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Abstract

Introduction—Identifying high-risk lung cancer individuals at an early disease stage is the most 

effective way of improving survival. The landmark National Lung Screening Trial (NLST) 

demonstrated the utility of low-dose computed tomography (LDCT) imaging to reduce mortality 

(relative to x-ray screening). As a result of the NLST and other studies, imaging-based lung cancer 

screening programs are now being implemented. However, LDCT interpretation results in a high 

number of false positives. A set of dynamic Bayesian networks (DBN) were designed and 

evaluated to provide insight into how longitudinal data can be used to help inform lung cancer 

screening decisions.

Methods—The LDCT arm of the NLST dataset was used to build and explore five DBNs for 

high-risk individuals. Three of these DBNs were built using a backward construction process, and 

two using structure learning methods. All models employ demographic, smoking status, cancer 

history, family lung cancer history, exposure risk factors, comorbidities related to lung cancer, and 

LDCT screening outcome information. Given the uncertainty arising from lung cancer screening, a 

cancer state-space model based on lung cancer staging was utilized to characterize the cancer 

status of an individual over time. The models were evaluated on balanced training and test sets of 

cancer and non-cancer cases to deal with data imbalance and overfitting.

Results—Results were comparable to expert decisions. The average area under the curve (AUC) 

of the receiver operating characteristic (ROC) for the three intervention points of the NLST trial 

was higher than 0.75 for all models. Evaluation of the models on the complete LDCT arm of the 

NLST dataset (N = 25, 486) demonstrated satisfactory generalization. Consensus of predictions 

over similar cases is reported in concordance statistics between the models’ and the physicians’ 

predictions. The models’ predictive ability with respect to missing data was also evaluated with the 
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sample of cases that missed the second screening exam of the trial (N = 417). The DBNs 

outperformed comparison models such as logistic regression and naïve Bayes.

Conclusion—The lung cancer screening DBNs demonstrated high discrimination and predictive 

power with the majority of cancer and non-cancer cases.
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1. Introduction

Lung cancer is the leading cause of cancer death worldwide. In the United States, it is 

estimated to be responsible for over 150,000 annual deaths [1, 2], comprising 27% of all 

cancer deaths [3, 4]. A number of factors have been associated with the high incidence and 

mortality of lung cancer, the most important being cigarette smoking [5]; and late-stage/

advanced diagnoses [6], wherein treatment is non-curative. Patients with lung cancer have a 

higher probability of metastases and a relatively low 5-year survival rate of 18% [7]. 

Markedly, when diagnosed early, the 5-year survival rate increases to 54%. However, only 

15% of all lung cancer cases are detected at an early stage [7]. Considering the high 

mortality associated with late-stage lung cancer diagnosis, it is crucial that patients who are 

at high risk of lung cancer be identified and monitored so that early treatment can be 

initiated if needed.

Screening has the potential to detect the formation of problematic pulmonary nodules at an 

early stage; and when detected earlier, more choices for treatment are available, along with 

improved chances of survival. Evidence regarding the benefits of lung screening comes from 

the landmark National Lung Screening Trial (NLST), which demonstrated a 20% mortality 

reduction in lung cancer in individuals who underwent screening using low-dose computed 

tomography (LDCT) relative to plain chest radiography [8]. Given this evidence, the 

American Patient Protection and Affordable Care Act (ACA) has mandated that CT 

screening be covered by private insurers; the Centers for Medicare and Medicaid Services 

(CMS) has also approved reimbursement of CT screening in Medicare-eligible patients up to 

the age of 77. Unfortunately, LDCT also detects many benign nodules and non-cancer 

related pathologies (e.g., inflammation, emphysema, other lesions), resulting in many false 

positives and the need for further diagnostic evaluation to confirm findings. In fact, the false 

positive rate of screening strategies used by the NLST was determined to be over 23% for 

individuals that underwent additional diagnostic imaging [8]. Confirmed cancer cases in the 

NLST CT positive arm were determined to be 3.6% of all cases and any lung cancer 

detected had a probability of 18.5% to be an over-diagnosis [9]. This suggests that while an 

acceptable false negative rate is achieved, the majority of healthy patients in a population get 

over-screened and/or over-diagnosed. Unnecessary diagnostic procedures, such as biopsies 

and thoracotomies, place healthy patients at a higher risk of complications and incur an 

unnecessary psychological burden [10]. A framework that optimizes early detection while 

reducing false negative rates would be ideal, and can then be used to support more 

individually-tailored screening recommendations.

Petousis et al. Page 2

Artif Intell Med. Author manuscript; available in PMC 2017 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



This work aims to provide insights into how recommendations can be individualized over 

time in the context of lung cancer screening. We explore the issues surrounding the 

development and evaluation of a dynamic Bayesian network (DBN), built from the NLST 

dataset, to predict the development of lung cancer in high-risk patients. We compare DBNs 

built using the “backward construction” method and “learned” DBNs1. We also compare and 

contrast the DBNs’ performance versus experts and other predictive models for lung cancer. 

Relative to existing predictive models, our methodology has several advantages. First, it can 

make sensible predictions even with missing data, a common occurrence in real-world 

settings (e.g., a missed screening exam). Second, it is built on top of a lung cancer state-

space defined on lung cancer staging. This state space unites lung cancer risk factors and 

diagnostic procedures in a meaningful network structure, while also enabling the flow of 

probabilistic influence between these variables. Third, contrary to existing predictive 

methods for lung cancer screening, our methodology and in particular DBNs can explain and 

show the contributing factors for its predictions (i.e., factors investigated in lung cancer 

screening). We present the results of our evaluations and discuss the advantages and 

limitations of our work, providing some future directions for further improvement.

2. Background

In recent years, many risk models have been published to predict the development of 

different cancers [11]. In lung cancer, Bach et al. [12] developed an analog of the well-

known Gail model used to calculate the risk for developing breast cancer [13, 14]. The 

model predicts the 10-year probability of an individual being diagnosed with lung cancer. 

This 10-year risk was obtained through the use of two one-year risk models, a lung cancer 

diagnosis model and a competing model of dying without lung cancer. Subsequently, the 

one-year models were run recursively over 10 epochs (i.e., years) to obtain cumulative 

probabilities over time [15]. Even though the model does not distinguish the risks of the 

various types of lung cancer, it can identify those subjects who are most likely to develop 

lung cancer [12]. The model’s validity was assessed by Conin et al. [16] using 6,239 

smokers from the placebo arm of the Alpha-Tocopherol, Beta-Carotene Cancer Prevention 

(ATBC) Study. The risk and competing risk models both underestimated the observed lung 

cancer risk and the observed non-lung cancer mortality risk for individuals that smoked less 

than 20 cigarettes per day. Raji et al. [17] evaluated the predictive accuracy of the Liverpool 

Lung Project Risk Model. This single log-odds model, developed through the use of logistic 

regression, was developed from the Liverpool Lung Project Cohort (LLPC) [15] study. The 

model was evaluated in three independent external datasets, from Europe and North 

America, with good discrimination in all three datasets. The area under the curve (AUC) in 

these datasets varied from 0.67–0.82 [17]. Spitz et al. [18] developed a lung cancer risk 

prediction model using a multivariate regression analysis to develop log-odds models for 

never, current, and former smokers. The model’s concordance statistics (0.57, 0.63 and 0.58, 

respectively) and discriminatory ability (true positive rates in high-risk groups of current and 

former smokers were 0.69 and 0.70, respectively [18]) were satisfactory, but precision was 

modest [19]. Finally, more recently, Tammemagi et al. [20] developed lung cancer models 

1Here, learned DBNs represent models generated through the use of structure learning methods.
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that demonstrated high discrimination and calibration using the Prostate, Lung, Colorectal 

and Ovarian Cancer (PLCO) Screening Trial. In contrast with most lung cancer prediction 

studies, this study’s models incorporated a wider range of risk factors that were 

incrementally evaluated using AUC as a comparison metric. The models were evaluated for 

the prediction of lung cancer on the entire PLCO dataset and a subset of ever-smokers, with 

both models achieving an AUC of 0.857 and 0.841, for the PLCO dataset, and 0.805 and 

0.784, for the ever-smokers subset, respectively.

The models we describe for lung cancer screening are based on a dynamic Bayesian 

network. DBNs, as well as Bayesian networks (BNs), are increasingly being used in clinical 

screening and treatment decision making. For example, DBNs and BNs have been used in 

the domain of nosocomial infections [21], pneumonia [22], cardiac surgery [23], gait 

analysis [24], osteoporosis [25], oral cancer [26], colon cancer [27], cervical cancer [28], 

and breast cancer [29, 30, 31, 32]. Notably, [33] proposed a Bayesian network for lung 

cancer built from both physical and biological data (biomarkers) for the prediction of local 

failure in non-small cell lung cancer (NSCLC) after radiotherapy. This integrated approach 

was tested on two different NSCLC datasets with the biological data contributing the most in 

the model’s performance. In this study, to handle the inherent temporal nature of screening 

observations over time, we propose a set of DBNs to obtain individualized predictions for 

patients at high-risk for lung cancer. In the following sections, we present the methodology 

as well as the theoretical formulations supporting our model.

3. Methods

We used the NLST dataset to create DBNs for the prediction of lung cancer incidence. The 

description of the dataset, overall methods, measured outcomes, and statistical evaluation 

methods used in this study are as follows.

3.1. The NLST dataset

The NLST is a randomized, multi-site trial that examined lung cancer-specific mortality 

among participants in an asymptomatic high-risk cohort. Subjects underwent screening with 

the use of low-dose CT or a chest x-ray. Over 53,000 participants each underwent three 

annual screenings from 2002–2007 (approximately 25,500 in the LDCT study arm), with 

follow-up post-screening through 2009. Lung cancers identified as pulmonary nodules were 

confirmed by diagnostic procedures (e.g., biopsy, cytology); participants with confirmed 

lung cancer were subsequently removed from the trial for treatment.

The NLST dataset provides a longitudinal perspective on high-risk lung cancer patients in 

terms of demographics, clinical history, and imaging data. We used subjects from the LDCT 

arm, across all three screening events and the post-screening period of the trial. Information 

used in our study includes: demographics (e.g., age, gender, body mass index); smoking 

history; family history of cancer; personal history of cancer; history of comorbidities related 

to lung cancer; occupational exposures (e.g., asbestos, coal, chemicals); and LDCT 

screening outcomes. Table 1 summarizes the number of cases determined to have cancer 

during any of the three imaging points of intervention (and the remaining number of non-
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cancer patients), as well as post-screening cancer patients (i.e., those individuals who went 

on to develop lung cancer after the third screening event).

Based on the true state of each patient (i.e., cancer or non-cancer) we designed a simplified 

state space model representing the “ground truth” disease state of each patient, after each 

screening time point. Figure 1 represents the state-space and the allowed transitions through 

these states. No-Cancer (NC) is the state in which the individual has no abnormalities or has 

abnormalities that are not suspicious for lung cancer (e.g., lung nodules smaller than 4 mm). 

The In Situ-Cancer (SC) state captures an individual who has abnormalities suspicious for 

lung cancer (e.g., findings larger than 4 mm). In terms of lung cancer staging, the SC state 

captures Stage 0 and occult carcinoma stages [34]. The Invasive-Cancer (IC) state represents 

individuals with confirmed diagnoses of cancer through the use of additional diagnostic 

procedures (e.g., biopsy). The IC state captures Stage IA–IV lung cancers. The Treatment 

state represents the state in which the individual was confirmed with cancer and is receiving 

treatment. Lastly, the Death state indicates an individual who is deceased, either from the 

cancer (without treatment) or due to some other cause. From this state model, the three 

cancer-related states (NC, SC, IC) were used to represent discrete characterizations for a 

given patient’s likelihood of cancer following screening observations over time.

3.2. Dynamic Bayesian networks

A dynamic Bayesian network is a model that repeats the static interactions of a conventional 

Bayesian network over time [35]. In DBNs, we represent a joint probability distribution over 

temporal trajectories that specify the assignment of values to each random variable  at 

different time points t. A DBN follows the Markov assumption in which the future state of 

the system only depends on the current state of the system and is independent of the past. 

Thus, in the case of a DBN, which is an unrolled Bayesian network, the random variable Xi 

of the network will depend only on its parents, Par(Xi).

(1)

The structure and the probabilities P(X(t+1)|X(t)) can be assumed the same for all t (i.e., time 

invariant). Such a system is a stationary dynamical system. In this case the model can consist 

of two parts [36]:

1. A prior model that specifies the initial distribution of the process:

(2)

2. A transition model that specifies the evolution of the process across time 

points:
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(3)

A DBN can be used to estimate conditional distributions through the use of the chain rule for 

Bayesian networks. This ability was used in our lung cancer screening DBN to obtain the 

probability of a positive outcome of a biopsy for a given individual. Equation 4 represents 

the conditional probability of variable  given evidence about certain random variables X 
= {X1, ..., Xn−1} in the network structure.

(4)

An example of the computation of the probability of the Biopsy outcome on a patient at the 

second screening (t = 1) based on the networks in Figure 2 is shown below. The computation 

of the conditional probability is based on the evidence of the individual on the variables of 

the model:

3.3. The lung cancer screening DBNs

Deriving a DBN broadly involves two steps. First, deriving the structure (i.e., a directed 

acyclic graph); and second, parameterizing the network structure (i.e., estimating the 

probabilities for the CPTs of the network). In this work, we used the NLST dataset to build 

five different variations of networks: three expert-driven DBNs (“backward construction”) 

and two DBNs derived from structure learning methods. Specifically, the models are as 

follows:

• The expert-driven DBNs consist of two Forward-Arrow DBNs (see Figure 

2a) and one Reversed-Arrow DBN (Model B, see Figure 2b): 1) a 

Forward-Arrow DBN using a NoisyMax gate (Model A) for parameter 

reduction of the Cancer node, and for comparison, 2) a Forward-Arrow 
DBN without a NoisyMax gate (Model C); and 3) a Reversed-Arrow DBN 

(Model B, see Figure 2b), providing an equivalent naïve Bayes classifier in 

the first time point.

• The learned DBNs consist of two DBNs created through structure learning 

methods; 4) a learned DBN with “compositional” variables (Model D); 

and 5) a learned DBN without “compositional” variables (i.e., with 

variables as referenced in the NLST dataset, see Appendix Section B) – 

(Model E).

The design process of the models consisted of five steps:
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1. Variable selection. The structured data captured during the NLST 

provides a wide array of variables that can be considered in a predictive 

model. To confine the scope of variables considered, we limited 

consideration to variables found in previously published studies [18, 17, 

20], as well as comorbidities and exposures known to be correlated with 

lung cancer. Information on family and personal cancer history, and 

related diseases were represented as “compositional” variables, combining 

several pieces of evidence into one larger variable. For example, the family 

history variable is the aggregation of the father, mother, sibling, and child 

having had cancer. This approach reduces the dimensionality of the 

associated conditional probability tables (CPTs) in the network. Figure 2 

depicts all the variables of our models; more information on all the 

variables used, can be found in Section B of the Appendix. In the case of 

the learned DBN without “compositional” variables, all the variables 

shown in Section B of the Appendix are nodes in the network.

2. Defining the structure (network topology).

• Defining the structure of the backward construction 
DBNs. The Forward-Arrow and Reversed-Arrow DBNs 

were constructed using a backward construction process, 

in which we have our variable of interest, in this case lung 

cancer, and the associated precursors and related 

contributors to the disease (leftmost part of the networks at 

(t = 0), as shown in Figure 2 (a)–(b)). The middle and 

rightmost parts of the networks (t = 1, t = 2) reflect the 

observations made during screening in the NLST trial. 

This approach [35] aims to reflect a causal hierarchy for 

lung cancer screening, in which causes are parents of 

effects. For example, the evidence of growing 

abnormalities in an individual’s CT screening exam is one 

of the causes of an individual having a positive biopsy 

outcome.

• Defining the structure of the learned DBNs. The 

structures of these networks (see Appendix 8) were 

learned using the Bayesian search algorithm (see 

Appendix E Table 7) provided in Genie [37], enforced 

with temporal background knowledge. That is to say, we 

preserved the transition model structure of the DBNs 

across screenings (e.g., we enforced the fact that the 

Cancer node at the first screening precedes the Cancer 

node at the second screening, and that each Cancer node is 

at least linked to its corresponding LDCT outcome node).

3. Computing the probabilities. Given these network topologies, the CPTs 

and associated probabilities were computed from the observational data of 
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the NLST dataset. The Forward-Arrow DBN with a NoisyMax Gate (A), 

the Reversed-Arrow DBN (B) and the learned DBNs (D,E) were 

parameterized using the expectation maximization (EM) algorithm. The 

EM algorithm iteratively calculates log-likelihood estimates of the 

parameters of the network given the data and the structure of the network 

[38]. For the leftmost part’s random variables, such as Gender and BMI, 

the CPTs represent an estimate of the probability distribution of the 

variables in the training set. For instance, the CPT for the random variable 

Gender represents the percentage of females vs. males in the training set. 

The Cancer node, at baseline, has the most complex CPT table in terms of 

dimensionality. In the Forward-Arrow DBN the number of parameters of 

the Cancer node at baseline is 2,304. This CPT consists of conditional 

probabilities that represent the percentage of cases in the training set in 

one of the three states (NC, SC and IC) of the Cancer node and the 

different combinations of risk factors in the leftmost part of the network. 

To deal with this high number of parameters and estimate these parameters 

from our data, we used a NoisyMax gate to represent the Cancer node. 

The NoisyMax gate reduced the number of parameters of the Cancer node 

CPT from 2,304 to 60. NoisyMax, which is a generalization of the 

NoisyOR gate, can be used to represent more highly connected nodes [39] 

by taking advantage of the independence of causal interactions to provide 

a logarithmic reduction in the parameters of a complex CPT. The LDCT 

CPT represents the percentages of cases in each of the three states NC, SC 

and IC of the Cancer node, with one of the three outcomes (growth, stable, 

or negative) after their first LDCT screening at baseline. The Biopsy 

node’s probabilities of a positive/negative outcome were abstracted from 

the literature (i.e., the false negative/positive rate for biopsies) [40]. The 

Death node represents the death rate of individuals across the whole NLST 

dataset at the onset of trial. Both the Biopsy and Death nodes in all models 

were set as fixed nodes (i.e., fixed CPT parameters) during 

parameterization. The Forward-Arrow DBN without a NoisyMax Gate 

was not parameterized using the EM algorithm. More details regarding the 

parameterization of this Forward-Arrow DBN without a NoisyMax gate 

can be found in Section F.1 of the Appendix.

4. Computing the probabilities of the transition model. Our DBN models 

are not stationary systems. Even though the transition model structure of 

the networks is repeated over the three time points of the process, the 

transition models’ CPTs change based on the number of cancer cases 

detected in the NLST dataset annually. For example, the Cancer node at t 
= 1 and t = 2 represents the percentage of cases that transitioned from one 

of the three states at t = 0 and t = 1 to one of the three states of the Cancer 

node at t = 1 and t = 2, respectively. The LDCT nodes’ CPTs at t = 1 and t 
= 2 represent the percentage of cases in each of the three states NC, SC 

and IC of the Cancer node with one of the three outcomes (growth, stable 
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or negative) after the second and third LDCT screening. The Biopsy and 

Death node CPTs at t = 1 and t = 2 (fixed nodes) are the same as in 

baseline. Our DBNs were parameterized using the EM algorithm, in a 

manner akin to a regular Bayesian network (BN) given the way that the 

growth of nodules were reported in the NLST trial. The reporting of 

nodule growth in the NLST trial commenced in the second screening 

period. For example, a suspicious abnormality (>4 mm, considered as a 

positive finding) that remained stable in size in the second screening was 

classified as “stable” but if this occurred in the third screening, this 

abnormality could have been classified as negative. Additionally, during 

the first screening point all suspicious abnormalities were classified as 

positive and all non-suspicious abnormalities and negative screenings as 

negative. There was no reporting of stable cases in the first screening of 

the trial, as there was no comparison LDCT scan at baseline. This way of 

abnormality reports was partially continued for a portion of cases in the 

second screening and eliminated by the third screening of the trial.

5. Training and testing. Given a training set with data for each node of our 

networks, all the models were trained with the Biopsy and Death nodes set 

as fixed nodes (i.e., fixed CPT parameters). In testing, we had to take into 

account temporality. We tested each Biopsy node independently and in 

sequential order. In addition, during testing, instantiating the cancer nodes 

with evidence would require the individual to undergo additional 

diagnostic procedures such as a biopsy to confirm their cancer stage. Our 

classification task was to identify whether individuals should undergo a 

biopsy given that the positive Biopsy probability is significantly high. This 

classification was deemed correct if the individual with a high probability 

of a positive Biopsy had developed cancer and vice versa. Thus, during 

testing, we did not instantiate any cancer nodes at any screening point of 

the trial as cancer staging is only validated using additional diagnostic 

procedures. While this inevitable uncertainty is unfortunate, according to 

d-separation constraints, it allows the probabilistic influence flow between 

nodes at any screening point of the trial, for the Forward-Arrow DBNs.

3.4. Comparison methods

All DBN models were compared with a naïve Bayes model, in which each screening was 

modeled as independent. Figure 8 in Section E of the Appendix depicts the structure of the 

naïve Bayes model. This model was trained using the EM algorithm, and tested in Genie. A 

logistic regression model (LR) [41] without spiculation, trained and tested on NLST cases at 

baseline, and a decision tree model were also employed for comparison purposes. The 

decision tree model was implemented using RapidMiner, which uses a variation of the C4.5 

algorithm.
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4. Evaluation and results

A 10-fold cross-validation was conducted on the complete NLST dataset for each model. 

The NLST dataset is an imbalanced dataset. The ratio of cancer to non-cancer cases is 

1083:24461, or around 1 cancer case for every 24 non-cancer cases. As such, imbalance 

problems arise in classic cross-validation studies: a model trained mainly from negative 

cases will tend to be inherently biased towards the majority class. Notably, metrics such as 

the receiver operating characteristic (ROC) curve and the area under the curve (AUC) can be 

deceiving when training and testing on imbalanced datasets [42]. In our situation, such an 

evaluation will always have a high accuracy, and thus would not provide insight into whether 

the model truly identifies cancer cases and how it compares with other models. More 

informative metrics for imbalanced datasets include precision, recall, and the F-Score [42]. 

In Section H, Figure 21 of the Appendix we present the F-score over recall curves of the 10-

fold corss-validation evaluation of the Forward-Arrow DBN model with a NoisyMax gate. 

The F-score curves improve with additional screenings. However, we note here that we 

cannot truly evaluate whether our model truly identifies cancer cases, compared with other 

models over the same dataset, given the large number of non-cancer cases that flatten the F-

score curves.

One approach to deal with data imbalance problems is through the use of resampling 

techniques [43]. In this work, we under-sampled the training and test sets from the majority 

class (i.e., non-cancer cases) to preserve a 1:1 ratio of the cancer to non-cancer cases. The 

models were trained and evaluated a total of 10 times. Each time, the training and test sets 

were randomly selected from the NLST cohort and each consisted of 200 cancer cases and 

200 randomly selected non-cancer cases, matched by age and gender. This process was used 

to assess overfitting and the variability in accuracy of the models, as well as to create a 

balanced dataset for computing the associated probabilities of a positive Biopsy of an 

individual. Figure 3 illustrates this process. Additionally, the models were tested against the 

full NLST dataset to assess generalization.

The evaluation of the models was based on the computed probability of the Biopsy variable 

for a test case, given all prior and current evidence, for each of the three intervention points 

of the NLST trial. A threshold, θ, was determined for the probability value of Biopsy to 

indicate a positive biopsy outcome (i.e., probability values below θ were non-cancer cases, 

values larger or equal to θ were cancer cases). This enabled us to perform a binary 

classification. A positive case prediction by a physician represents any case that resulted in 

ordering an additional diagnostic procedure. Subsequently, we present for each screen the 

sensitivity and counts of cancer cases detected by our models at specific thresholds for θ, 

which were determined based on the distribution of the positive Biopsy probability values 

(see Figure 4), as well as the receiver operating characteristic (ROC) curve. For discussion 

purposes we focus our models’ comparisons with models A and B. Figure 4 depicts the 

probability of a positive biopsy, as predicted by the models in each screening, of confirmed 

cancer (red) and non-cancer (blue) cases in the trial. Both DBN A and B tend to discriminate 

cancer and non-cancer cases better with increasing number of screenings. The thresholds for 

θ were chosen in a way that favors recall. For example, each threshold aims to minimize the 

number of cancer cases missed while preserving an acceptable rate of falsely predicted 
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cancer cases. The results for each of the 10 randomization test sets and resultant models as 

well as the physicians’ predictions were averaged for visualization purposes.

Comparison with experts

Concordance between the models’ positive prediction for a biopsy (i.e., ≥ θ) and a NLST 

clinician’s recommendation for biopsy and confirmation of lung cancer was determined. The 

identification of cancer cases was comparable, across the three intervention points of the 

trial for our lung cancer screening DBNs. In terms of the number of predicted cases and 

discrimination of the same cases, to physicians’ performance during the NLST, as shown in 

Table 2. After each screening point, cases that were confirmed as positive lung cancers or 

deceased were removed in the subsequent screening evaluation. The McNemar’s test for 

each of the contingency tables of similar cases was significant (p < 0.01), in each of the 

three intervention points of the trial. This means that the contingency tables of similar cases 

are asymmetric and confirms that the models minimize the false negative (fn) rate of cancer 

cases while maintaining an acceptable false positive (fp) rate. Additionally, the 95% C.I. of 

the type I and II errors (b – c) and of the test of proportions (p2 – p1) demonstrate that the 

direction of this asymmetry is toward the fp cases.

Moreover, we examined whether models A and B can predict the majority of cancer cases at 

a specific screening point of the NLST trial and assessed whether these models could 

identify cancer cases before their occurrence. We evaluated how many of our false positive 

cases in each screening of the trial turned out to be cancer cases later in the trial. Figure 5 

illustrates the sensitivity of the lung cancer screening DBNs in each screening, as well as the 

counts of the predicted number of cancer cases by the models with the total number of true 

cancer cases in the trial. Figure 5 also illustrates how many false positive cases at a 

particular screening point of the trial end up being cancer cases in future screening points. 

Interestingly, a significant portion of false positive cases are cancer cases in subsequent 

screenings. Note that confirmed cancer cases from the trial first received a LDCT screening 

exam, and were then subsequently confirmed through the use of additional diagnostic 

procedures. In comparison, the DBN models infer that these cases are likely cancer without 

the diagnostic procedure (i.e., the outcome of a biopsy will likely be positive).

ROC curves with 95% confidence intervals for the first, second, and third screens are shown 

in Figure 6. Table 3 summarizes the area under the curve (AUC) for each screen’s evaluation 

and the corresponding confidence interval. The AUC increased with increasing number of 

screens, which suggests that the models’ predictive power improves with time. The AUCs of 

the Forward-Arrow DBN without a NoisyMax gate, the two learned DBNs and the naïve 

Bayes model are similar to DBN A and B and can be found in Table 3. More details on the 

results of the evaluation of each model are provided in Section F of the Appendix. Overall, 

all models have similar AUCs and confidence interval (C.I.) of the AUC for each screening. 

The learned DBNs have similar performance to all models except the AUC and C.I. of the 

AUC for the first screening of model E, which is lower and higher, respectively, compared 

with the other models. In addition, as shown by the NLST and the models themselves, 

performance is improved with consecutive screens. This is evident both from Table 2 as well 

as the precision/recall (PR) and F-score curves (see Appendix I and H) computed for each 
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screening time point. The desirable performance of PR and F-score curves is to be in the 

upper-right-hand corner. The PR and F-score curves in Appendix I and H tend to move 

towards the upper-right-hand corner with increasing number of screenings. Models A-E 

achieved the best PR curves across screenings with PR curves improving with increasing 

number of screenings. The worst PR curves, which are in the bottom-left-hand corner, are 

the naïve Bayes model (see Appendix I). The naïve Bayes PR curves get worse with 

increasing number of screenings, indicating overfitting to specific features, such as the 

LDCT outcome. We have also tested the performance of a decision tree on the dataset, using 

a variation of the C4.5 algorithm. The decision tree performance was extremely low 

compared to the other models and is not reported.

The models’ predictive power was also assessed by investigating the number of future 
cancer cases predicted by the models using only observations from one screening. For 

example, if we were testing for cancer cases at t = 0 (first screening) we assumed that all 

cancer cases at t > 0 were cancer cases at t = 0 (i.e., ignored time). In this way, we can 

evaluate how many cancer cases are predicted before incidence. Out of the 121 true positive 

cases detected by DBN B on the first screening (see Table 6 of the Appendix), given that the 

DBN predicted 51 cancer cases that were cancer cases of the first screening (see Figure 5 - 

top left), the DBN predicted 70 additional cancer cases that were diagnosed with cancer later 

in the trial (see Table 6 in Appendix C).

Assessing model performance given missing data

We grouped all cases in the study that missed the second screen in the NLST, but underwent 

the first and third screens. There were 417 such cases in the complete NLST dataset, which 

we used to evaluate whether the models could predict the cancer status (e.g., cancer or non-

cancer) of an individual that missed the second LDCT screening exam and was subsequently 

screened at the third screen. Table 4 provides the contingency tables for these cases that 

went on to develop cancer by the third screening or after the third screening. DBN A and 

DBN B managed to predict 8 and 6 out of the 11 cases, respectively, that developed lung 

cancer by the third screening, and both the DBNs predicted 4 out of 7 cases that developed 

cancer after the third screening.

The NLST dataset is complete in terms of patient information (i.e, parent nodes). To 

evaluate the effect of missing data on the parent nodes in the training set and the end 

performance of the Forward-Arrow DBN without a NoisyMax gate we randomly selected 

parent nodes and assigned missing data to each one to simulate a “missing at random” 

scenario. For example, we selected one random parent node and set 50 random cases with 

missing values for that node. We repeated this in incremental steps of 50 cases up to 350 

(our training set consisted of 400 cases). We then reiterated the process with two random 

parents, increasing up to all parent nodes. Our results showed that the AUC and the 

confidence interval of the AUC remained relatively stable. Changing the distribution of these 

priors does not significantly affect performance. The highest impact on performance of the 

AUC, which was of the order of -0.01, was on the first screening. This subtle change may be 

attributed to the fact that biopsy and cancer nodes of the first screening are conditionally 
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dependent on the priors. A strength of influence diagram of each structure depicting the 

influence amongst variables in each network is provided in Appendix E.

Generalization and comparison to other models

We assessed the generalizability/overfitting of the models on the whole NLST dataset. Table 

5 depicts that the true positive (tp), false negative (fn), false potive (fp) and true negative (tn) 

rates of the model over the whole dataset and the random balanced test sets appear stable. 

The number of test cases in the whole dataset and in the random balanced test set are 25446 

and 400, respectively. Lastly, we compared how the full logistic regression model (LR) of 

[41] without spiculation performs on the NLST cases at baseline. We first evaluated how the 

LR performs on the NLST cases when trained with NLST cases and we also evaluated how 

the parameterized model, with parameters published in [41], performs on the NLST cases. In 

both cases, compared to the DBN, the LR maintains a high true negative rate, a high false 

negative rate, and a significantly lower true positive rate (see Table 5). The LR models were 

evaluated only on baseline as they were trained and evaluated in [41].

5. Discussion

In this work we built and tested five different DBNs for lung cancer screening prediction 

using backward construction and structure learning methods. Given the uncertain nature of 

lung cancer and the necessity to perform a biopsy to confirm the underlying disease we used 

a three-state cancer state-space model to represent the cancer status of an individual along 

the screening process. Such a representation offers the following advantages. First, it 

represents the cancer state of an individual in terms of cancer staging that captures concepts 

like disease dynamics and nodule growth, instead of the standard binary “yes” and “no” 

states. Second, the fact that the cancer nodes are never instantiated with evidence due to the 

uncertainty of the disease during testing (i.e., cancer staging is only validated using 

additional diagnostic procedures) allows the flow of probabilistic influence of demographic 

characteristics as well as previous screening outcomes on any screening point of the trial 

(i.e., via d-separation and sequential configuration). The performance of the learned DBNs is 

similar to that of the Forward-Arrow and Reversed-Arrow DBNs. The results of the learned 

structures demonstrate similar relationships to those in the expert-driven Forward-Arrow 
models with respect to the imaging assessment over time (see Figure 8 in Appendix E); 

additional relationships were inferred, but without significant change in model performance. 

Qualitatively, the expert-driven models provide a more straightforward understanding of the 

relationship between variables over time. Markedly, the NLST trial patient information (e.g., 

demographics) was captured only at the start of the trial. While some measures are typically 

invariant over time (e.g., gender), various measures do change over time (e.g., age, body 

mass index). The underlying dataset did not have these latter variables reflected in 

subsequent time points in the screening process. In our opinion, it would be inaccurate to 

model them as such (and the imaging interpretations were also not informed by any such 

additional information). Nevertheless, given such data at different time points, the 

performance of the DBNs could improve with additional modeling.
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Based on the results of our evaluation, DBN A and B provide results comparable to the 

radiologists who participated in and read the NLST LDCT imaging studies. We also tested 

other models on this dataset such as decision trees and a naïve Bayes model, but their 

performance was suboptimal compared to the DBNs. The use of a DBN for our analysis 

rather than a BN network as in [32, 33] takes into account the temporal evolution of a 

cancer, with improved performance in the discriminative ability of the model in future 

screenings. A standard 10-fold cross-validation method on the entire dataset would be ideal 

to assess overfitting. But given the class imbalance present in the dataset (1:24 cancer to 

non-cancer cases), we would not gain insight into the models’ ability for the more important 

predictive classification of cancer. [43] used similar methods to deal with imbalance in their 

dataset, but instead chose to oversample the minority class until a 1:1 ratio was achieved in 

their training set. They also reported metrics such as precision, recall, and F-score to 

compare performance against imbalanced datasets. The AUC for all networks remained 

higher than 0.75 in the balanced test sets across the three screening points of the trial, and 

the AUC curves improve over time. The use of balanced test sets allows the effective 

comparison of each model in the ROC and PR space over the cancer class. We can see that 

all models’ performance were comparable in the ROC space (AUC of the ROC). However, 

in the PR space we also see that all models have a clear advantage over the naïve Bayes 

model (see Appendix I Figures 23 – 29). This model adjusts to very specific features, such 

as the LDCT nodes, and thus overfits its predictions on these features. It can accurately 

discriminate negative cases (comparable AUC to other models); but when asked for the 

probability of a real cancer case given that this cancer case is predicted by the model (PR 

curve), its performance is lower.

Models A and B were also able to identify a significant number of cases at each intervention 

point of the trial that were future cancer cases (see Appendix C). The Brier score as well as 

the calibration curves of DBNs A and B improve with the increasing number of screenings 

(see Appendix D), demonstrating the ability of the models to perform calibrated cancer 

incidence predictions over time. Interestingly, the lung screening DBNs A and B only 

require a small training set, on the order of 50 times smaller than the original dataset, to 

make predictions on a large number of cases they have never encountered before. The 

models demonstrate good discrimination when evaluated on the whole NLST dataset. In 

addition, the tp, fp, fn and tn rates over the whole dataset compared to the random balance 

test sets are consistent and in some cases better. Still, it is important to note that in this study 

the DBNs were developed and trained using data from a randomized controlled trial, where 

information was gathered in structured case report forms and a large degree of 

standardization took place. Despite the performance over the entire NLST dataset, real-

world application of these DBNs will require adaptation to handle observations made from 

routine clinical screening processes (i.e., adjusting for “noise” and variance). Ultimately, 

external validation of the DBN is required.

DBNs present certain advantages regarding lung cancer incidence prediction, including their 

ability to utilize datasets with missing data. Although the NLST dataset is from a controlled 

trial, and thus is largely complete with only some missing data (e.g., due to individuals 

missing a screening exam), our models appear to be robust against missing values and still 
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make reasonable predictions in light of missing data. In our investigation of the cancer status 

of cases that missed only the second NLST screening, both DBN A and B predicted the 

majority of cases that were cancer cases by the third screening or after the third screening of 

the trial. Suggesting that certain lung cancer risk factors and the outcome of the first LDCT 

are sufficient for an accurate future prediction of cancer. This short-term predictive ability 

may be applicable in cases where missing a screening exam would result in symptomatic 

cancer. Cases with missing data were also used in the training phase of the DBN without 

affecting the models’ predictive ability. We can improve the parameterization of a model 

from cases with incomplete data by only using the information we do have for each case, 

with incomplete data, for the computation of the corresponding CPT tables of the DBN 

network. For example, cases that developed lung cancer at the baseline of the trial before 

they received their first screening exam, even though we do not have information about them 

after baseline, were still used in the computation of the baseline CPTs (e.g., Gender, Age). 

To match a real lung cancer screening setting we included all of the aforementioned cases in 

our evaluation. We used the EM algorithm to train the Forward-Arrow DBN with a 

NoisyMax gate, the Reversed-Arrow DBN, and both the learned DBNs. One advantage of 

the EM algorithm is its ability to estimate the parameters of a network using the observed 

data. In particular, it iteratively fills in missing values with estimated values and 

subsequently re-estimates the parameters from this complete dataset. We believe it would be 

inappropriate to estimate the disease status of a deceased individual in subsequent screenings 

as individuals who died during the course of the trial, or who were diagnosed with cancer, 

were removed from the screening process of the trial. Thus, in the Forward-Arrow DBN 

without a NoisyMax gate, we estimated the parameters of this network empirically from 

observations in the dataset. Interestingly, both techniques provide similar results (see 

Appendix F). As such, EM would be a more appropriate algorithm in cases that missed a 

screening exam but is unsuitable with participants who were diagnosed with cancer or who 

died during the course of the trial. A method that takes into account both types of missing 

data would be more appropriate in eliminating bias during training. When compared with 

the full logistic regression model without spiculation [41] the Lung Screening DBNs had 

better tp, fp and fn rates. This suggests a superior discriminatory power on the NLST 

dataset. Nevertheless, the LR model’s results in Table 5 are trained and tested on a specific 

portion of the dataset: individuals with reported nodule abnormalities and nodule 

consistency. The DBN models, in contrast, were trained on a balanced set of cancer cases 

and non-cancer cases, with the majority of non-cancer cases without abnormalities. Also, the 

classification task of each model is somewhat different. For example, our DBN models 

identify lung cancer individuals whereas the LR model identifies cancerous nodules. Further 

investigation and standardization of the dataset and the classification task of the different 

types of models would be more appropriate for such a comparison. But similar to other 

models, baseline information on smoking status, demographics, health status, history of 

cancer, and exposure risk factors were employed as inputs. However, we did not use 

quantitative imaging information. McWilliams et al. [41] utilized the maximum nodule size, 

the type of nodule, and the number of nodules per CT scan, resulting in a parsimonious 

multivariate logistic regression model. Their models achieved an AUC higher than 0.90. In 

this study, we did not explicitly use nodule characteristics in our analysis, but rather included 

the interpretation of the LDCT by the radiologists, which was based on nodules’ overall 

Petousis et al. Page 15

Artif Intell Med. Author manuscript; available in PMC 2017 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



growth between consecutive screening exams. We speculate that a nodule’s rate of growth is 

a significant predictor of lung cancer, as all our models and physicians’ predictions improve 

given the progression of information. An exploration of how much “history” is needed in 

terms of interpretation and predictive power is also required: it may be that in this domain, 

only the past n years of observation are required (rather than the entire longitudinal history). 

The NLST only provided three time points, so it is not possible to ascertain what amount of 

information would be optimal for temporal analysis of lung cancer screening data. The use 

of nodule features such as consistency, location, and size would be strong predictors of lung 

cancer [44] and will be included in subsequent biterations of our model in combination with 

automated segmentation methods [45] to automatically provide additional evidence for 

predicting diagnoses.

We recognize that there are some limitations to this work. For example, the screenings 

received by the individuals in the NLST were not exactly at the same three discrete time 

points; (on the contrary they had a continuous nature as individuals received their screenings 

at different days). Given the nature of real-world implementation of lung screening 

programs, it is unlikely that a fixed time frequency of observation will occur, for any number 

of reasons. As such, a DBN may ultimately not be well-suited to handle longer sequences of 

observation and clinical decision-making. Alternative continuous time temporal models will 

be explored as part of our future work. Also, the thresholds used in this work were selected 

to favor recall, providing a conservative prediction that would err on the side of detecting a 

cancer, rather than missing a cancer case. Thus, the optimal threshold was considered to be 

one that minimized the number of cancer cases while having an acceptable false positive 

rate. The use of threshold-determining methods that take into consideration factors such as 

utility of life and monetary costs will be looked at in the future.

6. Conclusion

In this work we explored five DBNs for lung cancer screening constructed using the results 

of the NLST study. We demonstrated the challenges in providing screening 

recommendations using a DBN. We dealt with data imbalance and introduced a training and 

testing procedure for DBNs in uncertain diseases, such as cancer that uses a hidden cancer 

node, during testing, built on a cancer staging state-space model. Parameter reduction 

methods and the EM algorithm for parameterization with missing data were also explored. 

The DBNs aim to identify individuals who will go on to develop lung cancer based on data 

collected at baseline and radiologist interpretation in sequential (annual) imaging exams. All 

models achieved high AUC scores across all three screening points of the NLST, 

demonstrating comparable performance to the experts. As may be expected, the DBNs 

performance improved over time, as more information about the history of the patient 

unfolded. Additionally, the models ability to predict future cancer cases in advance was also 

examined, finding that they were able to identify some cases before the expert (i.e., cases 

that were deemed false positives by a radiologist, but that in later studies, proved to be 

cancer). This work is the first step in understanding how we may subsequently tailor the 

lung cancer screening process to optimize early detection while minimizing false positive 

findings.
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Appendix

A. Eligibility criteria

The eligibility criteria used to obtain the complete set of 25, 846 cases from the CT arm of 

the NLST dataset were: 1) the participant to be eligible to participate in the NLST trial in 

terms of the NLST eligibility criteria (e.g., age between 55–74 years old); 2) the 

participant’s last contact status to be either active or deceased; and 3) the participant’s case 

to be neither withdrawn or lost.

B. Variables

Variables used from the NLST data and the associated categories/discretizations in the 

dynamic Bayesian network are as follows:

Variable Name Description Discretization

Age Age of the individual Under 60 years old; Between 
60 and 70 years old; and More 
than 70 years old

Gender Gender of the study subject Male, female

Smoking status The smoking status of the individual at the outset of the 
NLST.

Yes, no

Body mass index 
(BMI)

Height/weight ratio of the individual at the start of the 
NLST

Underweight, normal, 
overweight, obese

Cancer history Specifies if the individual had a prior history of bladder, 
breast, cervical, colorectal, esophageal, larynx, lung, 
nasal, oral, pancreatic, pharynx, stomach, thyroid, or 
transitional cell cancer.

Yes, no

Disease history Boolean variable representing the individual’s history of 
diagnosis of asthma (adult or childhood), COPD, 
emphysema, fibrosis of the lung, sarcodosis, or 
tuberculosis.

Yes, no

Work history Represents work-based exposures related to the 
development of lung cancer, including asbestos, coal, and 
other chemicals.

Yes, no

Family history of 
lung cancer

Boolean variable indicating if an immediate family 
member (parent, sibling, child) was previously diagnosed 
with lung cancer.

Yes, no

Cancer This variable represents the state of the individual to have 
a suspected lung cancer, based on Figure 1.

LDCT The outcome of the imaging study for the individual, 
based on radiologist interpretation.

Screening with abnormalities 
detected and growth since prior 
study; Screening with 
abnormalities detected but no 
growth or change since prior 
study; no abnormalities

Biopsy The results of a diagnostic biopsy. Positive, negative

Death Boolean variable giving the probability of death. Yes, no
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C. Prediction of future cancer cases

Table 6

Top: Contingency table that represents an evaluation of the DBN predictions from the first 

screen with all cancer cases in the trial in the 10 random balanced test sets, including the 

cancer cases of the first screening. Middle: a Contingency table that represents an evaluation 

of the DBN predictions from the second screen with the remaining cancer cases in the trial, 

including the cancer cases of the second screening. Bottom: A Contingency table that 

represents an evaluation of the DBN predictions from the third screen with all the remaining 

cancer cases in the trial, including the cancer cases of the third screening. The 150 true 

positive cases shown above on the first screening of DBN A, consist of the 51 true positives 

predicted by the model in the first screening evaluation without taking into consideration the 

remaining cancer cases of the trial. By including the additional future cancer cases the DBN 

is able to predict an additional 99 cancer cases which in the initial evaluation were 

considered as false positives. This means that the majority of false positives predicted in the 

first screening in future screenings are true cancer cases.

DBN A Predictions DBN B Predictions

First Screening 150 (tp)
124 (fp)

47 (fn)
77 (tn)

121 (tp)
64 (fp)

76 (fn)
121 (tn)

Second Screening 58 (tp)
20 (fp)

76 (fn)
172 (tn)

58 (tp)
19 (fp)

76 (fn)
172 (tn)

Third Screening 45 (tp)
13 (fp)

58 (fn)
175 (tn)

45 (tp)
13 (fp)

58 (fn)
175 (tn)
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D. Calibration curves

Figure 7. 
The calibration curves of the DBN models for each screening as well as the Brier Score. The 

Brier score decreases with time between screenings. Bottom: Histogram of the positive cases 

over the probability of a positive Biopsy for each screening.
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E. The DBN networks

Figure 8. 
The network Structure and the strength of influence depicted by the arrow thickness 

connecting the two variables. (a) The Forward-Arrow DBN without the NoisyMax gate; (b) 

The Forward-Arrow DBN with a NoisyMax gate as a cancer node at t = 0; (c) The Reversed-
Arrow DBN; (d) The Learned Network with compositional nodes. The Learned DBN 

without compositional variables is not depicted due to the high complexity in structure.

Table 7

Structure learning algorithm parameters.

Structure Learning

Dataset number of cases 25046

Learning Algorithm Bayesian Search

Algorithm Parameters

Max parent count 8

Iterations 20
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Structure Learning

Sample size 50

Seed 0

Link Probability 0.1

Prior Link Probability 0.001

Background Knowledge

Forced Arcs 5

Nodes assigned to tiers 6

F. Statistics

We present the results of the performance of each DBN structure over the same random 

balanced test sets of 400 cases (200 cancer and 200 non-cancer cases). All DBNs were 

trained on balanced training sets of 400 cases (200 cancer and 200 non-cancer cases). The 

thresholds used in these evaluations are 0.04, 0.21 and 0.25 for each screening, respectively.

F.1. The Forward-Arrow DBN without a NoisyMax gate

The Forward-Arrow DBN without a NoisyMax Gate was not parameterized using the EM 

algorithm. All nodes CPT tables’ probabilities were empirically estimated from the dataset 

observations except from the Biopsy (abstracted from literature) and Death (death rate at 

baseline) nodes which were fixed nodes and the Cancer node at baseline. The Cancer 

variable would be impossible to parameterize without imposing some domain assumptions 

about an individual’s cancer state as this node consists of 2304 parameters and 3 states 

(Non-cancer, In Situ, Invasive Cancer). The data do not contain sufficient observations to 

represent every single parameter (i.e., combination of parent state to effect node state). We 

dealt with this parameterization problem by using the following two assumptions. First, we 

assumed that every state combination with no instances in the In Situ or Invasive Cancer 

state in our data would imply that the majority of instances are in the Non-cancer state. 

Second, when we had data instances for either the Situ or Invasive-cancer state, we 

computed the probabilities of those states and assumed that the remaining cases were in the 

Non-cancer states (i.e., probability complement). The reason we pursued this 

parameterization approach is that most existing training algorithms do not support the use of 

missing data (e.g., dead patients with no observations in subsequent screenings). For 

example, EM would be a more appropriate algorithm in the case of missing values (i.e., 

missing value of age or BMI). In such a case an EM algorithm would instead estimate a 

statistical estimate of that value. We believe it would be undesirable to estimate the disease 

status of a deceased individual in subsequent screenings as deceased/diagnosed with cancer 

individuals were removed from the screening process of the trial.
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Table 8

The tp, fp, tn, fn rates and the counts of tp, fp, tn, fn of the DBN for each screen respectively. 

The thresholds used for each screening were 0.04, 0.21 and 0.25 for screen 1,2 and 3 

respectively.

The Forward-Arrow DBN without a NoisyMax gate

Screen 1 Screen 2 Screen 3

Rates 0.927 (tp)
0.347 (fp)

0.073 (fn)
0.653 (tn)

0.903 (tp)
0.228 (fp)

0.097 (fn)
0.772 (tn)

0.854 (tp)
0.139 (fp)

0.146 (fn)
0.861 (tn)

Counts 51 (tp)
119 (fp)

4 (fn)
224 (tn)

28 (tp)
67 (fp)

3 (fn)
227 (tn)

35 (tp)
35 (fp)

6 (fn)
216 (tn)

Table 9

The reported AUCs of the ROC and the C.I. of the AUCs for each screening.

AUCs AUCs C.I. Interval

First Screening 0.789 0.774 – 0.804 0.0304

Second Screening 0.844 0.819 – 0.869 0.0496

Third Screening 0.884 0.863 – 0.906 0.0435

F.2. The Forward-Arrow DBN with a NoisyMax gate

Table 10

The tp, fp, tn, fn rates and the counts of tp, fp, tn, fn of the DBN for each screen respectively. 

The thresholds used for each screening were 0.04, 0.21 and 0.25 for screen 1,2 and 3 

respectively.

The Forward-Arrow DBN with a NoisyMax gate

Screen 1 Screen 2 Screen 3

Rates 0.96 (tp)
0.65 (fp)

0.04 (fn)
0.35 (tn)

0.87 (tp)
0.17 (fp)

0.13 (fn)
0.83 (tn)

0.83 (tp)
0.10 (fp)

0.17 (fn)
0.90 (tn)

Counts 53 (tp)
221 (fp)

2 (fn)
121 (tn)

27 (tp)
50 (fp)

4 (fn)
244 (tn)

35 (tp)
24 (fp)

7 (fn)
227 (tn)

Table 11

The reported AUCs of the ROC and the C.I. of the AUCs for each screening.

AUCs AUCs C.I. Interval

First Screening 0.778 0.757 – 0.800 0.043

Second Screening 0.857 0.834 – 0.880 0.046

Third Screening 0.887 0.869 – 0.905 0.035
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F.3. Reversed-Arrow DBN

Table 12

The tp, fp, tn, fn rates and the counts of tp, fp, tn, fn of the DBN for each screen respectively. 

The thresholds used for each screening were 0.04, 0.21 and 0.25 for screen 1,2 and 3 

respectively.

Reversed-Arrow DBN

Screen 1 Screen 2 Screen 3

Rates 0.93 (tp)
0.39 (fp)

0.07 (fn)
0.61 (tn)

0.87 (tp)
0.17 (fp)

0.13 (fn)
0.83 (tn)

0.83 (tp)
0.10 (fp)

0.17 (fn)
0.90 (tn)

Counts 51 (tp)
134 (fp)

4 (fn)
208 (tn)

27 (tp)
50 (fp)

4 (fn)
244 (tn)

34 (tp)
24 (fp)

7 (fn)
227 (tn)

Table 13

The reported AUCs of the ROC and the C.I. of the AUCs for each screening.

AUCs AUCs C.I. Interval

First Screening 0.798 0.776 – 0.821 0.045

Second Screening 0.858 0.832 – 0.884 0.052

Third Screening 0.887 0.866 – 0.907 0.041

F.4. Learned DBN with compositional variables (structure learning)

Table 14

The tp, fp, tn, fn rates and the counts of tp, fp, tn, fn of the DBN for each screen respectively. 

The thresholds used for each screening were 0.04, 0.21 and 0.25 for screen 1,2 and 3 

respectively. Bottom:

Learned DBN with compositional variables

Screen 1 Screen 2 Screen 3

Rates 0.93 (tp)
0.36 (fp)

0.07 (fn)
0.64 (tn)

0.87 (tp)
0.18 (fp)

0.13 (fn)
0.82 (tn)

0.81 (tp)
0.10 (fp)

0.19 (fn)
0.90 (tn)

Counts 51 (tp)
122 (fp)

4 (fn)
220 (tn)

27 (tp)
53 (fp)

4 (fn)
241 (tn)

34 (tp)
26 (fp)

8 (fn)
225 (tn)

Table 15

The reported AUCs of the ROC and the C.I. of the AUCs for each screening.

AUCs AUCs C.I. Interval

First Screening 0.790 0.769 – 0.810 0.040

Second Screening 0.862 0.839 – 0.886 0.047

Third Screening 0.877 0.858 – 0.896 0.038

Petousis et al. Page 26

Artif Intell Med. Author manuscript; available in PMC 2017 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



F.5. Learned DBN without compositional variables

Table 16

The tp, fp, tn, fn rates and the counts of tp, fp, tn, fn of the DBN for each screen respectively. 

The thresholds used for each screening were 0.04, 0.21 and 0.25 for screen 1,2 and 3 

respectively.

Learned DBN without compositional variables

Screen 1 Screen 2 Screen 3

Rates 0.95 (tp)
0.42 (fp)

0.05 (fn)
0.58 (tn)

0.81 (tp)
0.17 (fp)

0.19 (fn)
0.83 (tn)

0.83 (tp)
0.11 (fp)

0.17 (fn)
0.89 (tn)

Counts 52 (tp)
145 (fp)

3 (fn)
198 (tn)

26 (tp)
51 (fp)

6 (fn)
244 (tn)

34 (tp)
28 (fp)

7 (fn)
222 (tn)

Table 17

The reported AUCs of the ROC and the C.I. of the AUCs for each screening.

AUCs AUCs C.I. Interval

First Screening 0.751 0.654 – 0.849 0.195

Second Screening 0.853 0.832 – 0.875 0.043

Third Screening 0.878 0.859 – 0.897 0.038

F.6. Naïve Bayes (NB)

Table 18

Top: The tp, fp, tn, fn rates and the counts of tp, fp, tn, fn of the DBN for each screen 

respectively. The thresholds used for each screening were 0.04, 0.21 and 0.25 for screen 1,2 

and 3 respectively. Bottom:

Naïve Bayes

Screen 1 Screen 2 Screen 3

Rates 0.927 (tp)
0.392 (fp)

0.073 (fn)
0.608 (tn)

0.871 (tp)
0.170 (fp)

0.129 (fn)
0.830 (tn)

0.833 (tp)
0.096 (fp)

0.167 (fn)
0.904 (tn)

Counts 51 (tp)
134 (fp)

4 (fn)
208 (tn)

27 (tp)
50 (fp)

4 (fn)
244 (tn)

35 (tp)
24 (fp)

7 (fn)
227 (tn)

Table 19

The reported AUCs of the ROC and the C.I. of the AUCs for each screening.

AUCs AUCs C.I. Interval

First Screening 0.799 0.777 – 0.821 0.044

Second Screening 0.865 0.844 – 0.885 0.041

Third Screening 0.886 0.866 – 0.907 0.041
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G. The Probability Distributions over each screen of confirmed cancer and 

Non-cancer cases

G.1. The Forward-Arrow DBN without a NoisyMax gate

Figure 9. 
The combined probability distributions for a positive biopsy for all cases across the 10 

random test sets, for each screen. Red indicates all confirmed cancer cases in the trial, 

irrespective of time. Blue indicates the confirmed non-cancer cases. The 3 subplots depict 

the probability of a positive biopsy in each of the three screening points of the trial. With 

successive screenings we can see that the probability of a positive biopsy for non-cancer 

(blue) and cancer (red) cases tends to move towards the left and right side of each subplot, 

respectively. The solid black lines represent the thresholds chosen to discriminate cancer 

cases from non-cancer cases in the DBN predictions.

G.2. The Forward-Arrow DBN with a NoisyMax gate

Figure 10. 
The combined probability distributions for a positive biopsy for all cases across the 10 

random test sets, for each screen. Red indicates all confirmed cancer cases in the trial, 
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irrespective of time. Blue indicates the confirmed non-cancer cases. The 3 subplots depict 

the probability of a positive biopsy in each of the three screening points of the trial. With 

successive screenings we can see that the probability of a positive biopsy for non-cancer 

(blue) and cancer (red) cases tends to move towards the left and right side of each subplot, 

respectively. The solid black lines represent the thresholds chosen to discriminate cancer 

cases from non-cancer cases in the DBN predictions.

G.3. Reversed-Arrow DBN

Figure 11. 
The combined probability distributions for a positive biopsy for all cases across the 10 

random test sets, for each screen. Red indicates all confirmed cancer cases in the trial, 

irrespective of time. Blue indicates the confirmed non-cancer cases. The 3 subplots depict 

the probability of a positive biopsy in each of the three screening points of the trial. With 

successive screenings we can see that the probability of a positive biopsy for non-cancer 

(blue) and cancer (red) cases tends to move towards the left and right side of each subplot, 

respectively. The solid black lines represent the thresholds chosen to discriminate cancer 

cases from non-cancer cases in the DBN predictions.
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G.4. Learned DBN with compositional variables

Figure 12. 
The combined probability distributions for a positive biopsy for all cases across the 10 

random test sets, for each screen. Red indicates all confirmed cancer cases in the trial, 

irrespective of time. Blue indicates the confirmed non-cancer cases. The 3 subplots depict 

the probability of a positive biopsy in each of the three screening points of the trial. With 

successive screenings we can see that the probability of a positive biopsy for non-cancer 

(blue) and cancer (red) cases tends to move towards the left and right side of each subplot, 

respectively. The solid black lines represent the thresholds chosen to discriminate cancer 

cases from non-cancer cases in the DBN predictions.

G.5. Learned DBN without compositional variables

Figure 13. 
The combined probability distributions for a positive biopsy for all cases across the 10 

random test sets, for each screen. Red indicates all confirmed cancer cases in the trial, 

irrespective of time. Blue indicates the confirmed non-cancer cases. The 3 subplots depict 

the probability of a positive biopsy in each of the three screening points of the trial. With 

successive screenings we can see that the probability of a positive biopsy for non-cancer 
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(blue) and cancer (red) cases tends to move towards the left and right side of each subplot, 

respectively. The solid black lines represent the thresholds chosen to discriminate cancer 

cases from non-cancer cases in the DBN predictions.

G.6. 10-fold cross validation of the Forward-Arrow DBN with a NoisyMax 

gate

Figure 14. 
The combined probability distributions for a positive biopsy for all cases across the 10 

random test sets, for each screen. Red indicates all confirmed cancer cases in the trial, 

irrespective of time. Blue indicates the confirmed non-cancer cases. The 3 subplots depict 

the probability of a positive biopsy in each of the three screening points of the trial. With 

successive screenings we can see that the probability of a positive biopsy for non-cancer 

(blue) and cancer (red) cases tends to move towards the left and right side of each subplot, 

respectively. The solid black lines represent the thresholds chosen to discriminate cancer 

cases from non-cancer cases in the DBN predictions.

G.7. Naïve Bayes

Figure 15. 
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The combined probability distributions for a positive biopsy for all cases across the 10 

random test sets, for each screen. Red indicates all confirmed cancer cases in the trial, 

irrespective of time. Blue indicates the confirmed non-cancer cases. The 3 subplots depict 

the probability of a positive biopsy in each of the three screening points of the trial. With 

successive screenings we can see that the probability of a positive biopsy for non-cancer 

(blue) and cancer (red) cases tends to move towards the left and right side of each subplot, 

respectively. The solid black lines represent the thresholds chosen to discriminate cancer 

cases from non-cancer cases in the DBN predictions.

H. F-Scrore curves

H.1. The Forward-Arrow DBN without a NoisyMax gate

Figure 16. 
F-score over recall curve.
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H.2. The Forward-Arrow DBN with a NoisyMax gate

Figure 17. 
F-score over recall curve.

H.3. Reversed-Arrow DBN

Figure 18. 
F-score over recall curve.
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H.4. Learned DBN with compositional variables

Figure 19. 
F-score over recall curve.

H.5. Learned DBN without compositional variables

Figure 20. 
F-score over recall curve.
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H.6. 10-fold cross validation of the Forward-Arrow DBN with a NoisyMax 

gate

Figure 21. 
F-score over recall curve.

H.7. Naïve Bayes (NB)

Figure 22. 
F-score over recall curve.
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I. PR Curves of the original model

I.1. The Forward-Arrow DBN without a NoisyMax gate

Figure 23. 
The precision and recall curve.

I.2. The Forward-Arrow DBN with a NoisyMax gate

Figure 24. 
The precision and recall curve.

I.3. Reversed-Arrow DBN

Figure 25. 
The precision and recall curve.
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I.4. Learned DBN with compositional variables

Figure 26. 
The precision and recall curve.

I.5. Learned DBN without compositional variables

Figure 27. 
The precision and recall curve.

I.6. 10-fold cross validation of the Forward-Arrow DBN with a NoisyMax 

gate

Figure 28. 
The precision and recall curve.
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I.7. Naïve Bayes (NB)

Figure 29. 
The precision and recall curve.

J. Missing values statistics

Table 20

Parent Nodes Missing value counts.

Age BMI Family
History

Disease
History

Cancer
History

Smoking
Status

Work
Exposure Gender

Count
Present values 25846 25573 25846 25846 25846 25846 25846 25846

Missing values 0 93 0 0 0 0 0 0

Fraction
Present values 1 0.9964 1 1 1 1 1 1

Missing values 0 0.0036 0 0 0 0 0

Table 21

LDCT nodes outcomes missing values. The missing values of these nodes consist of 

individuals that died, were diagnosed with cancer and are administered treatment and 

individuals that missed a screening exam.

LDCT Screen 1 Outcome LDCT Screen 2 Outcome LDCT Screen 3 Outcome

Count
Present values 25827 24335 23696

Missing values 19 1511 2150

Fraction
Present values 0.9993 0.942 0.917

Missing values 0.0007 0.058 0.083
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Figure 1. 
The underlying disease state space model for lung cancer used in this study, modeled after 

the process flow in the NLST. The arrows depict allowed transitions in the state space. In the 

Non-Cancer state, where everyone starts, the individual has no abnormalities or 

abnormalities smaller than 4 mm. In the In Situ Cancer state the individual has abnormalities 

larger than 4 mm, which are not confirmed to be cancerous. In the Invasive Cancer state the 

individual is confirmed to have cancer through the use of diagnostic procedures, such as 

biopsy. In the Treatment state the individual is receiving care for the cancer, and is removed 

from the screening process. Finally, in the Death state the individual is deceased. The 

process described in this study terminates when an individual enters the Death or the 

Treatment state. The transition from the Treatment to the Death state is not depicted here as 

we only focus at the process of identifying an individual with lung cancer (e.g., an individual 

with invasive cancer whose process ends when the individual enters the Death or Treatment 

state).
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Figure 2. 
The diagram above depicts the structure of the lung cancer screening DBNs. Italicized text 

indicates the discreted states considered per variable. (a) The Forward-Arrow DBNs. (b) The 

Reversed-Arrow DBN. The total number of epochs in both models is 3.
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Figure 3. 
The training and testing sets’ random selection process of cases from the NLST dataset. The 

training and test set consist of 200 cancer and 200 non-cancer cases, respectively. Ten 

random training and test sets, with replacement, were selected for our analysis.
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Figure 4. 
The combined probability distributions for a positive biopsy, of DBN A (top) and DBN B 

(bottom), for all cases across the 10 random test sets, for each screen. Red indicates all 

confirmed cancer cases in the trial, irrespective of screening time points. Blue indicates the 

confirmed non-cancer cases. The three subplots depict the probability of a positive biopsy in 

each of the three screening points of the trial. With successive screenings we can see that the 

probability of a positive biopsy for non-cancer (blue) and cancer (red) cases tends to move 

towards the left and right side of each subplot, respectively. The solid black lines represent 

the thresholds chosen to discriminate cancer cases from non-cancer cases in the DBN 

predictions.
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Figure 5. 
Top: The diagrams represent the true number of cancer cases in each screening point of the 

trial and the number of cancer cases predicted by the models in each screening. For example, 

in the leftmost histogram for the first screening, DBN A predicted 51 out of 55 cancer cases. 

From the same screening we examined the false positive cases and identified how many of 

those cases were cancer cases in subsequent screenings. In the second screening of the trial 

there were 32 cancer cases. 20 out of those 32 cancer cases were found to be false positive 

cases in the first screening of the trial. Similarly, in the third screening, 19 out of 41 cancer 

cases were false positive cases in the first screening. In the post screening 25 out of 68 

cancer cases were false positive cases in the first screening of the trial. The middle diagram 

represents how many cancer cases were identified in the second screening and how many 

false positive cancer cases in the second screening are cancer cases in the third and post 

screening cancer cases. The diagram on the right represents how many cancer cases were 

identified in the third screening and how many false positive cancer cases in the third 

screening are cancer cases in the post screening cancer cases. Bottom: (Left) The sensitivity 

of the lung cancer screening DBNs for the first, second, third, and post-screening cases after 

the first screening event (baseline). The sensitivities at the second, third, and post-screening 

cases represent the true positive rate achieved from the pool of false positive cases in the first 

screen. (Middle) Sensitivity of the DBN for the second, third and post-screening events after 

the second screening exam. The sensitivities at the third and post-screening cases represent 

the true positive rate achieved from the pool of false positive cases in the second screen. 

(Right) The sensitivity of the DBN for the third and post-screening cases after the last 

screening exam. The sensitivities at the post-screening cases represent the true positive rate 

achieved from the pool of false positive cases in the third screen.
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Figure 6. 
The ROC curve of three intervention points of the NLST trial with point-wise 95% 

confidence bounds.
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