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N-of-1 study designs involve the collection and analysis of repeatedmeasures data from an

individual not using an intervention and using an intervention. This study explores the use

of semi-parametric and parametric bootstrap tests in the analysis ofN-of-1 studies under

a single time series framework in the presence of autocorrelation.When the Type I error

rates of bootstrap tests are compared toWald tests, our results show that the bootstrap

tests have more desirable properties. We compare the results for normally distributed

errors with those for contaminated normally distributed errors and find that, except

when there is relatively large autocorrelation, there is little difference between the power

of the parametric and semi-parametric bootstrap tests. We also experiment with two

intervention designs: ABAB and AB, and show the ABAB design has more power. The

results provide guidelines for designing N-of-1 studies, in the sense of how many

observations and howmany intervention changes are needed to achieve a certain level of

power and which test should be performed.

1. Introduction

N-of-1 study designs involve the collection and analysis of repeated measures of an

individual unit using an intervention and not using an intervention. The design for an

N-of-1 study is often called the single case experiment design or single subject

experiment design. The data from N-of-1 studies typically consist of T repeated
measures, yt, t = 1, . . ., T, from a single subject, and dummy variables, xt, indicating

whether or not there is an intervention at time t. The ultimate goal of N-of-1 studies is to

investigate the effect of an intervention on an individual unit, and they have been

applied in areas such as psychology and education (Shadish & Sullivan, 2011), and

medicine (Howick et al., 2011).

Over the years, various analysis methods for N-of-1 studies have been developed and

modified for more effective and simpler approaches to detecting intervention effects
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between periods that are subject to no interventions (phase A) and those that are subject

to interventions (phase B). By and large thesemethods can be divided into two categories:

non-regression-based (Borckardt, Nash, Murphy, Moore, Shaw, & O’Neil, 2008; Nour-

bakhsh & Ottenbacher, 1994; Parker, Vannest, & Brown, 2009); and regression-based
(Huitema & McKean, 2000; McKnight, McKean, & Huitema, 2000). The former methods

are simpler and easier to implement without formal statistical modelling, while the latter

are based on regression theory, where parameters are formally estimated. Given the

increasing adoption of N-of-1 studies for evidence-based analyses (Kratochwill et al.,

2013), we concentrate on regression-based methods in this study. In particular, we

estimate the statistical power of semi-parametric and parametric bootstrap tests under

two single case designs, aiming to address the issue of lack of power analyses in the

current literature.
We use a sample collected by a mobile phone app called “POWeR Tracker” (Morrison

et al., 2014) to illustrate the power of the Wald test and bootstrap tests. Table 1 lists an

extract of the data fromanN-of-1 study to understand the impact onphysical activity levels

of using a smartphone application for weight management. It is a record of total steps of

one participant over the period of 28 days. It has an ABAB experimental design (7 days

without, 7 days with, 7 days without, 7 days with an intervention). In phase A, the

participant had access to a web-based intervention (POWeR) only. In the intervention

phase (phase B), the participant had access to both the web-based intervention and app-
based intervention (POWeR tracker). During both phases, daily steps were recorded via a

blinded pedometer.

Table 1. An extract of total daily steps of one individual user not using (phase A) and using (phase

B) the POWeR Tracker app

Day Total steps

POWeR

Tracker

phases

1 NA A

2 11,471 A

3 9,760 A

4 3,558 A

5 4,739 A

6 3,662 A

7 NA A

8 5,729 B

9 2,794 B

10 7,636 B

11 3,996 B

12 7,467 B

13 10,587 B

14 3,863 B

15 1,649 A

⋮ ⋮ ⋮
20 3,566 A

21 3,457 B

⋮ ⋮ ⋮
28 6,335 B

Note. NA, missing data.
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We initially consider the following general regression model for an N-of-1 study:

yt ¼ b0 þ b1xt þ b2t þ b3txt þ et ; ð1Þ

where et ¼ qet�1 þ zt ; t ¼ 2; . . .; T ; are autocorrelated, order-one residuals, with zt ~ N

(0, r2), and e1 ~ N(0, r2/(1 � q2)). Before formally discussing the methodology, we

introduce five possible alternative underlying mean behaviour patterns for two phases
which canbe specifiedbymodel (1) (Figure 1). A is thephase before an intervention andB

is the phase after an intervention has been introduced. In Figure 1a, there is no change in

the intercept or slope following the intervention (b1 = b2 = b3 = 0). In Figure 1b and d

there is a change in the intercept but not in the slope (b1 6¼ 0, b3 = 0). The difference

between these two figures is that the former has a zero slope (b2 = 0). In Figure 1c, there

is constant increase over time, that is, no change in the slope (b1 = 0, b2 6¼ 0, b3 = 0). No

intervention changes could be detected in this figure since it is a trend developed in phase

A continuing into phase B. Figure 1e represents a change in both the intercept and slope
(b1 6¼ 0, b2 6¼ 0, b3 6¼ 0).

A regression-basedN-of-1 study analyses a single interrupted time series that is subject to

no interventions and interventions. It has two common methodological difficulties:

autocorrelation and a small sample. McKnight et al. (2000) designed a double bootstrap

methodology to tackle autocorrelationbias in the context of small samples. Theyuse thefirst

bootstrap to obtain asymptotically consistent estimates of the autocorrelation and other

Figure 1. Patterns of mean behaviour. ‘A’ (blue line) and ‘B’ (red line) refer to a phase without an

intervention and with an intervention, respectively [Colour figure can be viewed at www.online

library.com].
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parameters in the model by utilizing Durbin’s two-stage method, and use the second

bootstrap to estimate the variance–covariance matrix of the estimated parameters. Their

method reduced biases in the estimated autocorrelation and standard errors of the

coefficients, and hence provided tests that have Type I error rates closer to the nominal rate
and comparable statistical power to that when the true value of the autocorrelation is used.

However, their estimation process is extremely computer-intensive by construction, which

may limit thepotential applicationsofmethod inpractice. Thecurrent study attempts todeal

with the issues of autocorrelation and small sample using a single parametric bootstrap

within a generalized least squares (GLS) framework. Ourwork uses the restrictedmaximum

likelihood (REML) estimation method in R (R Development Core Team, 2014) to detect an

effect between twophases (phaseAhasno intervention,phaseBhas an intervention)where

the underlying data series is autocorrelated. Parameters estimated under a GLS approach are
consistent, but may suffer bias from underestimated standard errors (Park &Mitchell, 1980)

due to the small sample size. We use semi-parametric and parametric bootstrap tests to

reduce the effect of small sample bias in test statistics in an attempt to achieve better

inferences from estimated parameters than the Wald test. Our method provides a simpler

option that deals with the autocorrelation and small sample issues. It is less computer-

intensive and easier to implement when compared to the double bootstrap method.

Motivated by Borckardt et al. (2008), we consider a simple case design that explicitly

assumes there is no slope in our model and hence concentrates on the differences among
twophases (A and B). This is a realistic assumption as empirical experimentsmay not have a

trend in phase A or B (see our motivating example). Our null hypothesis is displayed in

Figure 1 and does not include a trend. Our alternative hypothesis is in Figure 1b. We use a

dummy variable to detect a phase effect between A and B in one single time series as in

standard linear regression analysis. A dummy variable that is not significantly different from

zero indicates there is no phase effect. Further, we use simulation to calculate and compare

statistical properties of bootstrap tests and Wald tests under various autocorrelations and

phase effects.Despite newmethods continually being developed to carry outN-of-1 studies,
there is limited evidence on the power of these tests. This is the first attempt, to the best of

our knowledge, to investigate the statistical power of semi-parametric and parametric

bootstrap testswithin a single time series setting in the context ofN-of-1 studies. The results

on statistical powerprovideguidelines for designingN-of-1 studies, in the senseofhowmany

days and how many intervention changes are needed to achieve a certain level of power.

The rest of the paper is organized as follows. Section 2 introduces the regression

model for detecting phase effects, the concepts of Type I error rate and statistical power,

the construction of bootstrap tests and the estimation of the Type I error rate and power
functions. Section 3 presents empirical results from two intervention designs (AB and

ABAB), a discussion of these results and a power function illustration using the sample

data introduced above. Our conclusions are summarized in Section 4.

2. Methodology

2.1. Regression model

We now consider a simpler version of model (1) for an N-of-1 study:

yt ¼ aþ bxt þ et ; ð2Þ

where et ¼ qet�1 þ zt ; t ¼ 2; . . .; T ;with zt ~ N(0,r2), and e1 ~ N(0,r2/(1 � q2)). Recall
that in this model, yt is a repeated measure at time t = 1, 2, . . ., T, xt is a phase dummy
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taking the value of 1 for the intervention and 0 for the non-intervention phase. The phase

effect is b, with a large (small) absolute value of b indicating a large (small) phase effect.

As mentioned, the problems of small sample size and autocorrelation may violate the

underlying assumptions of no autocorrelation and large sample size for a standard linear
regression analysis, which may lead to incorrect inferences, such as an incorrect Type I

error rate and low statistical power. In order to overcome the problem of autocorrelation,

we ‘use GLSwith REML to fit themodels. Motivated byMcKnight et al.’s (2000) bootstrap

method, in order to address the small-sample problem, we suggest constructing semi-

parametric andparametric bootstrap tests of the null hypothesis H0:b = 0. For these tests,

rather than comparing the Wald test statistics to its asymptotic null distribution, N(0,1),

which henceforth we refer to as the Wald test, we compare this test statistics to a

bootstrapped sample. See Section 2.3 for details. We compare the properties of the
bootstrap tests to those of a Wald test for coefficients estimated by using GLS with REML.

The properties under investigation are the Type I error rate and statistical power. By doing

so, we aim to uncover the actual magnitude of Type I error rate, and how close it is to the

nominal rate of 5%. Both Wald tests and bootstrap tests are carried out using the data

simulated as described in Section 3. All estimates are calculated using the GLS REML

routine in R (R Development Core Team, 2014).

2.2. Statistical properties

Two properties of a statistical test are discussed in this study: the Type I error rate and

statistical power. The Type I error rate is the probability of incorrectly rejecting the null

hypothesiswhen it is true. It is an important propertywhichwe like to control accurately.

A standard acceptable Type I error is 5%.

Statistical power, or the power of a significance test, refers to the probability of

rejecting the null hypothesiswhen it is false. Given a valid procedure,we like the power as

high as possible when the null hypothesis is false (Cohen, 1988). It is an important
consideration in an N-of-1 study and gives guidance on the length and frequency of

interventions to reach a desirable power level, such as 80% (Cohen, 1988). It can also be

used to detect whether two or more individuals are required in the trial (N-of-k studies).

2.3 Construction of bootstrap tests

The concept of the bootstrap is to replace the population with the empirical population

(non-parametric) or estimated population (semi-parametric and parametric). Suppose our
target is to draw inference about a population parameter h and we have observed a

random sample of size T (y1, y2, . . . yT) from this population with sample statistics ĥ. We

can derive ĥ�b, a random quantity which represents the same statistics, but computed on a

bootstrap sample b drawn from the empirical or estimated population. Computing ĥ�b for
B different bootstrap samples, we can then derive ĥ�1, ĥ

�
2, . . . ĥ

�
B. The empirical bootstrap

distribution of ĥ�b proves to be a fairly good approximation of the distribution of ĥ.
In this study, we adopt parametric bootstrap tests (Efron&Tibshirani, 1993, p. 53) and

semi-parametric bootstrap tests (Davison & Hinkley, 1997, pp. 389–391), with B = 100.
Since we are not estimating a p-value, just performing a bootstrap test, B = 100 should be

sufficient. However, to assess the effect of using a large B, we also calculate the Type I

errors for bootstrap tests with B = 200 and compare the results. Under the alternative

hypothesis as inmodel (2), the âA, b̂A, q̂A and r̂
2
A from the observed sample are estimates of
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population values of a, b, q and r2. We also estimate â0, q̂0 and r̂2
0 from the observed

sample under the null hypothesis that b is zero, that is, under the following model:

yt ¼ aþ et ; ð3Þ

where et ¼ qet�1 þ zt ; t ¼ 2; . . .; T ; with zt ~ N(0, r2), and e1 ~ N(0, r2/(1 � q2)).
For the parametric tests, we simulate bootstrap samples under the null hypothesis.

Thenmodel (2) is fitted to the bootstrap samples to generate bootstrap estimates of b (b̂�1,
b̂�2, . . ., b̂

�
B). For each of the bootstrap simulations, the absolute value of the Wald test

statistic based on b̂�b is compared to the Wald test statistics based on cbA estimated under

the alternative hypothesis (model 2). This comparison is repeated B times for each of the

simulated b̂�b. The p-value of the bootstrap test is calculated as the percentage of times out

of the total B that the bootstrapped Wald statistics generated from model (3) is more
extreme than the observed statistics from model (2).

For the semi-parametric test, rather than simulating the errors, zt, from a normal

distribution, they are sampled with replacement from the estimate residuals from model

(3): ẑt ¼ êt � q̂êt�1, t = 2, . . ., T, transformed to have mean zero and variances r̂2
0; see

Davison and Hinkley (1997, pp. 389–391) for more details.

2.4. Estimating the Type I error rate and power functions
We estimate and compare the properties of bootstrap tests and those of the Wald tests.

TheType I error rate and thepower function of both tests are estimated. Asmentioned,we

desire the actual Type I error rate to be close to nominal rate of 5% and high statistical

power. We start by simulating a data set Yt, t = 1, . . ., T, following model (2), with

predetermined values of a, b, q and r2, where a = 0, r2 = 1, and follow the structure of

data collected from a study of POWeR Tracker (Morrison et al., 2014), with an ABAB

design.Wald and bootstrap tests are then performed on the simulated data.We repeat this

process 10,000 times for the Wald test and the bootstrap tests, and estimate the Type I
error rate and power function for the given b and q. The actual Type I error rate is

estimated as the percentage of times that the p-values of estimated b̂ are <5%when b is set
to zero. The statistical power is the percentage of times that the p-values are<5%when b is
not zero. A power function is the power as the corresponding values of b and q vary.

We expect the Type I error to be close to the nominal size of 5% for the parametric

bootstrap test we have constructed. We also expect low statistical power in our study as

autocorrelation and the small sample in N-of-1 studies are long-standing issues in

behaviour change research in psychology (Cohen, 1988).
In order to assess the impact of the normal assumption, we also simulate the residuals

from a contaminated normal distribution with a random 15% of the residual generated

with an increased variance of 25 and repeat the simulation study.However, theparametric

bootstrap was still based on the assumption of normality as before.

3. Simulation study

The Type I error rate and statistical power functions for both the Wald test and the

parametric bootstrap tests are estimated by usingMonteCarlo simulation. As noted above,

we use 10,000 simulations for all tests andB = 100 for the bootstrap tests. Two designs of

interventions are calculated: the first design (D1), as in the POWeR Tracker study, has an

ABAB structure, with each of the four phases set up for 7 days (as in column 3 in Table 1);
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the second design (D2) has an AB structure, with both phases lasting for a period of

14 days. Both designs have a total duration of 28 days. The results give guidance on the

design of N-of-1 studies, in the sense of whether it is better to have one long intervention

period or several shorter intervention periods.

3.1. Type I error rates

Table 2 presents the estimated Type I error rates for the Wald, parametric and semi-

parametric tests. Four values of q are considered (0, .2, .5, .7) with two error distributions
(normal and contaminated normal) and two designs (D1 and D2). For the bootstrap tests

we present the results for B = 100 and 200. When interpreting these estimates, it should

be borne in mind that if the true proportion is .05 then under repeated sampling

approximately 95% of the estimated proportions based on a sample size of 10,000 would

be in the tolerance interval (.0457, .0543).

For all but one of the scenarios, the estimated Type I error rate for the Wald test is

greater than the upper limit of the 95% tolerance interval (.0543), indicating thatWald test

does not have the correct Type I error rates. However, for normal errors, the estimated
Type I error rates for the parametric and semi-parametric bootstrap tests are within the

95% tolerance interval.

For the contaminated errors, the majority of the estimated Type I errors for the

parametric and semi-parametric tests are closer to the nominal value of .05 than those for

the Wald test, although fewer are within the 95% tolerance interval than for the normal

errors. Furthermore, the estimate Type I error rates for the semi-parametric tests are closer

to the normal value than those for the parametric tests, particularly for D2 and q = .5 and

.7, indicating that in the presence of contaminated errors, the semi-parametric bootstrap
tests perform better.

For both bootstrap tests and both error distributions, the results for B = 100 and 200

are very similar, supporting our initial belief that B = 100 should be sufficient. In

particular, note that for the parametric bootstrap with contaminated errors, the Type I

Table 2. Estimated Type I error rates for Wald and bootstrap tests for two intervention designs

Test

Design 1 (D1) Design 2 (D2)

q = 0 q = .2 q = .5 q = .7 q = 0 q = .2 q = .5 q = .7

Normal errors

Wald .0674 .0728 .0854 .0808 .0612 .0697 .1000 .1130

Parametric bootstrap

B = 100 .0503 .0503 .0522 .0500 .0513 .0510 .0529 .0540

B = 200 .0513 .0522 .0507 .0544 .0460 .0489 .0508 .0537

Semi-parametric bootstrap

B = 100 .0513 .0519 .0522 .0541 .0457 .0462 .0465 .0510

B = 200 .0494 .0479 .0505 .0499 .0508 .0475 .0458 .0561

Contaminated normal errors

Wald .0522 .0625 .0820 .0917 .0547 .0688 .1071 .1223

Parametric bootstrap

B = 100 .0434 .0483 .0475 .0559 .0411 .0448 .0615 .0698

B = 200 .0382 .0411 .0494 .0612 .0391 .0425 .0552 .0677

Semi-parametric bootstrap

B = 100 .0442 .0436 .0506 .0508 .0392 .0446 .0544 .0577

B = 200 .0428 .0432 .0464 .0518 .0408 .0456 .0587 .0584
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error rates with the larger B are not uniformly closer to the nominal rate than those with

B = 100 (Table 2).

3.2. Power

Tables A1–A6 (Appendix) present estimates of power functions for theWald, parametric

and semi-parametric tests with B = 100. Four values of q are considered (0, .2, .5, .7) with
two error distributions (normal and contaminated normal) and two designs (D1 and D2).

Note that D1 has three change points, whereas D2 has only one. Figure 2 presents a range

of these power functions.

Figure 2 presents the power functions of the three tests under the two designs with

q = 0 and normal errors (Figure 2a) and contaminated errors (Figure 2b). Although the

Wald has the incorrect Type I error rate, it is the scenario which is closest to the nominal

rate and therefore is included for comparison. From these two graphs, we conclude that

there is no substantial differences in power when q = 0.
Figure 2c presents the power functions of the bootstrap tests under the two designs

with q = .5 and normal errors. Again there is no difference between the two tests for each

design, but they are considerably more powerful under D1.

Figure 2. Power functions for: the Wald test, parametric test and semi-parametric bootstrap tests

under the two designs with q = 0 and (a) normal errors and (b) contaminated errors; the bootstrap

tests under the two designs with q = .5 and (c) normal errors and (d) contaminated errors.
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Figure 2dpresents the samepower functions as in Figure 2c, except that the errors are

now contaminated. Again there is no difference between the parametric and semi-

parametric bootstrap test under D1, whereas under D2 the semi-parametric test is less

powerful. However, recall that in this case the semi-parametric test has estimated Type I
error rates closer to the nominal.

Comparing Figure 2a and bwith Figure 2c and d reveals that the power decreases as q
increases. Inspection of Tables A1–A6 reveals this is the case in all the scenarios

considered. Comparing the two designs reveals that the power is lower for the

contaminated errors; again see also Tables A1–A6.
For D2 with an autocorrelation value of .2 and normal errors, to achieve a power

of .8 for the parametric bootstrap test a b-value >1.5 is required; for a larger

autocorrelation value, .5 or .7, a b of 2.5 or 3 is required (Table A3). These results
suggest the power under D2 is low. Further comparison between D1 and D2 reveals

that the bootstrap tests for both designs generally have similar Type I error rate, but

for D1 they are at least as powerful as for D2 and tend to become more powerful as

q or b increases. This result indicates that the shorter repeated intervention design

works better than the longer period of intervention without repeat. This may be due

to the impact of autocorrelation.

3.3. Bias in q̂
As a by-product of the simulation study,we are able to assess the bias in q̂ asq,b, the design
and the error distribution vary. As expected, inspection of the results showed that the bias

did not vary with b. Therefore, in Table 3, we present the estimated bias in q̂ as q, the
design and the error distribution vary. For a particular value ofq, the bias in q̂ is very similar

for both designs and both error distributions. However, the magnitude of the bias

increases as q increases. This may in part explain the inflated Type I error rates for the

Wald test (Table 2). However, as noted above, the bootstrap tests perform well, despite
this increase in bias.

4. Discussion

It is clear from the above study that the bootstrap tests aremore desirable forN-of-1 studies

when autocorrelation is present. Under a single case design involving one individual over
a period of 28 days, the statistical power is low. The comparison between ABAB and AB

designs indicates that under the presence of autocorrelation, shorter and repeated

interventions (ABAB design) seem to be more effective than longer and unrepeated

interventions (AB design). This result lends support for the single-case intervention

research design standards (Kratochwill et al., 2013) where the AB design does not meet

the standard.

Table 3. Estimated bias in q̂ for two intervention designs

Errors

Design 1 (D1) Design 2 (D2)

q = 0 q = .2 q = .5 q = .7 q = 0 q = .2 q = .5 q = .7

Normal .0006 �.0146 �.0449 �.1234 .0017 �.0122 �.0396 �.1218

Contaminated .0035 �.0060 �.0325 �.1120 .0054 .0000 �.0231 �.1085
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4.1 Conclusions

This study explores the properties of semi-parametric and parametric bootstrap tests in a

single subject experiment design, orN-of-1 study, aiming to account for small sample sizes

under the GLS regression framework. This is the first attempt, to the best of our
knowledge, to examine the properties of N-of-1 studies in such a setting. We find the

bootstrap tests aremore accuratewith regard to Type I errorswhen compared to theWald

test, and hence more desirable. We recommend the use of a parametric bootstrap with

B = 100, except when both relatively large autocorrelation and contaminated normally

distributed errors are thought possible. Our results can also be used to facilitate various

experimental designs and provide guidelines for future N-of-1 studies. Further, we

compare two different intervention designs of the same total duration and find that the

tests under the designwithmore change points (D1) have better properties. This provides
support for designs with three changes in the intervention as set out in the single case

intervention research design standards (Kratochwill et al., 2013).

The bootstrap methods used in the study examine an intervention effect under the

assumption of no trend (Figure 1a). They can also be applied to the case where the model

under the null hypothesis includes a trend (Figure 1c) and the model under the alternative

hypothesishas a trend and aphase effect on the intercept (Figure 1d).Therefore, the results

in this paper can also be used when designing a study to detect a phase effect on the

intercept irrespective of whether or not there is a trend. The scenario our study has not
covered is the casewhere themodel under the alternative hypothesis has a phase effect on

the slope (Figure 1e), although themethod could easily bemodified to handle this situation

by adding a trend and trend by phase interaction to model (1). The method could also be

extended to the situationwheremore thanone individual is studied (N-of-k study,k > 1) by

appropriately modifying model (1) to account for between-individual differences.
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Appendix : Statistical power tables

Table A1. Statistical power forWald tests under normally distributed residuals for two intervention

designs

b

Design 1 (D1) Design 2 (D2)

q = 0 q = .2 q = .5 q = .7 q = 0 q = .2 q = .5 q = .7

0.1 .0719 .0795 .0844 .0847 .0716 .0762 .1052 .1244

0.2 .0951 .0967 .0975 .0950 .0948 .0915 .1099 .1283

0.3 .1341 .1257 .1183 .1167 .1297 .1204 .1243 .1402

0.4 .1870 .1700 .1516 .1409 .1825 .1608 .1439 .1558

0.5 .2613 .2218 .1888 .1721 .2561 .2123 .1719 .1705

0.6 .3475 .2827 .2362 .2103 .3357 .2696 .2007 .1897

0.7 .4427 .3549 .2901 .2523 .4257 .3344 .2345 .2142

0.8 .5394 .4340 .3466 .3034 .5226 .4048 .2758 .2405

0.9 .6343 .5190 .4134 .3606 .6081 .4800 .3182 .2734

1 .7145 .5973 .4773 .4228 .6954 .5528 .3690 .3021

1.2 .8532 .7472 .6065 .5439 .8380 .6953 .4748 .3772

1.5 .9592 .8978 .7819 .7183 .9531 .8601 .6212 .4943

1.8 .9912 .9674 .9007 .8522 .9902 .9440 .7561 .6168

2 .9976 .9868 .9476 .9152 .9969 .9728 .8263 .6904

2.5 .9997 .9986 .9903 .9833 .9997 .9951 .9360 .8417

3 .9999 .9999 .9990 .9977 .9998 .9976 .9781 .9287

4 1.0000 1.0000 1 1 .9999 .9991 .9939 .9896

5 1 1 1 1 .9999 .9996 .9985 .9993

6 1 1 1 1 1 1 1 1
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Table A2. Statistical power for Wald tests under contaminated normally distributed residuals for

two intervention designs

b

Design 1 (D1) Design 2 (D2)

q = 0 q = .2 q = .5 q = .7 q = 0 q = .2 q = .5 q = .7

0.1 .0560 .0657 .0865 .0954 .0553 .0758 .1142 .1258

0.2 .0651 .0698 .0903 .0932 .0611 .0774 .1092 .1265

0.3 .0789 .0864 .0966 .0995 .0772 .0858 .1140 .1297

0.4 .1016 .1009 .1014 .1015 .1018 .1042 .1207 .1314

0.5 .1264 .1163 .1170 .1158 .1250 .1156 .1272 .1374

0.6 .1521 .1432 .1260 .1188 .1517 .1463 .1460 .1431

0.7 .1870 .1667 .1473 .1324 .1885 .1678 .1472 .1510

0.8 .2334 .1922 .1633 .1465 .2280 .1942 .1685 .1604

0.9 .2712 .2294 .1853 .1687 .2668 .2142 .1837 .1673

1 .3107 .2728 .2168 .1894 .3008 .2456 .1968 .1801

1.2 .3985 .3401 .2648 .2305 .3952 .3099 .2339 .2029

1.5 .5289 .4434 .3546 .3159 .5204 .4220 .3019 .2466

1.8 .6364 .5577 .4428 .3989 .6259 .5231 .3754 .2859

2 .7074 .6142 .5025 .4494 .6911 .5720 .4131 .3317

2.5 .8259 .7427 .6462 .5889 .8213 .7100 .5287 .4190

3 .9073 .8457 .7510 .7158 .9068 .8120 .6342 .5148

4 .9775 .9482 .8910 .8657 .9730 .9343 .8041 .6952

5 .9952 .9878 .9554 .9441 .9943 .9723 .8994 .8191

6 .9991 .9962 .9857 .9781 .9981 .9875 .9459 .8987

7 .9997 .9991 .9958 .9918 .9988 .9934 .9672 .9418

8 .9999 .9999 .9987 .9973 .9990 .9948 .9789 .9628

9 1 .9997 .9999 .9990 .9991 .9960 .9833 .9762

10 1 .9998 .9999 .9995 .9998 .9973 .9894 .9813

Table A3. Statistical power for parametric bootstrap tests under normally distributed residuals for

two intervention designs

b

Design 1 (D1) Design 2 (D2)

q = 0 q = .2 q = .5 q = .7 q = 0 q = .2 q = .5 q = .7

0.1 .0591 .0552 .0553 .0574 .0556 .0527 .0518 .0558

0.2 .0753 .0640 .0621 .0635 .0736 .0606 .0559 .0573

0.3 .1118 .0853 .0754 .0723 .1091 .0821 .0672 .0605

0.4 .1524 .1233 .1011 .0925 .1519 .1100 .0790 .0628

0.5 .2187 .1663 .1247 .1174 .2186 .1432 .0899 .0722

0.6 .2936 .2168 .1597 .1409 .2860 .1856 .1098 .0891

0.7 .3781 .2804 .2049 .1836 .3745 .2364 .1296 .0962

0.8 .4638 .3425 .2471 .2172 .4586 .2874 .1501 .1181

0.9 .5658 .4215 .3042 .2705 .5474 .3410 .1780 .1368

1 .6476 .4957 .3548 .3097 .6365 .4136 .2187 .1474

1.2 .7987 .6402 .4718 .4241 .7943 .5468 .2844 .1944

1.5 .9349 .8310 .6627 .6006 .9236 .7166 .4022 .2732

1.8 .9839 .9352 .8143 .7603 .9789 .8395 .5403 .3717

2 .9935 .9660 .8882 .8453 .9930 .8935 .6146 .4446
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Table A3. (Continued)

b

Design 1 (D1) Design 2 (D2)

q = 0 q = .2 q = .5 q = .7 q = 0 q = .2 q = .5 q = .7

2.5 .9997 .9969 .9727 .9585 .9994 .9672 .7948 .6115

3 .9999 .9999 .9976 .9943 .9996 .9889 .8964 .7610

4 1.0000 1.0000 1.0000 1.0000 1.0000 .9977 .9769 .9373

5 1.0000 1.0000 1.0000 1.0000 .9999 .9987 .9961 .9878

6 1.0000 1.0000 1.0000 1.0000 1.0000 .9998 .9977 .9977

7 1.0000 1.0000 1.0000 1.0000 1 .9999 .9996 .9996

8 1.0000 1 1 1 1 1.0000 .9999 .9999

9 1 1 1 1 1 1.0000 1.0000 1.0000

10 1 1 1 1 1 1 1.0000 1.0000

Table A4. Statistical power for parametric bootstrap tests under contaminated normally dis-

tributed residuals for two intervention designs

b

Design 1 (D1) Design 2 (D2)

q = 0 q = .2 q = .5 q = .7 q = 0 q = .2 q = .5 q = .7

0.1 .0409 .0439 .0508 .0608 .0409 .0464 .0626 .0674

0.2 .0490 .0465 .0516 .0632 .0485 .0504 .0602 .0638

0.3 .0560 .0521 .0562 .0615 .0587 .0544 .0642 .0721

0.4 .0755 .0663 .0635 .0726 .0729 .0654 .0661 .0711

0.5 .0937 .0818 .0752 .0764 .0989 .0802 .0759 .0688

0.6 .1197 .0993 .0865 .0865 .1197 .0931 .0801 .0792

0.7 .1495 .1214 .0954 .0834 .1435 .1074 .0839 .0815

0.8 .1858 .1424 .1061 .1052 .1738 .1247 .0904 .0838

0.9 .2174 .1731 .1252 .1202 .2033 .1486 .1025 .0892

1 .2567 .1967 .1512 .1309 .2364 .1694 .1127 .0967

1.2 .3363 .2615 .1919 .1667 .3129 .2160 .1293 .1031

1.5 .4546 .3574 .2581 .2232 .4209 .3066 .1710 .1315

1.8 .5739 .4714 .3408 .2998 .5319 .3852 .2178 .1566

2 .6253 .5318 .4099 .3501 .6079 .4552 .2570 .1847

2.5 .7674 .6743 .5522 .4937 .7468 .5943 .3598 .2478

3 .8628 .7798 .6638 .6235 .8469 .7089 .4478 .3245

4 .9631 .9143 .8327 .8053 .9426 .8565 .6377 .4743

5 .9889 .9719 .9310 .9129 .9830 .9297 .7673 .6237

6 .9981 .9908 .9720 .9609 .9939 .9685 .8503 .7493

7 .9995 .9971 .9898 .9847 .9959 .9846 .9168 .8400

8 .9999 .9996 .9964 .9926 .9981 .9908 .9481 .8930

9 1 .9999 .9989 .9974 .9985 .9932 .9682 .9320

10 1 1 .9990 .9991 .9992 .9960 .9803 .9575
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Table A5. Statistical power for semi-parametric bootstrap tests under normally distributed

residuals for two intervention designs

b

Design 1 (D1) Design 2 (D2)

q = 0 q = .2 q = .5 q = .7 q = 0 q = .2 q = .5 q = .7

0.1 .0577 .0478 .0509 .0481 .0523 .0501 .0507 .0535

0.2 .0729 .0678 .0663 .0605 .0674 .0625 .0588 .0531

0.3 .1018 .0929 .0816 .0769 .0990 .0834 .0659 .0581

0.4 .1489 .1211 .1007 .0930 .1429 .1031 .0722 .0647

0.5 .2094 .1604 .1285 .1176 .1961 .1444 .0881 .0720

0.6 .2828 .2207 .1688 .1480 .2629 .1803 .1109 .0828

0.7 .3649 .2769 .2026 .1786 .3395 .2321 .1358 .0957

0.8 .4535 .3333 .2401 .2140 .4227 .2881 .1560 .1122

0.9 .5435 .4241 .3020 .2686 .5042 .3517 .1877 .1271

1 .6317 .4876 .3531 .3153 .5870 .4080 .2142 .1449

1.2 .7786 .6488 .4814 .4331 .7377 .5374 .2880 .1927

1.5 .9189 .8261 .6671 .6053 .8819 .7144 .4201 .2795

1.8 .9780 .9287 .8157 .7669 .9537 .8378 .5427 .3778

2 .9913 .9645 .8897 .8471 .9767 .8951 .6241 .4505

2.5 .9996 .9961 .9781 .9634 .9955 .9670 .7982 .6259

3 .9999 .9994 .9972 .9946 .9994 .9899 .9029 .7709

4 1 1 .9999 .9999 1 1 .9816 .9423

5 1 1 1 1 1 1 .9958 .9895

6 1 1 1 1 1 1 1 .9982

7 1 1 1 1 1 1 1 .9998

8 1 1 1 1 1 1 1 1

9 1 1 1 1 1 1 1 1

10 1 1 1 1 1 1 1 1

Table A6. Statistical power for semi-parametric bootstrap tests under contaminated normally

distributed residuals for two intervention designs

b

Design 1 (D1) Design 2 (D2)

q = 0 q = .2 q = .5 q = .7 q = 0 q = .2 q = .5 q = .7

0.1 .0475 .0464 .0541 .0574 .0422 .0448 .0550 .0619

0.2 .0582 .0568 .0537 .0554 .0483 .0458 .0597 .0617

0.3 .0660 .0558 .0614 .0575 .0585 .0504 .0577 .0590

0.4 .0788 .0677 .0649 .0620 .0742 .0605 .0606 .0610

0.5 .1027 .0903 .0699 .0699 .0936 .0716 .0649 .0627

0.6 .1261 .0964 .0847 .0783 .1144 .0855 .0718 .0654

0.7 .1596 .1222 .0951 .0877 .1409 .0994 .0774 .0684

0.8 .1842 .1500 .1132 .0968 .1701 .1159 .0841 .0736

0.9 .2293 .1789 .1328 .1095 .2051 .1358 .0924 .0753

1 .2721 .2008 .1423 .1232 .2433 .1606 .1007 .0805

1.2 .3420 .2690 .1950 .1559 .3149 .2079 .1215 .0917

1.5 .4711 .3743 .2638 .2140 .4282 .2890 .1587 .1113

1.8 .5805 .4747 .3468 .2851 .5355 .3760 .1992 .1359

2 .6509 .5420 .3935 .3358 .5978 .4271 .2299 .1543

2.5 .7828 .6708 .5315 .4644 .7384 .5569 .3157 .2105
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Table A6. (Continued)

b

Design 1 (D1) Design 2 (D2)

q = 0 q = .2 q = .5 q = .7 q = 0 q = .2 q = .5 q = .7

3 .8705 .7869 .6564 .5865 .8305 .6692 .4105 .2774

4 .9675 .9223 .8331 .7810 .9338 .8233 .5635 .4132

5 .9923 .9713 .9218 .8945 .9746 .9083 .7016 .5467

6 .9975 .9914 .9688 .9531 .9887 .9487 .8083 .6690

7 .9998 .9980 .9877 .9826 .9957 .9727 .8671 .7663

8 1 .9994 .9969 .9935 .9975 .9822 .9187 .8343

9 1 .9999 .9981 .9973 .9981 .9889 .9446 .8848

10 1 1 .9997 .9989 .9985 .9924 .9626 .9234
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