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Abstract

Chemical Exchange Saturation Transfer (CEST) is a powerful new tool well suited for molecular 

imaging. This technology enables the detection of low concentration probes through selective 

labeling of rapidly exchanging protons or other spins on the probes. In this review, we will 

highlight the unique features of CEST imaging technology and describe the different types of 

CEST agents which are suited for molecular imaging studies including CEST theranostic agents, 

CEST reporter genes, and CEST environmental sensors.
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1. Introduction

Chemical Exchange Saturation Transfer (CEST) is a powerful new tool well suited for 

molecular imaging (1-4). This technology enables the detection of low concentration probes 

through selective labeling of rapidly exchanging protons or other spins on the probes. The 

transfer of saturation from one molecule to another was first observed in 1963 by Sture 

Forsén and Ragnar Hoffman (5,6), however it was not so clear that this technique would be 

applicable to magnetic resonance imaging until Steve Wolff, Robert Balaban and colleagues 

demonstrated the detection of compounds of interest for medical imaging with exchangeable 

protons through saturation transfer imaging, urea and ammonia (7,8). As has now been 

clearly shown, for exchangeable spins at low concentration (nM-mM range) a cumulative 

effect (Molar range) can be built up and detected provided the spins have a sufficiently high 

exchange rate (kex), allowing production of high contrast images (4,9). Fig. 1 demonstrates 

the basic principles of signal amplification using CEST imaging. As is shown, after applying 

a saturation pulse, signal contrast can be detected through measuring the asymmetric 

Magnetization Transfer Ratio (MTRasym) which is the normalized difference in water signal 
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between the two experiments, one with the RF field on resonance with the exchangeable 

peak and the other with the RF field at the same frequency away from water but on the 

opposite side (10-14). Based on this mechanism for generating contrast, CEST probes have a 

few unique features. Because the labile spins resonate over a range of chemical shifts, 

imaging schemes have been developed to discriminate between agents possessing these 

spins simultaneously, which has been called multi-color (15-17) or multi-frequency MRI 

(2,18). This labeling feature makes CEST agents unlike T1 or T2* MRI contrast agents, and 

instead more similar to optical imaging agents. CEST contrast generally increases as the 

scanner magnetic field increases, which makes this a favorable approach compared to T1 

relaxation agents whose contrast will be reduced at higher fields through T1 relaxation time 

convergence (19). Because of these features, a large number of groups have focused on 

developing CEST contrast agents for a variety of cellular and molecular imaging 

applications.

2. Small molecule CEST probes

A major emphasis in CEST imaging has been placed on development of natural, 

diamagnetic CEST (diaCEST) agents, as there is an enormous variety, which possesses 

labile protons. In fact, the first compounds presented as CEST agents suitable for medical 

imaging were urea and ammonia (7,8). More recent studies have investigated detection of D-

glucose (20-22), glutamate (23,24), creatine (24,25), and L-arginine (26) on 7 T and higher 

field scanners. As a result of the interest in developing agents for detection on 3 T and lower 

field scanners, recent studies have emphasized the design of compounds with chemical shifts 

from water (Δω) > 4 ppm (27). Based on this criteria, barbituric acid (28,29), thymidine 

analogs (30), iodinated compounds (31-33), imidazoles (34) salicylic acid and anthranilic 

acid analogs have come to the forefront. The salicylates and anthranillates are particularly 

appealing based on their chemical structure consisting of a phenol proton hydrogen bonded 

to a carboxylate, which has been known with large chemical shift (35-37) which is 

particularly favorable for 3 T scanners based on their Δω = 6 -12 ppm and the capability of 

tuning kex from 400 - 3000 s−1, suitable rates for detection of CEST contrast. Fig. 2 shows a 

range of MTRasym spectra for these probes. The salicylates seem well suited for detection of 

perfusion (38). Some of the first investigational CEST patient studies have now been 

performed utilizing the diaCEST agents glucose and iopamidol, with the idea that these 

agents might present advantages for tumor imaging, with the initial images appearing quite 

encouraging (39,40).

A second focus for this field is on design CEST probes using paramagnetic metal complexes 

similar to those used as T1 agents. Sherry (41,42), Aime (43,44), and others (45-52) have 

pioneered the use of paramagnetic metal based CEST agents with appropriately shifted 

labile protons, which have been termed as paramagnetic CEST (paraCEST) probes. The 

labile proton Δω can be increased to between 30-700 ppm for these systems based on 

hyperfine shifts allowing detection of protons with larger kex while still adhering to the 

slow-intermediate exchange condition (1,53-57). The labile protons can be a whole water 

molecule coordinated to the metal and exchanging on/off the complex, or they can be amide, 

amine or alcohol protons on the complex with suitable configurations with respect to the 

paramagnetic center. To date, paraCEST agents have been only applied in pre-clinical 
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studies, however these agents represent the most promising for detection on 1 - 1.5 T 

scanners (58). Indeed, as HPDO3A has already been approved for patient studies as a safe 

chelator of Gadolinium and is in use in clinical practice (Prohance, Bracco Imaging, Milan, 

Italy), one could reasonably expect that paraCEST agents based on HPDO3A could be 

translated for generating pH maps of tumors, which could be useful in monitoring tumor 

microenvironment (59).

3. CEST probes as theranostic agents

An exciting area, which appears quite promising, is to utilize CEST imaging to monitor the 

delivery of therapeutics. This is a very active area of research. Based on sensitivity 

considerations, a majority of the studies have emphasized use of delivery systems with both 

CEST probe and therapeutic integrated into nanocarriers. The approaches have included: 

conjugating CEST probes to the surface of nanocarriers (60-63), entrapping CEST probes 

into the interior of the carriers (15,28,29), or a third approach, entrapping shift agents in the 

interior of the carriers and using the interior solvent as the CEST probe itself, the so-called 

lipo-CEST approach (64). A number of studies have shown that delivery of therapeutics to 

tumors can be detected and quantified using this technology (29,60,65). This has been 

motivated in large part by the possibility of performing multi-color CEST imaging in vivo 

without penetration depth limitations (Fig. 3). As is shown, two different therapeutics can be 

labeled with a different color and monitored independently using this technology. Moreover, 

it was recently demonstrated that CEST MRI can be used to detect a clinically used DNA 

alkylating anti-cancer agent directly without the need to conjugate or modify the drug (66). 

This is extremely important because even the addition of the Lest tag (such as a fluorine 

group) can significantly change the affinity of the drug to the target or reduce its activity. 

The future appears quite promising for this new technology as contrast agent chemistry, 

image acquisition schemes and MRI hardware improve.

4. CEST reporter genes for cellular imaging

After the observation was made that biological macromolecules can be detected using CEST 

agents (67), an intense effort has been put forth to develop CEST agents which might be 

expressed by cells, so-called CEST reporter genes. This is a particularly interesting area, as 

this technology would allow the generation of functional information about cells not 

normally accessible using MRI scans. Developing of these types of agents poses different 

challenges from the other agents mentioned earlier to formulate an optimal expressable 

CEST probe, with a number of studies that are summarized in Table 1. Each study was 

necessary for developing the next step. While early on it was shown by van Zijl and 

colleagues that Poly-LLysine (PLL) is a good CEST probe (67), optimization was needed to 

allow expression of this peptide by mammalian cells. Nevertheless, PLL was the foundation 

for a decade of development of new peptide-based agents. Another important aspect of this 

work was the development of screening methods for peptide libraries for formulating the 

next generation of agents (68,69). Advances in gene synthesis technologies significantly 

reduced costs and shortened the synthesis time (70), which has now led to an increased 

ability to express many of these proteins in both live mammalian cells and bacteria (71-74). 
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The ability to synthesize whole proteins (longer the 50 amino acids) allowed deeper 

investigation of their biophysical properties (75).

In order to ensure the quality of these reporter genes is sufficient for cellular imaging, it is 

important to demonstrate reproducibility beyond the first “proof-of-concept” paper. This has 

been demonstrated for the LRP CEST reporter gene; following the initial study where it was 

shown that the contrast generated from LRP can be differentiated from controls, its 

practicality has been repeatedly demonstrated in live rodents and enabled collection of high 

temporal and spatial resolution images (76,77). Farrar and colleagues have confirmed that 

LRP can be visualized in live rats after delivery of an oncolytic virus, thus serving as a 

marker for treatment efficacy (78) (Fig. 4). In a separate study, Pomper and colleagues have 

demonstrated tumor-specific expression of LRP using a tumor-specific promoter (79) (Fig. 

5). Interestingly, the PEG3 promoter is weaker than CMV and yet still provided a detectable 

CEST contrast. These two studies have presented new evidence that LRP is effective for 

detecting cells through gene expression. Moreover, these studies established the 

reproducibility of LRP as a reporter gene for MRI.

5. CEST environmental sensors for cellular imaging

While reporter genes such as LRP can be used to monitor cell survival and are well 

established in a pre-clinical setting, there are challenges to using reporter genes in patients 

based on the requirement of genetic manipulation of the cells for transplantation. Because of 

this, we have developed an alternative strategy, which instead employs implantable 

environmental sensors to monitor rejection of these cell grafts. These sensors are integrated 

into cell composites. This is a flexible method, as there are a range of MRI probes which 

have been developed for detecting changes in environment including the pH 

(32,33,69,80,81) or the concentration of inorganic ions such as Zn2+ or Ca2+ (50,82-85). Our 

initial idea was that one effective way to use these sensors would be to embed these in cell 

composites and monitor the environment post-transplantation. There are three components 

of these composites: the CEST sensors, the liposomes which entrap the sensors but are 

sufficiently permeable to water and the hydrogels which provide support for the cell graft 

(86) (Figure 6). This design isolates the sensor from the cells and also from the immune 

system while allowing free access of water and ions. One type of environmental change that 

can be sensed readily using CEST imaging is pH, which influences kex through acid and 

base catalysis of proton exchange, with pH changes also linked to cell death (87). Previous 

hydrogel based cellular MRI studies were concerned with visualizing their location (88,89), 

so our cell composites with arginine based CEST pH sensors added a new dimension. Our 

first investigation involved transplanting human hepatocytes subcutaneously within alginate 

composites, and in order to test the capabilities of these sensors, groups of mice with and 

without immunosuppression treatment were included with the expectation that cell survival 

would be prolonged in the immunosuppressed group (90). The hepatocytes were transfected 

with luciferase to allow usage of bioluminescence to monitor hepatocyte viability for 

validation. As expected, as the encapsulated cells died, there was a corresponding 33% drop 

in CEST MRI contrast detected, with also a substantial difference in hepatocyte survival for 

the immunosuppressed mice compared to the non-immunosuppressed mice, which 

corresponds to lowering the pH from 7.4 to 6.9. This work was followed up by a separate 
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investigation of the host immune response to these cell composites, which depended on 

whether the highly immunogenic HepG2 hepatocytes were included within these composites 

(91). A higher immune cell infiltration was detected when live hepatocytes were included in 

the composite (compared to dead hepatocytes), which was presumably associated with 

xenogeneic molecules passing through the capsule surface. The amount of immune cells 

surrounding the composites containing hepatocytes was comparable to composites without 

hepatocytes when FK506 immunosuppression was administered. Based on these studies, we 

concluded that CEST imaging of cell composites should represent a promising technology 

for monitoring the functionality of cells after transplantation.

6. Hyperpolarized CEST (hyperCEST) imaging

An alternative strategy to increase the sensitivity of CEST imaging further, is to move away 

from detecting exchange with water to detecting exchange of hyperpolarized 129Xe, which 

has been termed hyper-CEST imaging. This strategy was initially reported by Leif 

Schroeder, Alex Pines and co-workers, and involved use of specialized cage structures which 

transiently trap and impart a chemical shift on hyperpolarized 129Xe compared to gas phase, 

with rapid exchange of Xe occurring between the interior and exterior of the cage (92). For 

molecular imaging studies, 129Xe appears to be the most promising of the noble gases which 

can be hyperpolarized based on solubility in aqueous solutions (93) and biological tissue 

(94,95), relative abundance of xenon gas, and also responsiveness of the 129Xe chemical 

shift to molecular environment. Furthermore, hyperpolarizers have been designed to produce 

large quantities of polarized Xe-129 gas allowing clinical usage (96-99). This strategy of 

hyperCEST imaging envisions targeted imaging of these cages after inhalation of xenon gas 

by patients. Cages have been developed which are sensitized to lead, zinc, mercury and 

cadmium ions (100-102), which assemble onto a multivalent M13 bacteriophage (103), and 

report on cellular internalization (104). One particularly nice study showed that 

bioengineered bacterial gas vesicles enabling detection of picomolar concentrations of the 

gas-binding protein nanostructures expressed (105). Another interesting study showed that 

bacterial spores represent another nanoporous structure which can be detected using 

hyperCEST imaging (106). This strategy, which involves hyperpolarized Xenon with the 

polarization dropping with T1, has different requirements from water based CEST imaging, 

and as a result has spurred new imaging methods to allow faster acquisition (107,108).

7. Outlook for the future of CEST imaging

One of the major criticisms pointed at CEST MRI is its low sensitivity. Indeed, CEST MRI 

would be more appealing for the broad imaging community if the sensitivity could be 

improved. Improving the robustness of the technology could be achieved through three 

independent levels: (1) better probe design, (2) better MRI imaging sequences and (3) 

increased reproducibility (Fig. 7). For example, CEST data are often contaminated by 

multiple components that interfere with detecting the probe of interest. We have developed 

an approach, termed Length and Offset VARied Saturation (LOVARS) (109), in which the 

length (tsat) and Δω of the saturation pulse is varied to modulate the water signal loss and 

impart differential phases on the interfering components. This allows their separation from 

the desired probe signal using post-processing techniques similar to those used to analyze 
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time-varying signal changes in event-related fMRI (110-116), such as Fast Fourier 

Transform (FFT) to separate different frequency components(109). Finally, it is key to 

repeatedly use the against with the highest standard of rigorous and reproducibility(117), in 

order to achieve highly sensitive, user-friendly imaging probe. Other approaches including 

systematic variation of saturation pulse flip angle, of multiple frequency pulses or variable 

delay elements and use of frequency labeling pulses instead of saturation or improvements in 

modeling the Z-spectra (118-123). CEST imaging sequence design is still relatively 

immature as a field, and the expectation is that many improvements in probe, sequence and 

post-processing will be forthcoming. As a result, molecular imaging using CEST should 

have a bright future.
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Figure 1. 
Schematic of Chemical exchange saturation transfer (CEST): principles and measurement 

approach for pure exchange effects. a, b) Solute protons (blue) are saturated at their specific 

resonance frequency in the proton spectrum (here 8.25 ppm for amide protons). This 

saturation is transferred to water (4.75 ppm) at exchange rate ksw and nonsaturated protons 

(black) return. After a period (tsat), this effect becomes visible on the water signal (b, right). 

c) Measurement of normalized water saturation (Ssat/S0) as a function of irradiation 

frequency, generating a so-called Z-spectrum (or CEST spectrum or MT spectrum). When 

irradiating the water protons at 4.75 ppm, the signal disappears due to direct (water) 

saturation (DS). This frequency is assigned to 0 ppm in Z-spectra. At short saturation times, 

only this direct saturation is apparent. At longer tsat the CEST effect becomes visible at the 

frequency of the low- concentration exchangeable solute protons, now assigned to 8.25 - 

4.75 = 3.5 ppm in the Z-spectrum. d) result of magnetization transfer ratio asymmetry 

analysis of the Z-spectrum with respect to the water frequency to remove the effect of direct 

saturation. Reproduced from (4) with permission.
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Figure 2. 
Representative examples of IM-SHY CEST agents with tunable exchangeable protons. 

Conditions: CEST data were obtained at 17.6 T using 10 mM concentrations, pH 7.3 - 7.4, 

tsat = 3 sec, ω1 = 3.6 μT and T= 37 °C. Experimental data are shown as closed circles, while 

the lines represent Bloch simulations. Reproduced from (27) with permission.
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Figure 3. 
Representative two-color CEST image demonstrating simultaneous detection and 

visualization after injection of L-arginine CEST liposomes and poly-l-ysine CEST 

liposomes into the footpads of a mouse. Left panel: T2-weighted anatomical image with 

arrows indicating the location of popliteal lymph nodes; Middle panel: MTRasym images at 

the frequency of interest for L-arginine (1.8 ppm, upper) and poly-L-lysine (3.6 ppm lower); 

Right panel: MTRasym/T2w image overlay with CEST contrast highlighted using a 64-bit 

scaled single color of PLL (green, left lymph node) and L-Arg (yellow, right lymph node). 

Reproduced from (26) with permission.
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Figure 4. LRP In vivo
A & C) before and B & D) after injection of LRP-expressing oncolytic virus into a brain 

tumor in a live rat brain. There is a significant (p=0.05) increase in tumor CEST contrast for 

G47Δ-LRP (n=7) than for controls G47Δ-empty (n=6). Reproduced from (78) with 

permission.
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Figure 5. 
a, b) Representative CEST maps superimposed on T2-weighted images:Left hemisphere has 

9L tumors and right hemisphere has (a) 9LCMV-LRP and (b) 9LPEG-LRP. c) Temporal changes 

in the ΔMTRasym values (mean ± s.d.; 8 mice) of each tumor type. t-test showed statistical 

difference of CEST contrast at 3.4-3.6 ppm, (*p<0.05; n=8). Reproduced from (79) with 

permission.
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Figure 6. Schematic showing the principles of in vivo detection of cell viability using LipoCEST 
microcapsules as pH nanosensors
The CEST contrast is measured by the drop in the signal intensity (ΔS) of water after 

selective saturation (i.e. removal of capability to generate signal) of the NH protons in L-

arginine at 2 ppm. The L-arginine protons (red) inside the LipoCEST capsules exchange 

(kSW) with the surrounding water protons. The kSW is reduced at lower pH causing a 

significant drop in CEST contrast. Reproduced from (9) with permission.
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Figure 7. 
Multi-dimensional development of molecular imaging using CEST.
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Table 1

selected milestones in the developing of protein based CEST agents

Authors Year Topic Findings relevant to the next gen LRP Ref.

1 McMahon et. al. 2008 Quantifying exchange rate Determining the kex of exchangeable protons (70)

2 Gilad et. al. 2007 LRP prototype LRP can be expressed in the brain (77)

3 McMahon et. al. 2008 Multicolor peptides Changing the amino acid sequence affect the resonances 
frequency and the contrast intensity

(82)

4 Liu et. al. 2010 Peptide screening with MRI Developing tools for high-throughput screening (69)

5 Airan et. al. 2012 PKA sensor (1) Synthetic gene that with heterogeneous amino acid 
sequence (2) effect of phosphorylation on the contrast

(72)

6 Bar-Shir et. al. 2014 Human protamine as a reporter gene DNA optimization improves contrast (75)

7 Oskolkov et. al. 2014 Characterization of Human Protamine (1) Effect of phosphorylation and (2) effect of 
intermolecular bonds on the contrast

(76)

8 Bar-Shir et. al. 2015 Supercharged GFP as a CEST based 
reporter

The contrast can be improved by changing only limited 
number of amino acids

(74)
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