Abstract
Molecular dynamics simulations have been performed (AMBER version 3.1) on solvated residues 1-65 of bovine prothrombin fragment 1 (BF1) by using the 2.8-A resolution crystallographic coordinates as the starting conformation for understanding calcium ion-induced conformational changes that precede experimentally observable phospholipid binding. Simulations were performed on the non-metal-bound crystal structure, the form resulting from addition of eight calcium ions to the 1-65 region of the crystal structure, the form resulting from removal of calcium ions after 107 ps and continuing the simulation, and an isolated hexapeptide loop (residues 18-23). In all cases, the 100-ps time scale seemed adequate to sample an ensemble of solution conformers within a particular region of conformation space. The non-metal-containing BF1 did not unfold appreciably during a 106-ps simulation starting from the crystallographic geometry. The calcium ion-containing structure (Ca-BF1) underwent an interesting conformational reorganization during its evolution from the crystal structure: during the time course of a 107-ps simulation, Ca-BF1 experienced a trans----cis isomerization of the gamma-carboxyglutamic acid-21 (Gla-21)-Pro-22 peptide bond. Removal of the calcium ions from this structure followed by 114 ps of additional molecular dynamics showed significant unfolding relative to the final 20-ps average structure of the 107-ps simulation; however, the Gla-21-Pro-22 peptide bond remained cis. A 265-ps simulation on the termini-protected hexapeptide loop (Cys-18 to Cys-23) containing two calcium ions also did not undergo a trans----cis isomerization. It is believed that the necessary activation energy for the transitional event observed in the Ca-BF1 simulation was largely supplied by global conformational events with a possible assist from relief of intermolecular crystal packing forces. The presence of a Gla preceding Pro-22, the inclusion of Pro-22 in a highly strained loop structure, and the formation of two long-lived salt bridges prior to isomerization may all contribute to this finding.
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bajaj S. P., Butkowski R. J., Mann K. G. Prothrombin fragments. Ca2+ binding and activation kinetics. J Biol Chem. 1975 Mar 25;250(6):2150–2156. [PubMed] [Google Scholar]
- Bajorath J., Raghunathan S., Hinrichs W., Saenger W. Long-range structural changes in proteinase K triggered by calcium ion removal. Nature. 1989 Feb 2;337(6206):481–484. doi: 10.1038/337481a0. [DOI] [PubMed] [Google Scholar]
- Bax A. Two-dimensional NMR and protein structure. Annu Rev Biochem. 1989;58:223–256. doi: 10.1146/annurev.bi.58.070189.001255. [DOI] [PubMed] [Google Scholar]
- Brandts J. F., Halvorson H. R., Brennan M. Consideration of the Possibility that the slow step in protein denaturation reactions is due to cis-trans isomerism of proline residues. Biochemistry. 1975 Nov 4;14(22):4953–4963. doi: 10.1021/bi00693a026. [DOI] [PubMed] [Google Scholar]
- Bächinger H. P., Bruckner P., Timpl R., Engel J. The role of cis-trans isomerization of peptide bonds in the coil leads to and comes from triple helix conversion of collagen. Eur J Biochem. 1978 Oct 16;90(3):605–613. doi: 10.1111/j.1432-1033.1978.tb12641.x. [DOI] [PubMed] [Google Scholar]
- Cabaniss S. E., Pugh K. C., Charifson P. S., Pedersen L. G., Hiskey R. G. Synthesis and characterization of 1,1,4,4-butanetetracarboxylic acid. A di-gamma-carboxyglutamic acid (GlaGla) analogue. Int J Pept Protein Res. 1990 Jul;36(1):79–85. doi: 10.1111/j.1399-3011.1990.tb00085.x. [DOI] [PubMed] [Google Scholar]
- Cook K. H., Schmid F. X., Baldwin R. L. Role of proline isomerization in folding of ribonuclease A at low temperatures. Proc Natl Acad Sci U S A. 1979 Dec;76(12):6157–6161. doi: 10.1073/pnas.76.12.6157. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Deerfield D. W., 2nd, Berkowitz P., Olson D. L., Wells S., Hoke R. A., Koehler K. A., Pedersen L. G., Hiskey R. G. The effect of divalent metal ions on the electrophoretic mobility of bovine prothrombin and bovine prothrombin fragment 1. J Biol Chem. 1986 Apr 15;261(11):4833–4839. [PubMed] [Google Scholar]
- Dober C. M., Fossel E. T., Blout E. R. Cyclic peptides. 8. 13C and 1H nuclear magnetic resonance evidence for slow cis'-trans' rotation in a cyclic tetrapeptide. J Am Chem Soc. 1974 Jun 12;96(12):4015–4017. doi: 10.1021/ja00819a051. [DOI] [PubMed] [Google Scholar]
- Grathwohl C., Wüthrich K. The X-Pro peptide bond as an nmr probe for conformational studies of flexible linear peptides. Biopolymers. 1976 Oct;15(10):2025–2041. doi: 10.1002/bip.1976.360151012. [DOI] [PubMed] [Google Scholar]
- Harlos K., Boys C. W., Holland S. K., Esnouf M. P., Blake C. C. Structure and order of the protein and carbohydrate domains of prothrombin fragment 1. FEBS Lett. 1987 Nov 16;224(1):97–103. doi: 10.1016/0014-5793(87)80429-5. [DOI] [PubMed] [Google Scholar]
- Harlos K., Holland S. K., Boys C. W., Burgess A. I., Esnouf M. P., Blake C. C. Vitamin K-dependent blood coagulation proteins form hetero-dimers. Nature. 1987 Nov 5;330(6143):82–84. doi: 10.1038/330082a0. [DOI] [PubMed] [Google Scholar]
- Levitt M. Effect of proline residues on protein folding. J Mol Biol. 1981 Jan 5;145(1):251–263. doi: 10.1016/0022-2836(81)90342-9. [DOI] [PubMed] [Google Scholar]
- Lin L. N., Brandts J. F. Further evidence suggesting that the slow phase in protein unfolding and refolding is due to proline isomerization: a kinetic study of carp parvalbumins. Biochemistry. 1978 Sep 19;17(19):4102–4110. doi: 10.1021/bi00612a036. [DOI] [PubMed] [Google Scholar]
- Lin L. N., Brandts J. F. Isomerization of proline-93 during the unfolding and refolding of ribonuclease A. Biochemistry. 1983 Feb 1;22(3):559–563. doi: 10.1021/bi00272a006. [DOI] [PubMed] [Google Scholar]
- Marsh H. C., Scott M. E., Hiskey R. G., Koehler K. A. The nature of the slow metal ion-dependent conformational transition in bovine prothrombin. Biochem J. 1979 Dec 1;183(3):513–517. doi: 10.1042/bj1830513. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Maynard A. T., Eastman M. A., Darden T., Deerfield D. W., 2nd, Hiskey R. G., Pedersen L. Effect of calcium (II) and magnesium (II) ions on the 18-23 gamma-carboxyglutamic acid containing cyclic peptide loop of bovine prothrombin. An AMBER molecular mechanics study. Int J Pept Protein Res. 1988 Feb;31(2):137–149. doi: 10.1111/j.1399-3011.1988.tb00016.x. [DOI] [PubMed] [Google Scholar]
- Nelsestuen G. L. Role of gamma-carboxyglutamic acid. An unusual protein transition required for the calcium-dependent binding of prothrombin to phospholipid. J Biol Chem. 1976 Sep 25;251(18):5648–5656. [PubMed] [Google Scholar]
- Nelsestuen G. L., Zytkovicz T. H., Howard J. B. The mode of action of vitamin K. Identification of gamma-carboxyglutamic acid as a component of prothrombin. J Biol Chem. 1974 Oct 10;249(19):6347–6350. [PubMed] [Google Scholar]
- Park C. H., Tulinsky A. Three-dimensional structure of the kringle sequence: structure of prothrombin fragment 1. Biochemistry. 1986 Jul 15;25(14):3977–3982. doi: 10.1021/bi00362a001. [DOI] [PubMed] [Google Scholar]
- Prendergast F. G., Mann K. G. Differentiation of metal ion-induced transitions of prothrombin fragment 1. J Biol Chem. 1977 Feb 10;252(3):840–850. [PubMed] [Google Scholar]
- Schwalbe R. A., Ryan J., Stern D. M., Kisiel W., Dahlbäck B., Nelsestuen G. L. Protein structural requirements and properties of membrane binding by gamma-carboxyglutamic acid-containing plasma proteins and peptides. J Biol Chem. 1989 Dec 5;264(34):20288–20296. [PubMed] [Google Scholar]
- Soriano-Garcia M., Park C. H., Tulinsky A., Ravichandran K. G., Skrzypczak-Jankun E. Structure of Ca2+ prothrombin fragment 1 including the conformation of the Gla domain. Biochemistry. 1989 Aug 22;28(17):6805–6810. doi: 10.1021/bi00443a004. [DOI] [PubMed] [Google Scholar]
- Stenflo J., Fernlund P., Egan W., Roepstorff P. Vitamin K dependent modifications of glutamic acid residues in prothrombin. Proc Natl Acad Sci U S A. 1974 Jul;71(7):2730–2733. doi: 10.1073/pnas.71.7.2730. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Suttie J. W., Jackson C. M. Prothrombin structure, activation, and biosynthesis. Physiol Rev. 1977 Jan;57(1):1–70. doi: 10.1152/physrev.1977.57.1.1. [DOI] [PubMed] [Google Scholar]
- Tulinsky A., Park C. H., Skrzypczak-Jankun E. Structure of prothrombin fragment 1 refined at 2.8 A resolution. J Mol Biol. 1988 Aug 20;202(4):885–901. doi: 10.1016/0022-2836(88)90565-7. [DOI] [PubMed] [Google Scholar]
- Welsch D. J., Nelsestuen G. L. Carbohydrate-linked asparagine-101 of prothrombin contains a metal ion protected acetylation site. Acetylation of this site causes loss of metal ion induced protein fluorescence change. Biochemistry. 1988 Jun 28;27(13):4946–4952. doi: 10.1021/bi00413a053. [DOI] [PubMed] [Google Scholar]
- Zapata G. A., Berkowitz P., Noyes C. M., Pollock J. S., Deerfield D. W., 2nd, Pedersen L. G., Hiskey R. G. Chemical modification of bovine prothrombin fragment 1 in the presence of Tb3+ ions. Sequence studies on 3-gamma-MGlu-fragment. J Biol Chem. 1988 Jun 15;263(17):8150–8156. [PubMed] [Google Scholar]