), similar to other BTB-BACK-
Kelch proteins (16). The mouse protein is 98.6% identical to human
KBTBD2; highly similar homologs are found in other vertebrates
(Table S2), but are not present in invertebrate organisms (17, 18).
KBTBD2 was observed both in the nucleus and cytoplasm on over-
expression in 293T cells (Fig. S3A). Kbtbd2 mRNA was detected in a
variety of mouse tissues, with relatively higher expression in muscle,
liver, brain, iBAT, heart, and eWAT (Fig. S3B).

Numerous BTB-BACK-Kelch proteins function as substrate
recognition components of Cul3-based E3 ubiquitin (Ub) ligase
complexes (16, 19). Coimmunoprecipitation (co-IP) experiments
showed that full-length KBTBD2 interacted with Cul3 through
the KBTBD2 N-terminal BTB domain (Fig. 4 A and B), suggesting
that KBTBD2 might fulfill a similar function. We hypothesized
that putative KBTBD2-specified substrates of the Cul3 Ub ligase
complex accumulate in Kbtbd2 mutant mice, and sought to identify
these by semiquantitative mass spectrometry analysis of proteins in
white adipose tissues of WT or Kbtbd2−/− mice. Among the 1,171
proteins identified in all samples (Dataset S1), six proteins were
greater than fivefold more abundant in both eWAT and iWAT
from Kbtbd2−/− mice relative to WT mice (Table S3). p85α, a
regulatory subunit of PI3K, was elevated by 40- and 24-fold in
Kbtbd2−/− eWAT and iWAT, respectively, and we considered it
highly relevant to the tny phenotype because of its key role in
PI3K regulation.
We verified the specific accumulation of p85α in Kbtbd2−/−

adipose tissues, in which normal to reduced amounts of the PI3K
catalytic subunits p110α and p110β were detected (Fig. 4C).
Within adipose tissues, fat cells accumulated greater amounts of
p85α than stromal vascular fraction (SVF) cells (Fig. 4D). Similarly,
p85α protein accumulated in Kbtbd2−/− adipocyte-like cells differ-
entiated from MEFs (MEF-derived adipocytes) (Fig. 4E). We ob-
served accumulation of p85α in Kbtbd2−/− liver, muscle, and brain
(Fig. 4 F–H). Knockdown of KBTBD2 in differentiated human
adipocytes also increased p85α protein levels (Fig. S4A). These data
demonstrate that KBTBD2 deficiency results in elevated p85α ex-
pression in mouse tissues with high expression levels of Kbtbd2,
including adipose tissue, liver, muscle, and brain, as well as in
human adipocytes.

KBTBD2 Interaction with Cul3 and p85α Results in p85α Ubiquitination.
KBTBD2 interacted with p85α when expressed in 293T cells; the
p85α inter-SH2 domain (iSH2; Fig. 5 A and B) and the KBTBD2
C-terminal Kelch domains were required for this interaction (Figs.
4A and 5C). In vitro GST pull-down experiments supported a di-
rect interaction between KBTBD2 and p85α (Fig. 5D). Human
KBTBD2 also interacted with human p85α in differentiated adipocytes

A B C

F G HED

Fig. 4. Elevated p85α Expression in KBTBD2-deficientMice. (A) Protein domains of mouse KBTBD2 and truncated forms for mapping the protein interaction region.
(B) Immunoblot analysis of immunoprecipitates (Top andMiddle) or lysates (Bottom) of 293T cells expressing HA-tagged Cul3 and 3×FLAG-tagged full-length (FL) or
truncated KBTBD2. (C) Immunoblots of lysates of different adipose tissues from two 8-wk-old male Kbtbd2−/−mice or WT littermates. (D) Immunoblots of lysates of
isolated fat cells or SVF from different adipose tissues of 8-wk-old WT or Kbtbd2−/− mice. (E) Immunoblots of lysates of 10-d-differentiated MEF-derived adipocytes
from two different mice. (F–H) Immunoblots of liver (F), muscle (G), and brain (H) lysates from 8-wk-old WT or Kbtbd2−/− mice.
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(Fig. S4B). Moreover, two-step IP demonstrated simultaneous
binding of p85α and Cul3 to KBTBD2 to form a three-protein
complex (Fig. 5E). Coexpression of KBTBD2, p85α, Cul3, and Ub
in 293T cells resulted in p85α polyubiquitination, which was re-
duced in the absence of Cul3 or KBTBD2 (Fig. 5F). The BTB
domain is critical for the recruitment of Cul3 Ub ligase complexes,
because KBTBD2-C failed to mediate p85α ubiquitination (Fig.
5F). These polyubiquitin chains were K48-linked (Fig. 5 F–H),
which serves as a degradation signal for the proteasome. These
data suggest that KBTBD2 recruits p85α to Cul3 Ub ligase
complexes for K48-linked ubiquitination, leading to proteasome-
mediated degradation of p85α.

Impaired PI3K Signaling due to Elevated p85α in Kbtbd2−/− Mice.
Based on its striking rescue of metabolic phenotypes, we fo-
cused on adipose tissue to determine the effect of increased p85α
expression on insulin signaling. We examined Kbtbd2−/− adipose
tissue in vivo for the association between PI3K subunits and IRS-1

and AKT S473 phosphorylation before and after i.p. injection
of insulin in WT or Kbtbd2−/− mice. In WT iWAT, insulin in-
duced tyrosine phosphorylation of IRS-1, and formation of a
complex containing IRS-1, p110α, and p85α (Fig. 6A). In con-
trast, IRS-1 was associated with large amounts of p85α in
Kbtbd2−/− iWAT independent of insulin stimulation, and p110α
bound minimally to IRS-1 either before or after insulin stimu-
lation (Fig. 6A). Moreover, phosphorylation of AKT S473 in-
creased in WT iWAT after insulin stimulation, but this response
was diminished in Kbtbd2−/− iWAT (Fig. 6A). We also observed
increased levels of insulin-independent tyrosine phosphorylation
on IRS-1 in Kbtbd2−/− iWAT, likely a result of elevated endog-
enous insulin in the mice (Fig. 6A). These data suggest that el-
evated p85α expression in Kbtbd2−/− adipose tissue results in
impaired PI3K signaling. These signaling defects are likely adi-
pocyte-intrinsic, given that Kbtbd2−/− MEF-derived adipocytes
and human adipocytes in which KBTBD2 was knocked down
also exhibited impaired AKT S473 phosphorylation in response
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to insulin (Fig. 6B and Fig. S4C). Moreover, the expression of
adipocyte differentiation markers PPARγ and C/EBPα was
normal in Kbtbd2−/− MEF-derived adipocytes and adipose tis-
sues, whereas the expression of fatty acid synthase (FAS) and
acetyl-CoA carboxylase (ACC), enzymes involved in fatty acid
synthesis, was reduced, suggesting that KBTBD2 deficiency im-
pairs the metabolic function of adipocytes, but not their differ-
entiation (Fig. 6C and Fig. S5).
To confirm that elevated p85α was the biological anomaly

responsible for the observed PI3K signaling defects and tny
phenotype, we generated mice deficient in both KBTBD2 and
p85α (Kbtbd2−/−; Pik3r1−/−). Compared with Kbtbd2−/− mice,
Kbtbd2−/−; Pik3r1−/− mice had increased body weight, restored
fat storage, and decreased blood glucose and insulin (Fig. 6 D–G).
Furthermore, loss of p85α restored insulin sensitivity in the
Kbtbd2−/− background (Fig. 6H). These findings indicate that
PI3K signaling in response to insulin is impaired in KBTBD2-
deficient mice owing to increased amounts of p85α, and that ac-
cumulated p85α causes the tny phenotype.

KBTBD2 Suppression Within Adipocytes Occurs in Diet-Induced
Obesity. Obesity is strongly associated with insulin resistance
(20, 21), and the clear requirement for KBTBD2 in the main-
tenance of insulin sensitivity prompted us to determine whether
KBTBD2 might be modulated by diet-induced obesity. WT
C57BL/6J mice maintained on a high-fat diet for 18 wk exhibited

higher body weight owing to obesity, increased fasting glucose
levels, and insulin resistance (Fig. 7 A–E). We also observed
reduced KBTBD2 mRNA and protein expression and increased
p85α protein expression in adipose tissue from these mice (Fig. 7
F and G). No effect on p85α mRNA was detected (Fig. 7H),
consistent with posttranslational regulation via the proteasome.
These data suggest that KBTBD2 may be modulated by diet-
induced obesity.
We also measured KBTBD2 and p85α expression in isolated

adipocytes from several genetic mouse models of obesity. Leptin-
deficient (Fig. S6 A–E), leptin receptor-deficient (Fig. S6 F–J),
and melanocortin 4 receptor (Mc4r)-deficient mice (Fig. S6 K–O)
fed a control diet or standard chow were hyperphagic and became
obese, hyperglycemic, and insulin-resistant compared with control
mice. However, KBTBD2 and p85α mRNA and protein expres-
sion levels in the mutants were similar to those in control mice
(Fig. 7 I–Q). To determine whether a high-fat diet could induce
suppression of KBTBD2 in the obese mutant mice, Lepob/ob (ob/ob)
mice were fed a high-fat diet for 8 wk, after which the ob/ob mice
were significantly more obese, hyperglycemic, and insulin-re-
sistant than the ob/ob mice fed the control diet (Fig. S6 A–E).
Nonetheless, KBTBD2 and p85α mRNA and protein levels were
similar in the ob/ob mice fed the control diet and those fed a
high-fat diet (Fig. 7 I–K). These data suggest that leptin receptor
signaling is necessary for the regulation of KBTBD2 in diet-
induced obesity.
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Discussion
We have shown that KBTBD2 is a p85α-specific recognition
subunit for the Cul3-based E3 Ub ligase complex, which regu-
lates p85α protein abundance in vivo (Fig. 8). In particular,
KBTBD2 binds exclusively to p110-free p85α, leading to its Ub-
mediated degradation. Moreover, in KBTBD2-deficient tissue,
excess p85α constitutively precludes the association of p110 with
IRS1, resulting in impaired PI3K signaling in response to insulin.
Our findings support a model (11–13) in which p110-free p85α
competes with the p85α-p110 heterodimer for binding to tyro-
sine-phosphorylated IRS1 and thereby negatively regulates PI3K
signaling. Indeed, a similar mechanism has been reported for the
regulation of p85β, which is targeted to SCF Ub ligase complexes
by the F-box protein FBXL2 (22). The control of specific p85
isoforms by distinct substrate recognition proteins of Ub ligase
complexes suggests a mechanism by which the isoforms may be
differentially regulated to carry out nonredundant functions
in cells.
It is not excluded that in addition to the insulin receptor, other

receptors and pathways linked to activation of the p110 subunit
of PI3K are affected by Kbtbd2 mutations. We note that tny/tny
mice exhibited high levels of serum IGF1, indicative of elevated
growth hormone (GH) secretion. IGF1 mediates many of the
physiological effects of GH, and also acts as a negative feedback
regulator of GH gene expression through the transcription fac-
tors POU1F1 and CBP (23–26). These effects occur through
signaling primarily via IRS1/IRS2, PI3K, and Akt (26, 27). We
hypothesize that IGF1 receptor signaling is also dependent on
KBTBD2-induced degradation of p85α, the buildup of which
disrupts PI3K signaling and leads to a form of dwarfism and an
increase in GH secretion.
In humans, autosomal dominant mutations of PIK3R1, encod-

ing p85α and the alternatively spliced isoforms p55α and p50α,
cause SHORT syndrome (short stature, hyperextensibility of joints
and/or inguinal hernia, ocular depression, Rieger anomaly, and
teething delay), a condition also characterized by insulin re-
sistance, lipodystrophy, and impaired PI3K signaling (28–30). The
commonality of these latter phenotypes in KBTBD2-deficient
mice and SHORT syndrome patients suggests that the human
PIK3R1 mutations exert a dominant negative effect that mimics
p85α overexpression. This hypothesis is supported by the autoso-
mal dominant inheritance of reported SHORT syndrome muta-
tions, and also by the observation of insulin hypersensitivity in
mice lacking p85α (31–34). In its C-terminal half, p85α contains
two SH2 domains separated by a coiled-coil inter-SH2 domain,
which together bind p110 or tyrosine-phosphorylated IRS1. The
positions of reported SHORT syndrome mutations within p85α
SH2 domains or the inter-SH2 domain, but not elsewhere in the
protein (28–30), suggest a mechanism in which the mutant p85α
proteins may constitutively bind to IRS1, blocking insulin-induced
WT p85α-p110 binding. Alternatively, mutant p85α may consti-
tutively bind to p110 in the inhibitory conformation, blocking p110
catalytic activity. Our findings raise the possibility that mutations
of KBTBD2 underlie SHORT syndrome in patients without
PIK3R1 mutations.
Among the multiple isoforms of p85, p85α is the predominant

isoform in insulin-sensitive tissues (11). p85α-deficient mice ex-
hibit increased insulin signaling, enhanced insulin sensitivity, and
hypoglycemia (31–34), whereas p85α overexpression has been
reported to reduce PI3K signaling, leading to insulin resistance
(35, 36). Consistent with these observations, KBTBD2-deficient
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Fig. 7. Down-regulation of KBTBD2 during diet-induced obesity. (A–H) Male
C57BL/6J mice were maintained on a control diet (10 kcal% fat; n = 3) or high-fat
diet (60 kcal% fat; n = 3) for 16 wk, beginning at 6 wk of age. Experiments were
conducted at 22 wk of age. (A) Body weight. (B) Normalized fat weight. (C) Blood
glucose. (D) Serum insulin. Glucose and insulin were measured after a 6-h fast.
(E) Insulin tolerance test. Blood glucose was measured at indicated times after i.p.
insulin injection. The baseline blood glucose levels (0 min) were 154 ± 16 mg/dL in
the mice fed the control diet and 211 ± 12mg/dL in themice fed the high-fat diet.
(F) Transcript levels of Kbtbd2 (normalized to Actb) by RT-qPCR of RNA isolated
from iWAT. (G) Immunoblots of iWAT lysates. (H) Transcript levels of Pik3r1 (nor-
malized to Actb) by RT-qPCR of RNA isolated from iWAT. (I–K) Male Lepob/+ (ob/+)
or Lepob/ob (ob/ob) littermates were maintained on the control diet (n = 3) or high-
fat diet (n = 3) for 8 wk, beginning at 6 wk of age. Experiments were conducted at
14 wk of age. (I and J) Transcript levels of Kbtbd2 and Pik3r1 (normalized to Actb)
by RT-qPCR of RNA isolated from iWAT. (K) Immunoblots of iWAT lysates. (L–N)
Male Leprdb/+ (db/+; n= 3) and Leprdb/db (db/db; n= 3) littermates weremaintained
on standard chow from birth. Experiments were conducted at 16 wk of age. (L and
M) Transcript levels of Kbtbd2 and Pik3r1 (normalized to Actb) by RT-qPCR of RNA
isolated from iWAT. (N) Immunoblots of iWAT lysates. (O–Q) Male Mc4r−/− mice

(n = 3) and WT mice (+/+; n = 3) were maintained on standard chow from
birth. Experiments were conducted at 9 wk of age. (O and P) Transcript levels
of Kbtbd2 and Pik3r1 (normalized to Actb) by RT-qPCR of RNA isolated from
iWAT. (Q) Immunoblots of iWAT lysates. In A–D, data points represent in-
dividual mice. P values were determined by Student’s t test.
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mice accumulated p85α in adipose, liver, muscle, brain, and
possibly other tissues and displayed insulin resistance, diabetes,
and liver steatosis. p85α knockout entirely prevented all of these
effects of KBTBD2 deficiency. Moreover, transplantation of WT
adipose tissue into Kbtbd2−/− mice was sufficient to rescue the
hyperglycemia and hepatic steatosis phenotypes of these animals,
indicating that adipocytes alone are capable of managing the
burden of glucose and lipid present in these animals, provided
that they have normal insulin sensitivity.
We observed reduced KBTBD2 expression in adipocytes, and

consequent elevated adipocyte p85α expression, during high-fat
diet-induced obesity associated with insulin resistance and hyper-
glycemia. These data suggest that diet-induced obesity results in
down-regulation of KBTBD2, which may contribute to the de-
velopment of insulin resistance. Interestingly, no down-regulation
of KBTBD2 expression was observed in obese insulin-resistant
mice lacking leptin or melanocortin 4 receptor signaling, sug-
gesting that the regulation of KBTBD2 by diet-induced obesity is

leptin-dependent. Moreover, a KBTBD2-independent mechanism
is apparently responsible for the development of insulin resistance
and diabetes in ob/ob, db/db, and Mc4r−/− mice.
The strong evolutionary conservation of KBTBD2 in verte-

brates suggests that it may fulfill a similar function in many ver-
tebrate species, in which the need for multiple controls of insulin
responsiveness may have developed as organisms increased in
complexity from invertebrates. The KBTBD2 protein is 98.6%
identical in humans and mice, and we hypothesize that KBTBD2
may regulate systemic insulin sensitivity by controlling the cyto-
plasmic concentration of p85α in adipose and other tissues in
humans as in mice.

Materials and Methods
Mice. C57BL/6J, Lepob, Leprdb, and Mc4r−/− mice were purchased from The
Jackson Laboratory. The tny strain (C57BL/6J-Kbtbd2tny) was generated by
ENU mutagenesis and is described at mutagenetix.utsouthwestern.edu.
Kbtbd2−/− and Kbtbd2−/−; Pik3r1−/− double-knockout mice were generated
in our laboratory using the CRISPR/Cas9 system as described previously (37)
with the Kbtbd2 (5′-CCGCTGATTTGCATAAGGTT-3′) and Pik3r1 (5′-AGTCG-
TACAGTGCTCTGTAC-3′) small base-pairing guide RNA. Mice were main-
tained at the University of Texas Southwestern Medical Center and studies
were performed in accordance with institutionally approved protocols. All
experiments in this study were approved by the University of Texas South-
western Medical Center Institutional Animal Care and Use Committee. All
mice were fed standard chow (2016 Teklad Global 16% Protein Rodent Diet)
except mice with diet-induced obesity, which were fed with control diet
(10 kcal% fat; Research Diets) or high-fat diet (60 kcal% fat; Research Diets)
from 6 wk of age.

Blood/Serum Chemistries, ELISA, and Insulin Stimulation. Mice were fasted for
6 h (7:00 AM–1:00 PM) for glucose and insulin tests. Blood glucose was tested
with the AlphaTRAK glucometer and test strips. ELISA kits were used to
measure insulin (Crystal Chem), leptin (Crystal Chem), IGF1 (R&D Systems),
and adiponection (B-Bridge) in the serum according to the manufacturer’s
instructions. AST and ALT in the serum were tested using a Vitros 250
chemistry analyzer (Johnson & Johnson). HbA1c in the whole EDTA blood
was measured with a mouse HbA1c assay kit (Crystal Chem). Triglyceride was
measured with Infinity Triglycerides Reagent (Thermo Fisher Scientific). The
insulin tolerance test was initiated by i.p. injection with human insulin
(0.75 U/kg; Sigma-Aldrich) after a 6-h fast. For in vivo insulin stimulation (Fig.
S1J), insulin or saline was injected i.p. at a dose of 1.5 U/kg body weight after
a 6-h fast. Different tissues were collected at 30 min postinjection. For in vivo
insulin stimulation (Fig. 6A), the mice were fasted for 6 h before surgery.
After anesthetization, the skin was opened, and the left iWAT was quickly
removed and then snap-frozen in liquid nitrogen. Then 10 U/kg insulin was
injected into the portal vein. The iWAT on the right side was taken at 5–6 min
after insulin stimulation and frozen in liquid nitrogen. These iWATs were lysed
with Nonidet P-40 lysis buffer for IP.

Adipose Transplantation. Transplantation of WT donor fat pads into Kbtbd2−/−

mice was performed as described previously (38). Details are provided in SI
Materials and Methods.

Immunohistochemistry and Immunostaining. Samples for routine histology
and special stainings were harvested from anesthetized mice and fixed
according to standard procedures (39, 40) with modifications for tissue size
and stains. Cell immunostaining was performed according to standard pro-
tocols. Details are provided in SI Materials and Methods.

Cell Culture, Transfection, MEF-Derived Adipocytes, Murine Primary Adipocytes,
Human Adipocytes, and shRNA Knockdown. The 293T cells were purchased
from American Type Culture Collection (ATCC) and grown at 37 °C in DMEM
(Life Technologies)/10% (vol/vol) FBS (Gibco)/antibiotics (Life Technologies)
in 5% CO2. Transfection of plasmids was carried out using Lipofectamine
2000 (Life Technologies) according to the manufacturer’s instructions. Cells
were harvested between 36 and 48 h posttransfection. MEF cells were iso-
lated using standard protocols by trypsin (Gibco) digestion of minced E13.5
embryos. MEF cells were grown in DMEM/10% (vol/vol) FBS/antibiotics me-
dium. For differentiation, 2-d postconfluent cells (day 0) were treated with
grown medium containing 5 μg/mL insulin, 1 μM dexamethasone, 0.5 mM
methylisobutylxanthine, and 0.5 μM rosiglitazone (all from Sigma-Aldrich).
From day 2, MEF cells were maintained in medium containing 5 μg/mL
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Fig. 8. Regulation of p85α by KBTBD2 in WT and tny/tny mice. In WT mice,
KBTBD2 regulates p85α protein abundance through degradation mediated
by K48 ubiquitination. Insulin induces phosphorylated IRS-1 to recruit p85α-
p110 heterodimers, leading to activation of PI3K catalytic activity and
downstream signaling. In KBTBD2-deficient tny/tny mice, excess p85α con-
stitutively precludes the association of p85-p110 heterodimers with phos-
phorylated IRS-1, resulting in impaired PI3K signaling in response to insulin.
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insulin (Sigma-Aldrich) and 0.5 μM rosiglitazone (Sigma-Aldrich), which was
changed every other day. MEF cells were fully differentiated and harvested
at day 10. Isolation and separation of murine primary adipocytes and SVF
cells from different adipose tissues (BAT, iWAT) was done as described
previously (41). Primary s.c. preadipocytes were purchased from ATCC and
grown in complete growth medium (ATCC). Knockdown of KBTBD2 in hu-
man preadipocytes by shRNA was mediated by lentivirus infection following
standard protocols. Differentiation was initiated with 2-d postconfluent cells
(day 0) with the Adipocyte Differentiation Toolkit for Preadipocytes (ATCC).
Fully differentiated adipocytes were harvested at day 15.

Sample Preparation, IP, Ubiquitination, Ub Chain Assay, GST Pull-Down, and
Western Blot Analysis. Standard procedures were used for GST pull-down,
Western blot analysis, and IP, with modifications for the ubiquitination assay.
For two-step IP, anti-FLAG M2 affinity gel (Sigma-Aldrich) was used to purify
3×FLAG-p85α complex in the first-step IP (first IP). Beads from the first IP
were eluted with 3×FLAG peptide (Sigma-Aldrich) and then mixed with anti-
HA beads (Thermo Fisher Scientific) to purify the HA-Kbtbd2 complex in the
second-step IP (second IP). The Ub chain assay was done with the UbiCREST
Deubiquitinase Enzyme Kit (Boston Biochem). Further details are provided in
SI Materials and Methods.

RNA Isolation, Reverse Transcription, and RT-qPCR. Tissue samples were lysed in
TRIzol (Invitrogen) for RNA isolation following a standard protocol, and 1 μg of
RNA was used for reverse transcription by SuperScript III First-Strand Synthesis
SuperMix. RT-qPCR was performed with ABI StepOnePlus with Powerup SYBR

Green Master Mix (Life Technologies). The 2-ΔΔCt method was used for relative
quantification. The following primer pairs were used: Kbtbd2, 5′-ATACCGAA-
TATGCTGTGTCCT-3′ (forward), 5′-AACATGGCCCTGAAATAGGAG-3′ (reverse);
Pik3r1, 5′-GACATCTCAAGGGAAGAAGTG-3′ (forward), 5′-TTAGTGTAAGAGT-
GTAATCGCC-3′ (reverse); Actb, 5′-CACCACACCTTCTACAATGAG-3′ (forward),
5′-GTCTCAAACATGATCTGGGTC-3′ (reverse).

Mass Spectrometry Analysis of Proteins in Adipose Tissues. Here 100 μg of
adipose lysates were loaded onto 12% (wt/vol) SDS/PAGE gel and run ∼1 cm
into separation gel. The gel was stained with Coomassie blue, and whole
stained lanes were subjected to semiquantitative mass spectrometry analysis
(LC/MS/MS), as described in SI Materials and Methods.

Statistical Analyses. Data represent mean ± SEM in all graphs depicting error
bars. The statistical significance of differences between experimental groups
was determined by Student’s t test using GraphPad Prism 6. *P ≤ 0.05; **P ≤
0.01; ***P ≤ 0.001; ****P ≤ 0.0001; ns, not significant with P > 0.05.
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