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Abstract

Atherosclerosis is a maladaptive, nonresolving chronic inflammatory disease that occurs at sites of 

blood flow disturbance. The disease usually remains silent until a breakdown of integrity at the 

arterial surface triggers the formation of a thrombus. By occluding the lumen, the thrombus or 

emboli detaching from it elicits ischaemic symptoms that may be life-threatening. Two types of 

surface damage can cause atherothrombosis: plaque rupture and endothelial erosion. Plaque 

rupture is thought to be caused by loss of mechanical stability, often due to reduced tensile 

strength of the collagen cap surrounding the plaque. Therefore, plaques with reduced collagen 

content are thought to be more vulnerable than those with a thick collagen cap. Endothelial 

erosion, on the other hand, may occur after injurious insults to the endothelium instigated by 

metabolic disturbance or immune insults. This review discusses the molecular mechanisms 

involved in plaque vulnerability and the development of atherothrombosis.
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Atherosclerosis: chronic inflammation in the artery wall

Atherosclerosis is a maladaptive, nonresolving chronic inflammatory disease that occurs at 

sites of blood flow disturbance. The atherogenic process is thought to be triggered by the 

subendothelial retention of cholesterol-containing plasma lipoproteins at these sites and by 

flow-mediated inflammatory changes in endothelial cells [1, 2]. The lesions contain 

monocyte-derived macrophages and T cells interspersed with acellular regions containing 

lipids and debris from dead cells, embedded in an extracellular matrix composed of collagen 

fibres and other constituents produced primarily by vascular smooth muscle cells [3, 4]. The 

collagenous matrix typically forms a fibrous cap that overlies the lipid-rich region in the 

plaque core. Lesions generally remain covered by an intact endothelium until the late stages 
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of the disease. The eventual breakdown of endothelial continuity can promote lesion 

progression and complication.

Cells of the atherosclerotic lesion display features of ongoing inflammation, with 

macrophages and T cells producing a host of mediators including proinflammatory 

cytokines, costimulatory factors for immune activation, eicosanoids and reactive oxygen and 

nitrogen species [5, 6]. In addition, many of the macrophages internalize cholesterol through 

their scavenger receptors and some also produce anti-inflammatory cytokines. Furthermore, 

certain T cells of the regulatory phenotype display anti-inflammatory and 

immunosuppressive features. This delicate balance between pro- and anti-inflammatory 

signals results in a slowly progressive, nonresolving, chronic inflammation [7].

Innate and adaptive immune reactions in the artery

Several reactions link lipid accumulation to inflammation. In the macrophage, pattern 

recognition receptors selected in evolution for handling components of microbial pathogens 

also mediate internalization of modified lipoproteins [5, 6]. These scavenger receptors evade 

suppression due to increases in intracellular cholesterol concentrations and can therefore 

mediate continued lipoprotein uptake that permits overloading the cell with lipids. At a 

certain point, intracellular cholesterol precipitates as microcrystals. Analogously with urate 

crystals, these cholesterol microcrystals can activate an inflammasome, that is a cytosolic 

molecular machine that cleaves a proforma of interleukin (IL)-1 β, converting it into 

bioactive IL1 β that can be secreted by the cell [8]. When released in the arterial intima, IL-1 

β induces production of a set of other pro-inflammatory molecules, including the cytokine 

IL-6 and the pro-inflammatory eicosanoid, PGE2 [9, 10]. IL-1 β also promotes expression of 

leucocyte adhesion molecules and matrix-degrading metalloproteinases. Thus, cholesterol 

accumulation begets inflammation and tissue remodelling.

Another set of pattern recognition receptors, the Toll-like receptors, may bind modified 

lipoprotein particles in the arterial intima [11–14], triggering phosphorylation cascades that 

elicit expression of a set of pro-inflammatory genes similar but not identical to that elicited 

by IL-1 β. For instance, TNF induces the expression of matrix metalloproteinases that 

degrade collagen and promotes tissue remodelling [15]. TNF has crucial pathogenetic 

importance in rheumatoid arthritis and other inflammatory diseases and also impacts 

atherosclerosis substantially [16–18].

Presentation by dendritic cells of fragments of LDL particles to T cells in lymph nodes 

draining the atherosclerotic lesion calls adaptive immunity into action [19, 20]. Clones of T 

cells that recognize peptide fragments of the main LDL apoprotein (apoprotein B) that can 

act as autoantigens. This encounter tends to differentiate the T cells into pro-inflammatory 

Th1 effector cells under the influence of pro-inflammatory mediators such as IL-12 found in 

plaque [20, 21]. Effector T cells patrol the body, enter at sites such as the plaque, where 

endothelial cells express leucocyte adhesion molecules. These T cells may undergo 

reactivation by LDL fragments. Such renewed activation prompts the Th1 cell to produce 

large amounts of TNF and also another pro-inflammatory cytokine, interferon-gamma [21, 

22]. This interferon strongly stimulates macrophages and also profoundly effects vascular 
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endothelial and smooth muscle cells, causing them to express leucocyte adhesion molecules, 

modulate their fibrinolytic properties, reduce proliferation and, in the case of the smooth 

muscle cell, inhibit fibrillar collagen formation [23, 24]. Interestingly, in keeping with the 

counterbalancing forces mentioned above, lesional dendritic cells can also promote the 

development of proresolving regulatory T cells in early atherosclerosis [25, 26], but 

ultimately the effector: regulatory T-cell balance promotes progressive inflammation.

In the advanced atherosclerotic plaque, infiltrating mast cells contribute to the pro-

inflammatory milieu [27]. Upon activation, these cells release a host of mediators and 

enzymes, including histamine, serotonin, thromboxane and other eicosanoids, cytokines and 

a set of serine proteases, all of which may profoundly affect the atherosclerotic lesion.

The concerted action of all pro-inflammatory signals operating in the plaque not only 

enhances inflammation but also hampers renewal of the structural elements that support the 

mechanical stability of the inflamed tissue.

Clinical and histopathological features of culprit lesions

The atherosclerotic process typically lies silent for months, years and even decades and may 

never result in clinical manifestations [2]. Yet, if the plaque’s surface is damaged, 

thrombotic occlusion of the artery may ensue. Surface continuity may be damaged by 

fissuring (so-called plaque rupture, observed in 60% to 80% of cases of acute coronary 

syndrome) or surface erosion (present in 20% to 40% of cases with coronary thrombosis, 

especially in women and young victims of sudden coronary death) [28, 29]. Figures 1 and 2 

depict these two different types of discontinuity of the plaque surface. Recent studies 

suggest that the proportion of infarctions caused by rupture versus erosion is changing, with 

more cases due to erosion and fewer to overt plaque rupture [30].

Fissures and erosions trigger atherothrombosis by exposing thrombogenic material inside 

the plaque, such as phospholipids, tissue factor and matrix molecules, to platelets and 

coagulation factors [2]. Platelet aggregates precipitating on these exposed surfaces are 

stabilized by fibrin networks. Tissue factor, expressed by macrophages and by vascular 

smooth muscle cells in the atherosclerotic plaque, can initiate the blood coagulation cascade 

that leads to fibrin formation [31]. Atherothrombi expand rapidly and can fill the lumen 

within minutes, thereby leading to ischaemia and infarction.

A range of factors may contribute to atherothrombosis. Disturbance of the balance between 

prothrombotic and fibrinolytic activity on the plaque surface probably plays an important 

role for precipitating the thrombotic event [32], but the precise sequence of events that 

operate in vivo is not yet known.

The ‘vulnerable plaque’

Thrombi precipitate on damaged vascular surfaces, as recognized by Rudolf Virchow in 

1856 [33]. The cause of the damage leading to plaque rupture or erosion remains 

incompletely understood, despite considerable progress in this regard. Constantinides, 

Davies, Falk and their colleagues observed that ruptured plaques display thin fibrous caps 
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and large lipid core regions [34–36]. These findings highlighted structural abnormalities in 

the vessel wall as a cause of atherothrombosis. Subsequent investigations have revealed that 

culprit lesions of fatal thrombi in coronary arteries contain reduced amounts of mature, 

cross-linked collagen and increased levels of collagen-degrading enzymes.

In vivo imaging technology now offers approaches to the analysis of major plaque 

components. For example, optical coherence tomography (OCT) and magnetic resonance 

imaging can identify thin-cap plaques. Computerized tomographic angiography can identify 

outward arterial remodelling, radiolucency and spotty calcification associated with coronary 

events. Such approaches, albeit incompletely validated, are currently used to obtain 

surrogate end-point data on effects of putative plaque-stabilizing therapies [37–39].

Histopathological analysis of lesions that have provoked fatal myocardial infarction (MI) 

shows stimata of inflammation including accumulation of macrophages, activated T cells, 

dendritic cells and mast cells as well as reduced thickness of the fibrous cap and increased 

neovascularization at sites of plaque rupture and thrombosis [40] (Fig. 1). Matrix 

metalloproteinases and cysteine proteinases, products of activated macrophages, localize at 

sites of plaque rupture [41]. Several of these enzymes digest fibrillar collagen, thus reducing 

the mechanical stability of the plaque [41, 42]. These proteinases likely render plaques 

susceptible to rupture, but have complex effects on the composition and size of lesions in 

mouse experiments.

Lesional cell death

Cell death may also predispose to plaque rupture [7, 43]. Smooth muscle cells (SMC) 

synthesize the bulk of the arterial extracellular matrix. Site of fatal plaque rupture display 

depletion of SMC needed to repair and maintain the collagen that comprises the plaque’s 

fibrous cap. Apoptosis of SMC documented in atheromata may thus lead to their relative 

lack at sites of plaque rupture. Rapid phagocytosis usually clears the remnants of cells that 

have undergone apoptosis, a process known as efferocytosis [44]. If this process fails, 

secondary necrosis ensues, contributing to the formation of the plaques lipid core, also 

known as the ‘necrotic core’. Computational analyses indicate that lipid core accumulation 

can reduced the mechanical integrity of the plaque.

Plaque necrosis results from death of lesional cells, mostly macrophages. Cell death can lead 

to necrosis by at least two mechanisms: apoptosis followed by defective phagocytic 

clearance (‘efferocytosis’) of the apoptotic cells and a process called primary necrosis [7]. 

Macrophage apoptosis occurs in lesions of all stages. A number of plaque factors are likely 

to trigger lesional macrophage apoptosis, including excessive inflammation, oxidized lipids 

and cholesterol, often in combination through a ‘multihit’ process. Observational data in 

human atheromata and molecular-genetic causation data in mouse models of advanced 

atherosclerosis indicate that one of the hits caused by these factors in chronic endoplasmic 

reticulum (ER) stress [45]. In particular, the ER stress effector CHOP is tightly associated 

with cell death and plaque necrosis in human coronary artery lesions, and genetic deletion of 

CHOP in mice protects against advanced lesional macrophage apoptosis and plaque necrosis 

[45].
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In early atherosclerosis, the apoptotic cells are properly cleared by neighbouring phagocytes, 

which prevents postapoptotic necrosis and triggers proresolving processes that are linked to 

efferocytosis [46]. In advanced plaques, however, efferocytosis is defective, leading to cell 

necrosis, release of pro-inflammatory damage-associated molecular patterns (DAMPs) and 

lack of efferocytosis-mediated proresolving signalling [47–49]. Collectively, these processes 

promote the type of inflammatory, necrotic lesions that are characteristics of vulnerable 

plaques (see below). The mechanisms of defective efferocytosis in advanced atherosclerotic 

lesions are not known and are likely to be multifactorial. A recent study provided correlative 

evidence in human atheromata suggesting a role for ADAM17-mediated cleavage of 

MerTK, a macrophage efferocytosis receptor shown to be important in the progression of 

murine atherosclerosis [49–51]. It is also interesting to note that defective efferocytosis is a 

cardinal sign of defective inflammation resolution [52] and that a therapeutic strategy that 

enhanced resolution in advanced murine plaques markedly suppressed plaque necrosis [53].

Whereas defective efferocytosis leads to plaque necrosis through secondary necrosis of 

uncleared apoptotic cells, cells can undergo another process in which necrosis develops as a 

primary event. In this case, a signalling cascade involving RIP1 and RIP3 kinases is 

involved, and when RIP3 kinase was genetically targeted in fat fed LDL receptor null mice, 

plaque necrosis was partially suppressed [54]. These data suggest that, at least in advanced 

murine atheroma, both secondary and primary apoptosis contribute to plaque necrosis.

Plaque erosion

Plaques that have disrupted due to fibrous cap fracture tend to have a large lipid core [30], 

and the potent procoagulant tissue factor localizes in these cores [7] (Fig. 1). Those 

disrupted by erosion, another substrate for thrombus formation, do not have a large lipid core 

and show less inflammatory cell accumulation than fissured plaques (Fig. 2). Plaques 

frequently rupture without clinical manifestations, possibly reflecting variation in the 

thrombotic response depending on the thrombogenicity of exposed plaque constituents, local 

hemorheology, shear-induced platelet activation systemic clotting activity, fibrinolytic 

function and sensitivity of the end organ to ischaemia.

Plaques displaying endothelial erosion seem to differ from rupturing ones in some important 

aspects [29]. They appear to be less inflamed but contain proliferating smooth muscle cells, 

abundant proteoglycans and hyaluronan, and substantial neovascularization. Therefore, 

pathogenetic mechanisms may differ between these two conditions, and we will consider 

them separately.

Why do plaques rupture?

Most of our knowledge about plaque rupture comes from studies of human autopsy 

specimens and surgical material. Key histopathological findings associated with regions of 

fatal disruption include a thin fibrous cap (<50–60 micrometers), increased signs of 

inflammatory activity and heightened amounts of proteolytic enzymes [35, 55–58]. 

Therefore, inflammatory stimuli such as local immune reactions might activate 

macrophages, mast cells and T cells to release cytokines that inhibit cap formation and 

proteases that digest fibrous components of the cap (Fig. 1).
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Much interest has focused on the collagenolytic action of matrix metalloproteinases and 

cysteine proteases in the plaque. A set of such enzymes is present in the human 

atherosclerotic plaque and has shown proteolytic activity in culprit lesions [56, 59]. These 

findings have encouraged attempts at developing plaque-stabilizing therapies by targeting 

proteases. Several excellent reviews cover this interesting development in detail [60, 61].

A set of immune cytokines impacts powerfully on the fibrous cap (Fig. 1). Interferon-Γ, a 

pro-inflammatory, macrophage-activating cytokine produced by Th1-type T cells and NK 

cells, inhibits collagen fibre formation, causing plaques to adopt a vulnerable phenotype 

with reduced collagen content. This is due to a triple action of interferon-gamma, as it both 

inhibits smooth muscle differentiation [24], procollagen- I gene expression [23] and the 

collagen cross-linking enzyme, lysyl oxidase [62].

The action of Th1 cells is counterbalanced by Treg cells producing TGF-β [63] (Fig. 1). 

This cytokine has a direct, fibrogenic action on smooth muscle cells and fibroblasts. In 

addition, it inhibits Th1 and macrophage activity, leading to reduced plaque inflammation. 

Treg also enhance the catabolism of very low-density lipoproteins, resulting in reduced 

plasma lipid levels.

A third type of T cells, the Th17 cell type, is involved in wound healing and exerts powerful 

fibrogenic activity [64]. Th17 cells activated in the context of atherosclerosis promote the 

formation of thick collagen fibres that can withstand the mechanical assault on the plaque 

exerted by hemodynamic forces [65]. This is due to the capacity of the signature Th17 

cytokine, IL-17A, to promote procollagen expression (Fig. 1).

In addition to reducing the capacity of the tissue to withstand mechanical strain, immune 

signals may also promote atherothrombosis by increasing the tendency to form platelet 

aggregates and clots (Fig. 1). The TNF/TNF receptor superfamily members, CD40 ligand 

(CD40L, CD154) and CD40, may have particular importance in this context. CD40L, 

typically expressed on activated T cells, ligates CD40 on cells of the macrophage lineage. 

This stimulation triggers expression of tissue factor as well as matrix metalloproteinase 

secretion [66]. In addition, activated platelets also express CD40L [67] and endothelial cells 

exhibit its receptor CD40 [68], allowing for multiple heterophilic interactions that may 

promote atherothrombosis [69, 70].

Lipid mediators are at least as important as cytokines in the sequence of events leading to 

atherothrombosis (Fig. 1). The prothrombotic effect of thromboxane A2 released from 

platelets and the counterbalancing, antithrombotic effect of endothelium-derived 

prostaglandin I2 (PGI2, a.k.a. prostacyclin) is well known, crucial for vascular 

homoeostasis, and the target of aspirin used in cardiovascular prevention [71, 72]. Other 

prostaglandins play different roles in the atherosclerotic artery wall. Thus, PGE2 produced 

by several cell types promotes vasodilation and macrophage activation but also increases 

expression of the anti-inflammatory cytokine, IL-10 [73].

The leukotriene pathway of lipid mediators also exerts powerful effects on atherosclerosis. 

Leukotriene (LT) B4 is a pro-inflammatory leukotriene expressed in plaques [74, 75]. 

Through its BLT1 receptor, it promotes plaque growth and enhances its inflammatory 
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properties [76]. It also increases vascular restenosis after endothelial injury [74]. 5-

lipoxygenase-activating protein (FLAP), a cofactor for the enzyme that converts arachidonic 

acid into the leukotriene pathway, is upregulated in plaques and promotes LTB4 production 

[77]. Genetic polymorphism in the FLAP encoding gene, ALOX5AP, was associated with 

cardiovascular disease in several genetic studies [78], although it did not turn out to be a 

major genetic risk factor in genomewide association studies. However, this does not rule out 

a possible role for leukotriene signalling in cardiovascular disease. As many patients with 

asthma are treated with leukotriene receptor blockers, long-term follow-up of these 

individuals permits an assessment of the importance of leukotriene signalling in 

cardiovascular disease [79]. A population-based Swedish study of 7 million cases revealed 

that those treated with the leukotriene receptor blocker, montelukast had a 35% reduced risk 

of recurrent stroke and myocardial infarction [79].

Lipoxins and resolvins produced in the 12/15-lipoxygenase pathway counterbalance the pro-

inflammatory effects of leukotrienes and may inhibit atherosclerosis and its clinical 

complications [80]. In line with this notion, targeting the lipoxin receptor FPR2/ALX by 

genetic abrogation leads to features of reduced plaque stability [81]. Further studies will be 

required to clarify the role of pro- and anti-inflammatory lipoxygenase products in 

atherosclerosis.

Clinical studies have associated ischaemic atherothrombotic events such as MI and stroke 

with infections. Acute infections, via elicitation of systemic cytokines, may elicit an ‘echo’ 

of inflammatory activation in the plaque, leading to bursts of pro-inflammatory, proteolytic 

and prothrombotic activity, although we currently lack definitive evidence to confirm such a 

chain of events [82].

The lack of suitable animal models has hampered research on plaque disruption. Although 

under circumstances that should promote thrombosis on plaques in rodents, such 

experiments yielded a low incidence of thrombosis and lack of linear relationship between 

events and histopathological findings such as ‘buried caps’ [83–85]. Such studies have not 

generally dealt with coronary arteries, rather the aorta or its large calibre branches. Yet, more 

recent work has described promising experimental preparations that may be more suitable 

for addressing mechanisms of plaque rupture [86]. In genetically hypercholesterolemic 

mutant mice, several interventions can precipitate rupture of existing atherosclerotic plaques, 

for example virally directed local overexpression of an active form of the MMP stromelysin, 

the long-term infusion of angiotensin II [87], placement of a cuff around the carotid artery 

[88], partial ligation of this artery [89] or increasing elastin fragmentation through a ‘knock-

in’ mutation in the fibrillin-1 gene [90]. Yet, none of these preparations induce standardized 

plaque ruptures at a given time in a controlled manner. Instead, they increase the tendency 

for the plaque to rupture, and heal, spontaneously.

Signs of plaque rupture include intraplaque haemorrhage, fractured cap fibres and 

multilayered ‘buried’ caps [91]. Enumeration of these signs by microscopy permits 

quantification of the phenomenon. Such methods have obvious limitations but may permit 

investigators to assess the effects of various treatments on the tendency for plaques to 

rupture. The contrived nature of these manipulations, however, limits the generalizability of 
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such experiments. For example, a blocker of angiotensin II should limit disruptions 

produced by infusions of this mediator, and MMP inhibitors will reduce the consequences of 

stromelysin overexpression with no predictive value for the effects of these interventions on 

plaque rupture in humans.

Why does the endothelium erode?

Mechanisms instigating endothelial erosion have been unclear. However, recent studies point 

to a role for innate immunity in this process (Fig. 2). Endothelial cells overlying 

atherosclerotic lesions abundantly express the pattern recognition receptor, Toll-like 

receptor-2 (TLR2) [11]. Ligation of this receptor results in endothelial apoptosis in a process 

accelerated by polymorphonuclear leucocytes, a cell type found at sites of fatal plaque 

erosion [92]. TLR2 ligands include the extracellular molecule hyaluronan as well as 

components of Gram-positive bacteria [93]; therefore, endogenous as well as infectious 

factors may operate to promote atherothrombosis through this mechanism [92]. Stressful 

events also associate with acute ischaemic events. For example, the incidence of myocardial 

infarction often rises shortly after major sports events (particularly in males) and peaked 

after stressful events such as a major earthquake [94, 95]. This association may result from 

acute changes in local hemodynamics of the atherosclerotic artery. Exposure of 

atherosclerotic mice to stressful stimuli led to endothelin-dependent vasoconstriction that 

preceded thrombosis and myocardial ischaemia, possibly because the vasoconstrictive 

episode had caused endothelial erosion [35]. Likewise, infusion of spasmogenic stimuli in 

MI-prone rabbits elicited occasional coronary artery thrombi resembling human superficial 

erosion [96].

How can plaques be stabilized?

Abundant experimental and some clinical data using MRI or intravascular imaging suggest 

that lipid lowering, and statin therapy in particular may alter plaque properties implicated in 

susceptibility to rupture. Several other approaches may stabilize plaques (Fig. 3). None of 

them have entered clinical trials on the indication to stabilize plaques, in part due to the 

difficulties in identifying vulnerable, ruptured, eroded and thrombosed lesions in the living 

patient. Current progress in in vivo imaging techniques might enable such trials in the future.

Conclusion

Atherosclerosis associates strongly with systemic risk factors (e.g. high LDL, hypertension, 

diabetes), yet the lesions distribute multifocally. Most plaques remain silent throughout life 

but certain individual lesions may provoke thrombotic complication and ischaemia, resulting 

in life-threatening complications. The discovery of plaque rupture and endothelial erosion as 

two main causes of atherothrombosis helps us to understand why this very chronic condition 

manifests clinically in an episodic and unpredictable fashion. Further studies have clarified 

that inflammation, proteolysis and reduced collagen fibre content predispose to plaque 

rupture, whereas endothelial erosion followed by neutrophil infiltration typically 

complicates lesions of a distinct morphology.
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Lack of animal preparations that develop disruption of atherosclerotic plaques has, however, 

hampered progress in mechanistic research on atherothrombosis. Similarly, limitations of 

noninvasive in vivo imaging of so-called vulnerable plaques in humans have hampered 

clinical work in this domain. Recent progress in both these areas may address these issues 

and aid the development and evaluation of plaque-stabilizing therapies beyond lipid 

lowering in the forthcoming years. The many unanswered questions in this field provide 

ample opportunity for future research and may yield avenues to improve patient outcomes.
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Fig. 1. 
Mechanisms of plaque rupture. Activated macrophages and Th1 cells produce 

metalloproteinases and cytokines that hamper the tensile strength of the collagen cap. 

Several pro-inflammatory cytokines including interferon-Γ (IFNΓ) and tumour necrosis 

factor (TNF), as well as CD40/CD40L cell surface receptors of the TNF superfamily 

promote an inflammatory state that enhance cell death and prothrombotic activity in the 

plaque. When the cap no longer can withstand the mechanical force of the blood pressure, 

superficial fissures are formed in the plaque. Exposure of the plaque’s inner core with its 

thrombogenic material rapidly triggers platelet activation, humoral coagulation and the 

formation of a thrombus that may either occlude the artery at the site of plaque rupture or 

dissociate as an embolus and occlude the arterial lumen at a site downstream of the ruptured 

plaque. Counteracting all these pro-inflammatory and tissue-destructive signals, subsets of 

macrophages and T cells produce anti-inflammatory molecules that counteract vascular 

inflammation and reduce the risk for plaque rupture and atherothrombosis. Amongst them, 

transforming growth factor-β (TGF-β) and interleukin-10 (IL-10) inhibit inflammation and 

immune cell activation. In addition, TGF-β has fibrogenic properties that it shares with 

IL-17A produced by Th17 cells. The resolution of plaque inflammation depends not only on 

anti-inflammatory signals but also on resolving mediators such as eicosanoids of the resolvin 

type and Annexin I, both of which ligate the FPR/ALX receptor. EC, endothelial cell; SMC, 

smooth muscle cell; MΦ, macrophage; MMP, metalloproteinase; TXA2, thromboxane A2; 

PGI2, prostaglandin I2 (prostacyclin).
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Fig. 2. 
Mechanisms of plaque erosion. Endothelial cells of atherosclerotic plaques commonly 

express Toll-like receptor −2 (TLR2) that can ligate both Gram-positive toxins (G+ toxins) 

of bacterial pathogens and hyaluronan released from the extracellular matrix. TLR2 ligation 

can trigger endothelial dysfunction with endoplasmic reticulum stress and apoptosis. Such 

reactions are further enhanced by neutrophil attack on the endothelium. As a result, 

endothelial cells may detach, exposing the subendothelial matrix with its thrombogenic 

components. Activated neutrophils contribute to a prothrombotic state by releasing a set of 

proteases including neutrophil elastase and by forming neutrophil extracellular traps (NETs) 

that can damage endothelial cells, trap leucocytes and enhance thrombosis. PAD4, Peptide 

arginine deaminase-4, a component of NETs.
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Fig. 3. 
Therapy targets for prevention of atherothrombosis. Reduction of LDL (and other large 

lipoproteins) by lipid-lowering therapy and prevention of LDL retention in the artery wall, 

both act to reduce cholesterol accumulation, an initiator of atherosclerosis. Stimulation of 

immunoregulatory mechanisms reduces vascular inflammation; they include administration 

of anti-inflammatory cytokines, enhancing Treg cells and vaccination to elicit 

atheroprotective immunity. Mediators of resolution include resolvin-type eicosanoids, 

peptide mimetics of Annexin I and other substances.
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