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Abstract

The second eigenfunction of the Laplace-Beltrami operator follows the pattern of the overall shape 

of an object. This geometric property is well known and used for various applications including 

mesh processing, feature extraction, manifold learning, data embedding and the minimum linear 

arrangement problem. Surprisingly, this geometric property has not been mathematically 

formulated yet. This problem is directly related to the somewhat obscure hot spots conjecture in 

differential geometry. The aim of the paper is to raise the awareness of this nontrivial issue and 

formulate the problem more concretely. As an application, we show how the second eigenfunction 

alone can be used for complex shape modeling of tubular structures such as the human mandible.

1 Introduction

The second eigenfunction of the Laplace-Beltrami operator is drawing significant attention 

in recent years mainly as a tool for extracting shape features in high dimensional data 

[2,8,10]. The gradient of eigenfunction tends to follow the pattern of the overall shape of 

data and has been used to establish the intrinsic coordinate system of the data. This 

geometric property has been well known and often been used in computer vision and 

medical imaging applications. The second eigenfunction of the graph Laplacian was used to 

construct the Laplacian eigenmaps for low dimensional embedding [2]. The critical points of 

the second eigenfunction were used as anatomical landmarks for piecewise registration of 

colon surfaces [8]. The Reeb graph of the second eigenfunction was used in characterizing 

hippocampus shape [10].

All these studies rely on the geometric property of the second eigenfunction and somehow 

captures the overall shape of data. However, this property has not been mathematically 

formulated precisely. In fact, it is related to an obscure conjecture called the hot spots 

conjecture in differential geometry [1]. In this paper, we will explore the issue in detail and 
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formulate the geometric property more precisely, which will be illustrated with examples 

and a proof for simple shape.

2 The Second Laplace-Beltrami Eigenfunction

Second Eigenfunction

The eigenfunctions of the Laplace-Beltrami operator has been used in many different 

contexts in image analysis [8,9,10]. Eigenfunctions ψj of Laplace-Beltrami operator Δ in ℳ 
satisfy Δψj = λjψj. The eigenfunctions form an orthonormal basis in ℳ. We can order the 

eigenfunctions ψ0, ψ1, ψ2, ⋯ corresponding to the increasing order of eigenvalues 0=λ0 ≤ 

λ1 ≤ λ2 ≤⋯.Other than , close form expression for other eigenfunctions are 

unknown. However, using the cotan discretization for the Laplace-Beltrami operator [3,9], 

we can obtain the eigenfunctions numerically. The MATLAB code is available at http://

brainimaging.waisman.wisc.edu/~chung/lb.

The critical point of the second eigenfunction ψ1 usually occur at the two extremes of an 

elongated object (Figure 1). So the gradient of the second eigenfunction follows the shape of 

elongated objects. In computer vision literature, this monotonicity property was observed but 

without any mathematical justification [2,10]. Many treated it as a proven fact although the 

underlying conjecture has yet to be proved [1].

Conjecture 1

(Rauch’s hot spots conjecture) [1] Let ℳ be an open connected bounded subset. Let f (σ, p) 

be the solution of heat equation

(1)

with the initial condition f (0, p) = g(p) and the Neumann boundary condition 

on the boundary ∂ℳ. Then for most initial conditions, if phot is a point at which the function 

f (·, p) attains its maximum (hot spot), then the distance from phot to ∂ℳ tends to zero as σ 
→ ∞ [1].

We can also claim a similar statement for minimum (cold spots) as well. Conjecture 1 

basically implies that the hot and cold spots move away from the origin toward the boundary 

as the diffusion continues. Note that the solution to heat equation (1) is given by heat kernel 

expansion [9]:

(2)

where βj = 〈ψj, g〉 are Fourier coefficients. Since λ0 = 0 and , we have
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(3)

where the first term is the average signal and the remainder R goes to zero faster than 

as σ → ∞ [1]. Therefore, the behavior of the propagation of the hot spots is basically 

governed by the eigenfunction ψ1.

What will happen if there is no boundary? In the case of closed manifold with no boundary, 

the Neumann boundary condition simply disappears so the direct application of the hot spots 

conjecture is not valid. Since ψ1 asymptotically behaves like the heat equilibrium state, hot 

and cold spots cannot possibly be located in close proximity. Thus, we propose the following 

conjecture.

Conjecture 2

For a closed and sufficiently smooth simply connected surface ℳ with no boundary, the 

geodesic distance d between any two points p and q is bounded by

Conjecture 2 implies that the hot and cold spots give the maximum possible geodesic 

distance among all possible pairs of points and define the direction of elongation of data. 

Figure 2 illustrates Conjecture 2. For any complicated branching binary tree structures like 

Figure 2, the hot and cold spots occur at the two extreme points along the longest geodesic 

path. The hot spots conjecture basically dictates that it is possible to find the maximum 

possible geodesic path by simply finding the critical points in the second eigenfunction. 

Conjecture 2 can be applicable not only to differentiable manifolds but to graphs and surface 

meshes as well.

3 Hot Spots Conjecture Applied to Fiedler’s Vector

Surface meshes can be considered as graphs. The connection between the eigenfunctions of 

continuous and discrete Laplacians has been well established by many authors [6,11]. Many 

properties of eigenfunctions of the Laplace-Beltrami operator have discrete analogues. The 

second eigenfunction of the discrete graph Laplacian is called the Fiedler vector and it has 

been studied in connection to the graph and mesh processing, manifold learning and the 

minimum linear arrangement problem [5] Let G = {V, E} be the graph with the vertex set V 
and the edge set E. G is the discrete approximation of the underlying continuous manifold 

ℳ. We will simply index the node set as V = {1, 2, ⋯, n}. If two nodes i and j form an edge, 

we denote it as i ~ j. Various forms of graph Laplacian have been proposed but many graph 

or discrete Laplacian L = (lij) is a real symmetric matrix of the form
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for some edge weight wij. The graph Laplacian L can be decomposed as L = D − W, where 

D = (dij) is the diagonal matrix with  and W = (wij). For a vector f = (f1, ⋯, fn)

′ observed at the n nodes, the discrete analogue of the Dirichlet energy is given by

(4)

The Fiedler’s vector f = (f1, ⋯, fn)′ is obtained as the minimizer of the quadratic polynomial 

ψ1 = arg minf ℰ(f) subject to the quadratic constraint  The Dirichlet energy 

measures the smoothness of f so the second eigenfunction should be the smoothest possible 

map among all possible functions. Since ψ1 is required to be orthonormal with ψ0, we also 

have an additional constraint  Therefore, ψ1 is positive on half of ℳ and negative 

on the other half. However, it still does not explicitly tell us that a smooth function has to be 

monotonically changing from one end to the other.

The constraints force ψ1 to have at least two differing sign domains in which ψ1 has one 

sign. The nodal set of eigenfunctions ψi is defined as the zero level set ψi(p) = 0. Then 

Courant’s nodal line theorem states that the nodal set of the i-th eigenfunction ψi−1 divide 

the manifold into no more than i sign domains [4,6,11]. Hence, the second eigenfunction 

must have exactly 2 disjoint sign domains. At the positive sign domain, we have the global 

maximum and at the negative sign domain, we have the global minimum. This is illustrated 

in Figure 3 and 4. Although it is difficult to prove the general statement, the conjecture can 

be proven for specific cases. Here we provide a first heuristic proof for a path, which is a 

graph with maximal degree 2 and without a cycle.

Tightness

For a function f defined on the vertex set V, let  be the subgraph induced by the vertex set 

 Similarly, let  be the subgraph induced by the vertex set 

 For any s, if  and  are either connected or empty, then f is tight 

[11]. The concept of tightness is crucial in proving the statement. When s = 0,  and 

are sign graphs. If we relax the condition so that  contains nodes satisfying fi ≥ s, we have 

weak sign graphs. The second eigenfunction on a graph with maximal degree 2 (either cycle 

or path) is tight [11]. Figure 4 shows an example of a path with 11 nodes. Among three 

candidates for the second eigenfunction, (a) and (b) are not tight while (c) is. Note that the 

candidate function (a) has two disjoint components when thresholded at s = 0.5 so it cannot 

be tight. In order to be tight, the second eigenfunction cannot have a positive minimum or a 

negative maximum at the interior vertex in the graph [6]. This implies that the second 
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eigenfunction must decrease monotonically from the positive to negative sign domains as 

shown in (c) and have the critical points at the two end points. This has to be true for a 

general case as well.

4 Application: Mandible Growth Modeling

The CT imaging data set consists of 76 mandibles (40 males and 36 females). The age 

distribution was 11.33±5.60 years for the females, and 9.54±5.71 years for the males. The 

image acquisition and processing details for acquiring the mandible surface meshes are 

given in [9].

Features

In most literature dealing with the eigenfunctions of the Laplace-Beltrami operator, the 

whole spectrum of eigenvalues or eigenfunctions were used for shape analysis [9,10]. Here, 

we show how the second eigenfunction alone can be used as the shape feature. Once we 

obtained the second eigenfunctions for all subjects, we sorted them in increasing order 

(Figure 5). The sorted eigenfunctions are almost straight lines. A bigger mandible (more 

indices) exhibits a less steeper slope. Therefore, the rate of increase of the sorted 

eigenfunction (slope of linear fit) can be used for characterizing subject anatomical 

variability.

General Linear Models

We examined how the rate of increase can be used in characterizing the growth of the 

mandible. We used the general linear model (GLM) of the form <monospace>feature</

monospace> = β0 + β1 <monospace>gender</monospace> + β2 <monospace>age</

monospace> + ε The parameters are estimated using the least squares method and the 

statistical significance is determined using the F-statistic. There is weakly significant gender 

difference (β1) (p-value = 0.08) and highly significant age effect (β2) (p-value < 10−7) for 

the rate of increase. We conclude that the mandible size grows at a much faster rate for 

males than females.
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Fig. 1. 
The second eigenfunction ψ1 for different mandible surfaces. The second eigenfunction for 

an elongated closed object is a smooth monotonic function increasing from one tip of 

surface to the other tip of the surface.
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Fig. 2. 
The second eigenfunction ψ1 of branching tubular structures. The maximum (p1) and the 

minimum (p2) of ψ1 always occur at the points of maximum geodesic distance.

Chung et al. Page 8

Mach Learn Med Imaging. Author manuscript; available in PMC 2016 October 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 3. 
A graph, the weights W and the graph Laplacian L. The weights are simply the adjacency 

matrix. The second eigenfunction ψ1 value is displayed in blue. (a) This example is given in 

[7]. The maximum geodesic distance is obtained between the nodes 1 and 3, which are also 

hot and cold spots. (b) In this example, there are two hot spots 1 and 5 which correspond to 

two maximal geodesic paths 1-4-2-3 and 5-4-2-3.
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Fig. 4. 

A path with positive  and negative  sign domains. Among many possible candidate 

functions, (a) and (b) are not tight so they can’t be the second eigenfunctions.
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Fig. 5. 
Left: The centroids of level contours of the 2nd eigenfunction. Middle: The sorted second 

eigenfunctions (female =red, male = blue). Right: The centerlines of all 76 subjects showing 

the proper alignment.
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