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Many human proteins contain intrinsically disordered regions, and
disorder in these proteins can be fundamental to their function—for
example, facilitating transient but specific binding, promoting allo-
stery, or allowing efficient posttranslational modification. SasG, a
multidomain protein implicated in host colonization and biofilm
formation in Staphylococcus aureus, provides another example of
how disorder can play an important role. Approximately one-half of
the domains in the extracellular repetitive region of SasG are intrin-
sically unfolded in isolation, but these E domains fold in the context
of their neighboring folded G5 domains. We have previously shown
that the intrinsic disorder of the E domains mediates long-range
cooperativity between nonneighboring G5 domains, allowing SasG
to form a long, rod-like, mechanically strong structure. Here, we
show that the disorder of the E domains coupled with the remark-
able stability of the interdomain interface result in cooperative fold-
ing kinetics across long distances. Formation of a small structural
nucleus at one end of the molecule results in rapid structure forma-
tion over a distance of 10 nm, which is likely to be important for the
maintenance of the structural integrity of SasG. Moreover, if this
normal folding nucleus is disrupted by mutation, the interdomain
interface is sufficiently stable to drive the folding of adjacent E and
G5 domains along a parallel folding pathway, thus maintaining
cooperative folding.
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It has been suggested that as much as 20% of the proteome may
be intrinsically disordered (1), mainly manifested as intrinsically

disordered regions within multidomain proteins, although a few
proteins are apparently entirely disordered. Some proteins func-
tion as a consequence of disorder: for example, disordered PEVK
regions of titin act as an entropic spring (2), whereas in the nuclear
pore complex, disordered nucleoporins provide a thick selective
barrier controlling nuclear import (3). Disorder can also play other
roles: it facilitates posttranslational modification and may promote
allostery (4, 5). SasG (Staphylococcus aureus surface protein G) is a
cell wall-attached protein from S. aureus that promotes intercel-
lular adhesion during the accumulation phase of biofilm formation
via its C-terminal repetitive region (6–8). We previously showed that
this part of SasG contains alternating E and G5 domains (Fig. 1A)
and that E folds when it is N-terminal of a G5 domain. The disorder
of E domains in isolation is essential for formation of a long, stiff,
mechanically strong, rod-like structure (9) capable of projecting the
N-terminal A domain, which is involved in host colonization (6).
Here, we combine biophysical measurements, protein engineer-

ing, and simulation to show that the disorder in the E domains of
SasG also promotes cooperative folding and unfolding pathways. We
find that SasG domains have a highly polarized transition-state (TS)
structure, where formation of a small portion of a three-stranded
sheet in the far C-terminal region of a SasG G5 domain is suffi-
cient to drive the folding of structure over a distance of 10 nm. Our
studies reveal the importance of the E–G5 interface in driving this
cooperativity. Furthermore, when the usual folding nucleus is dis-
rupted by mutation in the multidomain protein, then this interface

is sufficiently stable to drive folding of the two adjacent domains.
Thus, we propose that disorder can play a key role in ensuring co-
operative folding over long distances in multidomain proteins.

Results
SasG Domains Fold Cooperatively at Equilibrium. SasG domains are
highly homologous: the sequence identity between G5 domains
(except for the first and last) and between E domains is>97%. Here,
we investigated the first E domain and the second G5 domain (G52)
either alone or in tandem (E–G52) (Fig. 1). We have previously
shown that the E domain is fully unfolded in isolation (10). Because
SasG domains have no tryptophans, (un)folding was followed by
monitoring intrinsic tyrosine fluorescence. We have shown that urea-
induced equilibrium denaturation curves of E–G52 monitored by
fluorescence coincide with those recorded by ellipticity at 235 nm (7)
and domain-specific FRET probes (9), showing that equilibrium
unfolding of the two-domain construct is fully cooperative: two-state
with concerted disruption of both domains and secondary and ter-
tiary structure with no accumulation of intermediates (Fig. 1C). The
stability of E–G52 is around 3.5 kcal mol−1 greater than that of an
isolated G52 domain (6.3 vs. 2.8 kcal mol−1, respectively).

Kinetic Experiments Reveal That SasG Domains Fold and Unfold
Cooperatively. The refolding kinetics of G52 and E–G52 can both
be described by a sum of two exponential phases, with a fast folding
phase (accounting for at least 30% of the amplitude) and a slower
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phase that represents proline cis-trans isomerization-limited folding
events (E–G52 and G52 have 17 and 8 prolines, respectively). Only
the faster phase is discussed here. The rate constant for folding of
E–G52 is the same as that of G52 at all denaturant concentrations
(Fig. 1D). Under unfolding conditions, at urea concentrations
≤6.5 M, only a single kinetic phase is detected for both G52 and
E–G52, but E–G52 unfolds significantly more slowly, and the
dependence of the logarithm of the rate constant for unfolding
on denaturant concentration (mku) is significantly higher.* The
unfolding limbs of the chevron plots are curved (Fig. 1D). To
account for nonlinearity in the observed unfolding rate constant,
the chevron plot data were fitted to a sequential TSs model (12),
in which denaturant induces a switch between two barriers sepa-
rated by a high-energy intermediate.
At denaturant concentrations below ∼6.5 M urea, all of the ev-

idence suggests that both G52 and the two-domain construct E–G52

fold via a two-state pathway, where the two domains fold and
unfold cooperatively: we observe for both constructs that the values
of mD–N obtained by combining kinetic m values are the same
within error as the equilibrium values (SI Appendix, Table S1).
Similarly, the values of free energy of unfolding (ΔGH2O

D−N) calcu-
lated from the kinetic data match the equilibrium ΔGH2O

D−N

values (SI Appendix, Table S1). Furthermore, double-jump stop-
ped flow experiments showed no evidence of additional phases
that might reveal populated intermediates for either construct.

Cooperative Unfolding Breaks Down at High Denaturant Concentrations.
The unfolding of E–G52 and G52 results in a decrease in tyrosine
fluorescence. However, in the unfolding kinetics of E–G52 only, at
urea concentrations >7.0 M, we observed a second, faster rate
associated with an increase in fluorescence that shows very weak
denaturant dependence (Fig. 1D and SI Appendix, Fig. S1). A
similar extra phase was also observed for the E–G52 construct la-
beled with E500W-E532CIAEDANS FRET pair (Fig. 1D), which
reports specifically on the (un)folding of E. In contrast, the
unfolding kinetics of E–G52 probed by I555W-E613CIAEDANS

(resulting in FRET only when G52 is folded) is monophasic (Fig.
1D). We infer that the minor rate detected at high urea concen-
tration is related to unfolding of the E domain, perhaps when the
stabilizing interface fails at high denaturant concentrations. Note
that two other mutations that strongly destabilized the E domain
(G524A and G527A) also decoupled the unfolding of E and G52

(SI Appendix, Fig. S2).

G52 and E–G52 Fold Via the Same Highly Polarized Transition State.
Because G52 and E–G52 fold at the same rate and the dependence
of the refolding rate constant on denaturant concentration is the
same (Fig. 1D), we infer that they fold via the same rate-limiting
TS. To map out which regions are structured early in the folding of
G52 and E–G52, a mutational Φ-value analysis was carried out.
SasG domains do not have a compact hydrophobic core, and all
side chains are exposed to solvent. Mutation of surface residues
rarely results in sufficient loss of stability to undertake Φ-value
analysis (13). Hence, a series of nonconservative mutations (mainly
Pro to Ala and Gly to Ala) was introduced in both G52 and E–G52,
and their influence on the thermodynamic stability and kinetics was
investigated (SI Appendix, Tables S2–S5). Φ-Values were calcu-
lated (SI Appendix, Tables S4 and S5) for mutants where the
destabilization energy (ΔΔGH2O

D−N) was ≥0.7 kcal·mol−1 (14). In
general, nonconservative mutations, such as those that we are using
here, have to be interpreted with care. However, the resultant
chevron plots show that, here, we can be unequivocal (Fig. 2 A and
B). Unusually, mutations alter either only the folding kinetics,
meaning Φ is close to 1 and the region is fully structured in the TS,
or only the unfolding kinetics, meaning Φ ∼ 0, suggesting that the
region is as unstructured in the TS as in the D. There are no in-
termediate Φ-values. When mapped onto the structures, the
Φ-value pattern is clear (Fig. 2 C and D). It is only in the extreme
C-terminal loop/β-sheet region that any structure is formed at all in
the TS (Φ ≥ 0.8) in both G52 and E–G52, suggesting that the rate-
limiting TS for folding is common for the two constructs and
strongly polarized to the C-terminal region of the G52 domain. The
rest of the protein folds only after formation of this initial em-
bryonic structure, formation of which establishes the correct reg-
ister for the β-strands of the G52 domain.

Simulations Reveal More Details About the Folding Pathway. After
the main rate-limiting TS, our kinetic experiments are relatively
“blind” to the subsequent steps. With simulations, it is possible to
probe the entire pathway. Long equilibrium simulations for G52

and E–G52 were carried out using a coarse-grained native-centric
model, which allowed us to follow a number of unfolding and
folding reactions. In all of these simulations, the first step in the
folding of both G52 and E–G52 is formation of the C-terminal
β-sheet/loop motif of G52 (Fig. 3). In the case of E–G52, the
C-terminal region of E folds concurrently with the N-terminal part
of G52, resulting in formation of the E–G5 interface, followed by
folding of the N-terminal β-sheet of E, which completes the E–G52

structure (Fig. 3B). Thus, folding of the interface is key to the
folding of E (SI Appendix, Fig. S3). At the midpoint temperature,
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Fig. 1. Structure and biophysical data for WT SasG G52 and E–G52.
(A) Schematic representation of SasG from S. aureus NCTC 8325. The A domain
promotes adhesion to host cells. The core region comprises tandemly arrayed
G5 (red) and E (blue) domains (10). The E–G52 fragment of SasG is indicated
with a bar. (B) Structure of E–G52 (PDB ID code 3TIP) illustrating the topology
of E and G52 domains: two single-layer, triple-stranded β-sheets connected by a
central collagen-like triple-helical region. The tyrosines and positions of engi-
neered FRET pairs are shown. FRET pair E500W-E532CIAEDANS (cyan) results in
FRET only when E is folded; I555W-E613CIAEDANS (green) results in FRET when
G52 is folded. (C) Equilibrium denaturation curves. Data for WT G52, E–G52,
and E–G52–E500W–E532CIAEDANS were taken from ref. 9. (D) Urea dependence
of the natural logarithm of the observed rate constants (in seconds−1) for
proteins shown in C. Circles and squares represent major and minor unfolding
rate constants, respectively.

*The dependence of folding/unfolding rate constants on [urea] (kinetic m values mkf and
mku) is determined by the change in solvent-accessible surface area (SASA) between the
denatured state (D) and the TS (in folding) and between the TS and the native state (N;
for unfolding) (11). Thus, because E–G52 and G52 have the same foldingm values, we can
assume that they fold via the same TS. The unfolding m value (mku) is higher for E–G5

2

than for G52, because the entire E domain plus a significant proportion of the G52

domain unfold between N and TS.
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where the proteins are folded 50% of the time (∼320 K for both
G52 and E–G52), we observed only a few complete folding events,
because the domains are rarely fully unfolded. Hence, we per-
formed a large number of shorter simulations starting from com-
pletely unfolded structures (from simulations at high temperature),
setting the temperature well below the folding temperature. Fold-
ing occurs in most of these short simulations, and in all cases, the
sequence of events is that described above. In a few cases, where
the E domain folds first, its unfolding is required before the entire
E–G52 folds.

The Stability of the Interface Is Essential to Ensure Cooperative
Unfolding of E–G52. We identified two mutations in the E domain
of E–G52 (G517A and G548A) at the interface between the two
domains that, although the interface was sufficiently stable to
promote the folding of the E domain, resulted in unfolding ki-
netics that were completely uncoupled; two unfolding phases are
observed in all unfolding traces (Fig. 4 A–C). As was seen in WT
E–G52, the fast unfolding phase, ascribed to the unfolding of the
E domain (which has a low amplitude and is associated with an
increase in fluorescence), has a weak dependence on denaturant
concentration. Importantly, the slower unfolding phase, associated
with the larger fluorescence change, now has the unfolding m
value of the G52 domain alone, additional evidence that, for these
mutations at the interface, the E and G52 domains now unfold
independently.
We investigated this further using the interface mutant P599A

found in the G52 domain, which has no effect on the thermody-
namic stability and kinetics of G52 in isolation but perturbs E–G52

(Fig. 4 D and E). Pro599 is located in the N-terminal loop of G52.
In the isolated domain, Pro599 is exposed to solvent, whereas in
the context of E–G52, it contributes to the hydrophobic cluster at

the E–G5 interdomain interface, where it makes contacts with
Phe510 and Tyr547 from the E domain (Fig. 4A). We introduced
the E500W-E532CIAEDANS FRET pair (Fig. 4A) in E–G52–P599A,
which results in FRET only when E is folded. The unfolding ki-
netics was monitored by the decrease in 1,5-IAEDANS fluores-
cence (Fig. 4E), and at high denaturant concentrations that
promote unfolding, a single phase was detected, corresponding
to the faster unfolding phase found for E–G52–P599A (similar
rate constants and the same urea dependence) and clearly rep-
resenting unfolding of E uncoupled from G52. Note that we still
observe the same single refolding phase for this mutant (ex-
cept around the midpoint) (Fig. 4E) when followed by FRET,
because the folding of G52 is the rate-limiting step for folding of
the E domain. Thus again, we found that the interface is key to
cooperative folding.

Mutations Reveal an Alternative Folding Pathway for E–G52. We
found five destabilizing mutations within the G52 domain that
alter the folding pathway in E–G52. Three of these (G576A,
Y625W, and G626A) are located in the C-terminal β-sheet/loop
region of G52 (Fig. 5A) where, as shown in Fig. 2, folding is nu-
cleated in both G52 and E–G52. These mutations destabilize the
proteins by >1 kcal mol−1 relative to WT G52 and E–G52 (Fig. 5 B
and C and SI Appendix, Tables S2 and S3). In G52 alone, these
three variants all have a Φ-value of ∼1 (that is, they unfold exactly
as the WT), and all of the change in stability is reflected in a
change in the rate of folding (Fig. 2A, Right). Importantly, the
dependence of the rate constant for folding on denaturant con-
centration (mkf) is exactly the same as for WT G52. In E–G52,
however, although these mutants again unfold exactly as the WT,
now the folding kinetics are clearly different (Fig. 5D). All still fold
more slowly than the WT, but now, themkf values are significantly
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Fig. 2. Mapping the structure of TSs for folding of G52 and E–G52. (A) Chevron plots for G52: WT (black) and mutants. (B) Chevron plots for E–G52: WT (black)
and mutants. (A, Left and B, Left) Mutants that unfold faster than the WT, but the folding rate is largely unaffected. (A, Right and B, Right) Mutants that fold
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increased compared with the WT, suggesting that these variants
are folding via a different, significantly more compact, TS with a
βT = 0.53 (compared with 0.33 for WT E–G52).†

Two other Gly to Ala mutations within the triple-helical region
of G52 (G584A and G587A) (Fig. 5A) destabilized the domain so
significantly that the mutants are largely disordered at 0 M urea
(Fig. 5B and SI Appendix, Table S2). In E–G52, these mutations
are also destabilizing, but now, both E and G52 are folded (Fig. 5C
and SI Appendix, Table S3). Interestingly, the chevron plots of
both E–G52–G584A and E–G52–G587A show the samemkf values
as the mutants that destabilize the extreme C-terminal region of
E–G52 (Fig. 5D), suggesting that these variants also fold via a new,
more compact TS (with a βT of 0.53). Note that folding is still
cooperative; in a control experiment, the kinetics of E–G52–G584A
recorded using the E500W-E532CIAEDANS FRET pair (report-
ing specifically on folding of E) was characterized by an identi-
cal mkf to the one measured by intrinsic tyrosine fluorescence
(Fig. 5D).
Thus, if we make mutations that significantly destabilize the

folding nucleus at the extreme C-terminal end of the G52 domain
or mutations that are essential for formation of the triple helix
connecting the nucleus to the rest of the protein, we apparently
alter the folding pathway—but only when the E domain is present.

Formation of the Interface Is Key to Driving Folding Along the
Alternative Pathway. Crucially, for some of these mutations in
the G52 domain (e.g., Y625W and G576A), the folding pathway of
isolated G52 does not change; the new pathway is only accessible

when the E domain is present, and yet we know that E does not
fold in isolation. Given the importance of the interface between
the two domains in imparting stability and cooperativity, we hy-
pothesized that the alternative TS (characterized by βT of 0.53)
involves formation of a structured E–G52 interface as an early step
in this alternative pathway.
If this hypothesis is correct, then residues close to the E–G52

interface, in the E and G52 domains, which all originally have a
Φ-value ∼ 0, should have increased Φ-values in this new pathway,
and residues in the region with high Φ-values in the WT would
have low Φ-values in this alternative pathway. We would also
predict that a mutation that destabilized the interface could switch
the new pathway back to the original polarized TS in E–G52. Thus,
we performed a mutational analysis based on Φ-values, in which
E–G52–Y625W was treated as a pseudo-WT (Fig. 5 A and E and SI
Appendix, Table S6). [A crystal structure of the protein at 1.6-Å
resolution reveals that this substitution does not disrupt the struc-
ture of G52 (SI Appendix, Fig. S4 and Table S7).] In that back-
ground, we introduced a number of Pro-to-Ala mutations, most of
which originally hadΦ-values = 0 in the background of WT E–G52.
P531A and P540A in E and P618A in G52 (all Φ ∼ 0) were
designed to probe the folding of the individual domains, and
P512A and P599A (also Φ ∼ 0) were designed to weaken the in-
terface. P571A, which originally had Φ ∼ 1, is found in the C-
terminal loop at the center of the nucleation site for the WT
pathway. Although one-half of the mutants (P512A, P531A, and
P618A) were insufficiently destabilizing to determine Φ-values in
the background of E–G52–Y625W, three of the mutants gave us
information.

i) The E domain is partly structured in the TS of the alternative
pathway; the P540A mutation resulted in a fractionalΦ (0.7) in
the context of E–G52–Y625W (compared withΦ-values = 0 for
Gly to Ala mutations in the same region of the WT E domain).
Folding is more affected than unfolding, implying that the tri-
ple helix of the E domain is now significantly structured in the
TS (Fig. 5E).
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†The Tanford β-value, βT = ðmkf=mkf +mkuÞ, is a measure of the position of the TS (in terms
of SASA or compactness) between D and N (11). An alternative explanation for a switch
in mkf is that a mutation results in destabilization of a TS that falls later on the same
single pathway. Several lines of evidence suggest that this is a less reasonable explana-
tion than parallel pathways. Only mutations that destabilize the WT pathway (with Φ
∼1) are affected; the same mutations in G52 alone do not result in a change in mkf; a
residue with Φ ∼ 1 in the WT hasΦ ∼ 0 in Y625W (see Formation of the Interface Is Key to
Driving Folding Along the Alternative Pathway, point ii).
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ii) The C-terminal loop of G52 is not formed in the TS of the
alternative pathway; the P571A mutation now has no effect
on the folding rate. The Φ-value is low in the background of
E–G52–Y625W (Fig. 5E) (Φ = 0.1 compared with Φ = 1 in
the WT).

iii) If the interface is destabilized, then E–G52 reverts to the orig-
inal folding pathway; the chevron plot of E–G52–Y625W–

P599A shows the same mkf as E–G52–P599A and WT
E–G52, indicative of the WT-like folding pathway (Fig. 5E).
We infer that the mutation P599A at the E–G52 interface
destabilizes the new TS and causes folding to revert to the
original WT pathway. These results confirm that the new TS
involves formation of structure at the interface between the
two domains in the alternative folding pathway.

Discussion
SasG is a protein that challenges some of our preconceptions of
protein structure and folding. It has an unusual sequence composition
typical of an intrinsically disordered protein (∼60% of the residues
are charged, Pro or Gly), but it demonstrably folds cooperatively—
albeit to an unusual single-sheet extended structure. Despite this
unusual structure, the biophysical parameters for folding (m value,
stability) are quite unremarkable for a protein of this size (E–G5 and
G5 have 132 and 82 residues, respectively). What is remarkable is
that G5 domains fold far more rapidly than might be predicted from

their relative contact order (15) (SI Appendix, Fig. S5). The interface
between the E and G52 domains provides most of the stability for the
protein. The importance of the interface is exemplified when we
consider the mutation of two highly conserved Gly residues in the
triple-helical region of the G52 domain (G584A and G587A), which
both cause G52 to be unfolded; when we mutate these same residues
in E–G52, the protein folds (Fig. 5 B and C). Thus, we can take an
unfolded G52 domain, add an intrinsically unfolded E domain, and
produce a folded protein. We have estimated that the interface im-
parts at least 6 kcal mol−1 to the stability of E–G52 (compared with
ΔGD–N for WT G52 and E of 2.8 and ≤−2.5 kcal mol−1, respectively)
(9). This interface is also key to maintaining cooperative folding
and the long-range cooperativity that imparts stiffness to the SasG
structure. Here, we have shown that the interface is essential to
ensure that the entire E–G5 motif folds and unfolds in a single
cooperative step—mutations at the interface disrupt cooperative
folding. However, to our surprise, our data suggest that the in-
terface between E and G52 is completely unformed at the TS for
folding (the E domain and the N-terminal region of the G52 do-
main are both unstructured).
Our data show that folding of SasG is initiated at the far

C-terminal end of the G52 domain. At this point, there is a turn
between the two outer β-strands, and the terminal “docking”
strand is inserted between these into the loop (Fig. 3). Assembly of
this small structural element in one domain is sufficient to drive
folding of the entire E–G5 molecule over a distance of more than
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E domain (Gly517, Gly548; light blue) and G52 domain (Pro599; orange).
Phe510 and Tyr547 (gray) contact Pro599. (B and C) Mutations in the E domain:
(B) Equilibrium denaturation curves and (C) urea dependence of the natural
logarithm of the observed rate constants for WTs and mutants. (D and E)
Mutations in the G52 domain: (D) equilibrium denaturation curves and (E) urea
dependence of the natural logarithm of the observed rate constants for WTs
and mutants. Circles and squares in C and E represent major and minor rate
constants, respectively. Mutations at the interface result in the breakdown of
the cooperative unfolding of the E and G52 domains manifested in the pres-
ence of a second unfolding rate constant at all denaturant concentrations and
a decrease in the dependence of lnku on [urea].
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10 nm. However, folding at the interface is clearly an option, be-
cause destabilization of the C-terminal nucleation site allows folding
via a higher-energy TS, where formation of the interface is key.
E–G52 can thus fold via parallel pathways, but the lowest-energy
pathway involves formation of the C-terminal nucleus. It is unclear
why this WT pathway should be lower in energy than a pathway
involving formation of the interface, the most stable region of the
structure and essentially, the only region where there is any signifi-
cant burial of hydrophobic residues. It may be because the entropic
cost of forming the interface is larger; it involves bringing together
loops from the E and the G5 domains that are distant in sequence
(∼85 residues apart), although the interactions in the C-terminal
nucleus are by no means short range (∼50 residues between the
C-terminal residues of the final strand and the turn). Alternatively, the
intrinsic disorder of the E domain may again be key. The formation
of the interface involves the folding, at least in part, of the E domain,
a process that is inherently costly in terms of free energy. Impor-
tantly, however, cooperative folding is a feature of both pathways,
because the E domain cannot fold in the absence of G5.
In WT protein (except under very destabilizing conditions as

described), the protein folds and unfolds as a single unit; no in-
termediates are populated in folding, in unfolding, or at equilib-
rium, which is, by definition, cooperative folding. Such tight and
robust cooperativity in folding has not been seen previously in
multidomain proteins. Even where there are significant interfaces
between domains, kinetics reveals that the domains fold in a non–
two-state manner, with each domain behaving as an independent
folding unit (16, 17). The “obligate” cooperativity of SasG arises,
because E can only fold in the presence of folded G5, but once
folded, the entire domain is very significantly more stable than the
sum of the stability of the two domains individually.
The kind of cooperativity that we are observing in the SasG

protein (obligate folding cooperativity) is reminiscent of the folding
of repeat proteins. These proteins comprise tandem arrays of small
repeats (20–40 residues) that are unstable on their own and fold,
apparently cooperatively, through formation of interfaces between
the repeats (18–25). However, tandem repeats are very different to
SasG, where contacts within the domains themselves and between
domains are very long range, whereas contacts in repeat proteins
are very local (SI Appendix, Fig. S5). Although there is a dominant
folding pathway in SasG, parallel pathways are a key feature of
repeat proteins, in particular as the number of repeats increases.

Despite each subunit being intrinsically unstable alone, kinetic
cooperativity is not generally maintained beyond three to four
subunits in repeat proteins, but SasG is able to maintain co-
operative folding across a distance of ∼12 nm.

Conclusion
The importance of intrinsic disorder in biology is becoming in-
creasingly apparent; however, why would nature choose disordered
domains to form a multidomain protein? We had previously shown
that disorder-mediated thermodynamic cooperativity allows SasG
to adopt long, mechanically strong, rod-like structures (9). Now, we
have shown how this disorder coupled with the remarkable stability
of the interdomain interface can result in cooperative folding ki-
netics, with no populated intermediates, across long distances. The
folding of classic multidomain proteins is highly cooperative but
only within the relatively local confines of a single domain. In re-
peat proteins, short-range cooperativity is apparent between three
and four individually unstable repeats. SasG provides a para-
digm for much longer-range cooperative folding—by the oblig-
atory folding of alternate intrinsically disordered domains with
their folded neighbors.

Materials and Methods
All experimental procedures are described in detail in SI Appendix.

Analysis of Kinetic Data. For somemutants, kinetic data were fitted to amodel
allowing for parallel pathways (details are in SI Appendix, Fig. S6).

Simulations. Simulations were performed using a coarse-grained model where
only Cα atoms are represented and interactions depend on the native refer-
ence structure and the residue type. Details are given in SI Appendix.

Determination of the Structure of E–G52–Y625W. Details of the crystallization
and structure determination of E–G52–Y625W can be found in SI Appendix.
The coordinates and structure factors have been deposited in the Protein Data
Bank (PDB) with ID code 5DBL.
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