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N-of-1 study designs involve the collection and analysis of repeated measures data froman
individual not using an intervention and using an intervention. This study explores the use
of semi-parametric and parametric bootstrap tests in the analysis of N-of-| studies under
a single time series framework in the presence of autocorrelation. When the Type | error
rates of bootstrap tests are compared to Wald tests, our results show that the bootstrap
tests have more desirable properties. VWe compare the results for normally distributed
errors with those for contaminated normally distributed errors and find that, except
when there is relatively large autocorrelation, there is little difference between the power
of the parametric and semi-parametric bootstrap tests. We also experiment with two
intervention designs: ABAB and AB, and show the ABAB design has more power. The
results provide guidelines for designing N-of-1 studies, in the sense of how many
observations and how many intervention changes are needed to achieve a certain level of
power and which test should be performed.

I. Introduction

N-of-1 study designs involve the collection and analysis of repeated measures of an
individual unit using an intervention and not using an intervention. The design for an
N-of-1 study is often called the single case experiment design or single subject
experiment design. The data from N-of-1 studies typically consist of T repeated
measures, ), t =1, ..., T, from a single subject, and dummy variables, x,, indicating
whether or not there is an intervention at time ¢. The ultimate goal of N-of-1 studies is to
investigate the effect of an intervention on an individual unit, and they have been
applied in areas such as psychology and education (Shadish & Sullivan, 2011), and
medicine (Howick et al., 2011).

Over the years, various analysis methods for N-of-1 studies have been developed and
modified for more effective and simpler approaches to detecting intervention effects
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between periods that are subject to no interventions (phase A) and those that are subject
to interventions (phase B). By and large these methods can be divided into two categories:
non-regression-based (Borckardt, Nash, Murphy, Moore, Shaw, & O’Neil, 2008; Nour-
bakhsh & Ottenbacher, 1994; Parker, Vannest, & Brown, 2009); and regression-based
(Huitema & McKean, 2000; McKnight, McKean, & Huitema, 2000). The former methods
are simpler and easier to implement without formal statistical modelling, while the latter
are based on regression theory, where parameters are formally estimated. Given the
increasing adoption of N-of-1 studies for evidence-based analyses (Kratochwill et al.,
2013), we concentrate on regression-based methods in this study. In particular, we
estimate the statistical power of semi-parametric and parametric bootstrap tests under
two single case designs, aiming to address the issue of lack of power analyses in the
current literature.

We use a sample collected by a mobile phone app called “POWeR Tracker” (Morrison
et al., 2014) to illustrate the power of the Wald test and bootstrap tests. Table 1 lists an
extract of the data from an N-of-1 study to understand the impact on physical activity levels
of using a smartphone application for weight management. It is a record of total steps of
one participant over the period of 28 days. It has an ABAB experimental design (7 days
without, 7 days with, 7 days without, 7 days with an intervention). In phase A, the
participant had access to a web-based intervention (POWeR) only. In the intervention
phase (phase B), the participant had access to both the web-based intervention and app-
based intervention (POWeR tracker). During both phases, daily steps were recorded via a
blinded pedometer.

Table 1. An extract of total daily steps of one individual user not using (phase A) and using (phase
B) the POWeR Tracker app

POWeR
Tracker

Day Total steps phases

1 NA A

2 11,471 A

3 9,760 A

4 3,558 A

5 4,739 A

6 3,662 A

7 NA A

8 5,729 B

9 2,794 B

10 7,636 B

11 3,996 B

12 7,467 B

13 10,587 B

14 3,863 B

15 1,649 A

20 3,566 A

21 3,457 B

28 6,335 B

Note. NA, missing data.
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We initially consider the following general regression model for an N-of-1 study:
Ve = Bo + Byixr + Bot + Bsix, + €, (1)

where €, = pe;_1 + 24,1 = 2,..., T, are autocorrelated, order-one residuals, with z, ~ N
O, 02), and €; ~ N(O, 62/(1 — pz)). Before formally discussing the methodology, we
introduce five possible alternative underlying mean behaviour patterns for two phases
which can be specified by model (1) (Figure 1). Aisthe phase before an intervention and B
is the phase after an intervention has been introduced. In Figure 1a, there is no change in
the intercept or slope following the intervention (f; = , = B3 = 0). In Figure 1b and d
there is a change in the intercept but not in the slope (B; # 0, 5 = 0). The difference
between these two figures is that the former has a zero slope (B, = 0). In Figure 1c, there
is constant increase over time, that is, no change in the slope (§; = 0, B> # 0, 53 = 0). No
intervention changes could be detected in this figure since it is a trend developed in phase
A continuing into phase B. Figure 1le represents a change in both the intercept and slope
(Bl 7é 0’ BZ 7é 07 BS 7é 0)

A regression-based N-of-1 study analyses a single interrupted time series that is subject to
no interventions and interventions. It has two common methodological difficulties:
autocorrelation and a small sample. McKnight et al. (2000) designed a double bootstrap
methodology to tackle autocorrelation bias in the context of small samples. They use the first
bootstrap to obtain asymptotically consistent estimates of the autocorrelation and other
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Figure 1. Patterns of mean behaviour. ‘A’ (blue line) and ‘B’ (red line) refer to a phase without an
intervention and with an intervention, respectively [Colour figure can be viewed at www.online
library.com].
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parameters in the model by utilizing Durbin’s two-stage method, and use the second
bootstrap to estimate the variance—covariance matrix of the estimated parameters. Their
method reduced biases in the estimated autocorrelation and standard errors of the
coefficients, and hence provided tests that have Type I error rates closer to the nominal rate
and comparable statistical power to that when the true value of the autocorrelation is used.
However, their estimation process is extremely computer-intensive by construction, which
may limit the potential applications of method in practice. The current study attempts to deal
with the issues of autocorrelation and small sample using a single parametric bootstrap
within a generalized least squares (GLS) framework. Our work uses the restricted maximum
likelihood (REML) estimation method in R (R Development Core Team, 2014) to detect an
effect between two phases (phase A has no intervention, phase B has an intervention) where
the underlying data series is autocorrelated. Parameters estimated under a GLS approach are
consistent, but may suffer bias from underestimated standard errors (Park & Mitchell, 1980)
due to the small sample size. We use semi-parametric and parametric bootstrap tests to
reduce the effect of small sample bias in test statistics in an attempt to achieve better
inferences from estimated parameters than the Wald test. Our method provides a simpler
option that deals with the autocorrelation and small sample issues. It is less computer-
intensive and easier to implement when compared to the double bootstrap method.

Motivated by Borckardt et al. (2008), we consider a simple case design that explicitly
assumes there is no slope in our model and hence concentrates on the differences among
two phases (A and B). This is a realistic assumption as empirical experiments may not have a
trend in phase A or B (see our motivating example). Our null hypothesis is displayed in
Figure 1 and does not include a trend. Our alternative hypothesis is in Figure 1b. We use a
dummy variable to detect a phase effect between A and B in one single time series as in
standard linear regression analysis. A dummy variable that is not significantly different from
zero indicates there is no phase effect. Further, we use simulation to calculate and compare
statistical properties of bootstrap tests and Wald tests under various autocorrelations and
phase effects. Despite new methods continually being developed to carry out N-of-1 studies,
there is limited evidence on the power of these tests. This is the first attempt, to the best of
our knowledge, to investigate the statistical power of semi-parametric and parametric
bootstrap tests within a single time series setting in the context of N-of-1 studies. The results
on statistical power provide guidelines for designing NV-of-1 studies, in the sense of how many
days and how many intervention changes are needed to achieve a certain level of power.

The rest of the paper is organized as follows. Section 2 introduces the regression
model for detecting phase effects, the concepts of Type I error rate and statistical power,
the construction of bootstrap tests and the estimation of the Type I error rate and power
functions. Section 3 presents empirical results from two intervention designs (AB and
ABAB), a discussion of these results and a power function illustration using the sample
data introduced above. Our conclusions are summarized in Section 4.

2. Methodology

2.1. Regression model
We now consider a simpler version of model (1) for an N-of-1 study:

ye = o+ Bx; + €, (2)

wheree, = pe,_y + 2;,t = 2,...,T,withz, ~ N0, 5%),and €; ~ N0, 5%/(1 — p>)).Recall
that in this model, y, is a repeated measure at time ¢ = 1, 2, ..., T, x, is a phase dummy
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taking the value of 1 for the intervention and O for the non-intervention phase. The phase
effect is B, with a large (small) absolute value of § indicating a large (small) phase effect.

As mentioned, the problems of small sample size and autocorrelation may violate the
underlying assumptions of no autocorrelation and large sample size for a standard linear
regression analysis, which may lead to incorrect inferences, such as an incorrect Type I
error rate and low statistical power. In order to overcome the problem of autocorrelation,
we ‘use GLS with REML to fit the models. Motivated by McKnight et al.’s (2000) bootstrap
method, in order to address the small-sample problem, we suggest constructing semi-
parametric and parametric bootstrap tests of the null hypothesis Hy: B = 0. For these tests,
rather than comparing the Wald test statistics to its asymptotic null distribution, N(0,1),
which henceforth we refer to as the Wald test, we compare this test statistics to a
bootstrapped sample. See Section 2.3 for details. We compare the properties of the
bootstrap tests to those of a Wald test for coefficients estimated by using GLS with REML.
The properties under investigation are the Type I error rate and statistical power. By doing
so, we aim to uncover the actual magnitude of Type I error rate, and how close it is to the
nominal rate of 5%. Both Wald tests and bootstrap tests are carried out using the data
simulated as described in Section 3. All estimates are calculated using the GLS REML
routine in R (R Development Core Team, 2014).

2.2. Statistical properties

Two properties of a statistical test are discussed in this study: the Type I error rate and
statistical power. The Type I error rate is the probability of incorrectly rejecting the null
hypothesis when it is true. It is an important property which we like to control accurately.
A standard acceptable Type I error is 5%.

Statistical power, or the power of a significance test, refers to the probability of
rejecting the null hypothesis when it is false. Given a valid procedure, we like the power as
high as possible when the null hypothesis is false (Cohen, 1988). It is an important
consideration in an N-of-1 study and gives guidance on the length and frequency of
interventions to reach a desirable power level, such as 80% (Cohen, 1988). It can also be
used to detect whether two or more individuals are required in the trial (N-of-k studies).

2.3 Construction of bootstrap tests

The concept of the bootstrap is to replace the population with the empirical population
(non-parametric) or estimated population (semi-parametric and parametric). Suppose our
target is to draw inference about a population parameter 0 and we have observed a
random sample of size T'(yy, 2, - .. yp) from this population with sample statistics 0. We
can derive 6,, a random quantity which represents the same statistics, but computed on a
bootstrap sample b drawn from the empirical or estimated population. Computing 6 for
B different bootstrap samples, we can then derive 91, 92, . 6 The empirical bootstrap
distribution of 9 proves to be a fairly good approximation of the distribution of 0.

In this study, we adopt parametric bootstrap tests (Efron & Tibshirani, 1993, p. 53) and
semi-parametric bootstrap tests (Davison & Hinkley, 1997, pp. 389-391), with B = 100.
Since we are not estimating a p-value, just performing a bootstrap test, B = 100 should be
sufficient. However, to assess the effect of using a large B, we also calculate the Type I
errors for bootstrap tests with B = 200 and compare the results. Under the alternative
hypothesis as in model (2), the o4, fi 4> Py and 631 from the observed sample are estimates of
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population values of a, B, p and % We also estimate 6, po and 6(2) from the observed
sample under the null hypothesis that f is zero, that is, under the following model:

Ve =0+ €&, (3)

where €, = pe;_y + 2;,t = 2,..., T, with z, ~ N(0, 6%, and €; ~ N(O, */(1 — p?)).

For the parametric tests, we simulate bootstrap samples under the null hypothesis.
Then model (2) is fitted to the bootstrap samples to generate bootstrap estimates of 3 (B’{,
B;, N Bg), For each of the bootstrap simulations, the absolute value of the Wald test
statistic based on GZ is compared to the Wald test statistics based on B, estimated under
the alternative hypothesis (model 2). This comparison is repeated B times for each of the
simulated [3,,. The p-value of the bootstrap test is calculated as the percentage of times out
of the total B that the bootstrapped Wald statistics generated from model (3) is more
extreme than the observed statistics from model (2).

For the semi-parametric test, rather than simulating the errors, z;, from a normal
distribution, they are sampled with replacement from the estimate residuals from model
Q) 2, =& — p&_1, t = 2, ..., T, transformed to have mean zero and variances &3; see
Davison and Hinkley (1997, pp. 389-391) for more details.

2.4. Estimating the Type I error rate and power functions

We estimate and compare the properties of bootstrap tests and those of the Wald tests.
The Type I error rate and the power function of both tests are estimated. As mentioned, we
desire the actual Type I error rate to be close to nominal rate of 5% and high statistical
power. We start by simulating a data set Y;, t =1, ..., T, following model (2), with
predetermined values of o, B, p and o2, where o = 0, 62 = 1, and follow the structure of
data collected from a study of POWeR Tracker (Morrison et al., 2014), with an ABAB
design. Wald and bootstrap tests are then performed on the simulated data. We repeat this
process 10,000 times for the Wald test and the bootstrap tests, and estimate the Type I
error rate and power function for the given B and p. The actual Type I error rate is
estimated as the percentage of times that the p-values of estimated B are <5% when B is set
to zero. The statistical power is the percentage of times that the p-values are <5% when [ is
not zero. A power function is the power as the corresponding values of § and p vary.

We expect the Type I error to be close to the nominal size of 5% for the parametric
bootstrap test we have constructed. We also expect low statistical power in our study as
autocorrelation and the small sample in N-of-1 studies are long-standing issues in
behaviour change research in psychology (Cohen, 1988).

In order to assess the impact of the normal assumption, we also simulate the residuals
from a contaminated normal distribution with a random 15% of the residual generated
with an increased variance of 25 and repeat the simulation study. However, the parametric
bootstrap was still based on the assumption of normality as before.

3. Simulation study

The Type I error rate and statistical power functions for both the Wald test and the
parametric bootstrap tests are estimated by using Monte Carlo simulation. As noted above,
we use 10,000 simulations for all tests and B = 100 for the bootstrap tests. Two designs of
interventions are calculated: the first design (D1), as in the POWeR Tracker study, has an
ABAB structure, with each of the four phases set up for 7 days (as in column 3 in Table 1);
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the second design (D2) has an AB structure, with both phases lasting for a period of
14 days. Both designs have a total duration of 28 days. The results give guidance on the
design of N-of-1 studies, in the sense of whether it is better to have one long intervention
period or several shorter intervention periods.

3.1. Type | error rates

Table 2 presents the estimated Type I error rates for the Wald, parametric and semi-
parametric tests. Four values of p are considered (0, .2, .5, .7) with two error distributions
(normal and contaminated normal) and two designs (D1 and D2). For the bootstrap tests
we present the results for B = 100 and 200. When interpreting these estimates, it should
be borne in mind that if the true proportion is .05 then under repeated sampling
approximately 95% of the estimated proportions based on a sample size of 10,000 would
be in the tolerance interval (.0457, .0543).

For all but one of the scenarios, the estimated Type I error rate for the Wald test is
greater than the upper limit of the 95% tolerance interval (.0543), indicating that Wald test
does not have the correct Type I error rates. However, for normal errors, the estimated
Type I error rates for the parametric and semi-parametric bootstrap tests are within the
95% tolerance interval.

For the contaminated errors, the majority of the estimated Type I errors for the
parametric and semi-parametric tests are closer to the nominal value of .05 than those for
the Wald test, although fewer are within the 95% tolerance interval than for the normal
errors. Furthermore, the estimate Type I error rates for the semi-parametric tests are closer
to the normal value than those for the parametric tests, particularly for D2 and p = .5 and
.7, indicating that in the presence of contaminated errors, the semi-parametric bootstrap
tests perform better.

For both bootstrap tests and both error distributions, the results for B = 100 and 200
are very similar, supporting our initial belief that B = 100 should be sufficient. In
particular, note that for the parametric bootstrap with contaminated errors, the Type I

Table 2. Estimated Type I error rates for Wald and bootstrap tests for two intervention designs

Design 1 (D1) Design 2 (D2)

Test p=0 p=.2 p=.5 p=.7 p=0 p=.2 p=.5 p=.7

Normal errors
Wald .0674 .0728 .0854 .0808 0612 .0697 .1000 .1130
Parametric bootstrap
B =100 .0503 .0503 .0522 .0500 .0513 .0510 .0529 .0540
B = 200 .0513 .0522 .0507 0544 .0460 .0489 .0508 .0537
Semi-parametric bootstrap
B =100 .0513 .0519 .0522 0541 .0457 .0462 .0465 .0510
B = 200 .0494 .0479 .0505 .0499 .0508 .0475 .0458 .0561
Contaminated normal errors
Wald .0522 .0625 .0820 .0917 0547 .0688 .1071 1223
Parametric bootstrap
B =100 .0434 .0483 .0475 .0559 0411 .0448 .0615 .0698
B = 200 .0382 .0411 .0494 .0612 0391 .0425 .0552 .0677
Semi-parametric bootstrap
B =100 .0442 .0436 .0506 .0508 .0392 .0446 .0544 .0577
B = 200 .0428 .0432 .0464 .0518 .0408 .0456 .0587 .0584
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error rates with the larger B are not uniformly closer to the nominal rate than those with
B = 100 (Table 2).

3.2. Power
Tables A1-A6 (Appendix) present estimates of power functions for the Wald, parametric
and semi-parametric tests with B = 100. Four values of p are considered (0, .2, .5, .7) with
two error distributions (normal and contaminated normal) and two designs (D1 and D2).
Note that D1 has three change points, whereas D2 has only one. Figure 2 presents a range
of these power functions.

Figure 2 presents the power functions of the three tests under the two designs with
p = 0 and normal errors (Figure 2a) and contaminated errors (Figure 2b). Although the
‘Wald has the incorrect Type I error rate, it is the scenario which is closest to the nominal
rate and therefore is included for comparison. From these two graphs, we conclude that
there is no substantial differences in power when p = 0.

Figure 2c presents the power functions of the bootstrap tests under the two designs
with p = .5 and normal errors. Again there is no difference between the two tests for each
design, but they are considerably more powerful under D1.
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Figure 2. Power functions for: the Wald test, parametric test and semi-parametric bootstrap tests
under the two designs with p = 0 and (a) normal errors and (b) contaminated errors; the bootstrap
tests under the two designs with p = .5 and (c) normal errors and (d) contaminated errors.
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Figure 2d presents the same power functions as in Figure 2c, except that the errors are
now contaminated. Again there is no difference between the parametric and semi-
parametric bootstrap test under D1, whereas under D2 the semi-parametric test is less
powerful. However, recall that in this case the semi-parametric test has estimated Type I
error rates closer to the nominal.

Comparing Figure 2a and b with Figure 2c and d reveals that the power decreases as p
increases. Inspection of Tables A1-A6 reveals this is the case in all the scenarios
considered. Comparing the two designs reveals that the power is lower for the
contaminated errors; again see also Tables A1-A6.

For D2 with an autocorrelation value of .2 and normal errors, to achieve a power
of .8 for the parametric bootstrap test a PB-value >1.5 is required; for a larger
autocorrelation value, .5 or .7, a B of 2.5 or 3 is required (Table A3). These results
suggest the power under D2 is low. Further comparison between D1 and D2 reveals
that the bootstrap tests for both designs generally have similar Type I error rate, but
for D1 they are at least as powerful as for D2 and tend to become more powerful as
p or B increases. This result indicates that the shorter repeated intervention design
works better than the longer period of intervention without repeat. This may be due
to the impact of autocorrelation.

3.3. Biasin p

As aby-product of the simulation study, we are able to assess the bias in p as p, B, the design
and the error distribution vary. As expected, inspection of the results showed that the bias
did not vary with B. Therefore, in Table 3, we present the estimated bias in p as p, the
design and the error distribution vary. For a particular value of p, the bias in p is very similar
for both designs and both error distributions. However, the magnitude of the bias
increases as p increases. This may in part explain the inflated Type I error rates for the
Wald test (Table 2). However, as noted above, the bootstrap tests perform well, despite
this increase in bias.

4. Discussion

It is clear from the above study that the bootstrap tests are more desirable for N-of-1 studies
when autocorrelation is present. Under a single case design involving one individual over
a period of 28 days, the statistical power is low. The comparison between ABAB and AB
designs indicates that under the presence of autocorrelation, shorter and repeated
interventions (ABAB design) seem to be more effective than longer and unrepeated
interventions (AB design). This result lends support for the single-case intervention
research design standards (Kratochwill et al., 2013) where the AB design does not meet
the standard.

Table 3. Estimated bias in p for two intervention designs

Design 1 (D1) Design 2 (D2)
Errors p=0 p=.2 p=.5 p=.7 p=0 p=.2 p=.5 p=.7
Normal .0006 —.0146 —.0449 —.1234 .0017 —.0122 —.0396 —.1218

Contaminated .0035 —.0060 —.0325 —.1120 .0054 .0000 —.0231 —.1085




Properties of bootstrap tests for N-of-| studies 285

4.1 Conclusions

This study explores the properties of semi-parametric and parametric bootstrap tests in a
single subject experiment design, or N-of-1 study, aiming to account for small sample sizes
under the GLS regression framework. This is the first attempt, to the best of our
knowledge, to examine the properties of N-of-1 studies in such a setting. We find the
bootstrap tests are more accurate with regard to Type I errors when compared to the Wald
test, and hence more desirable. We recommend the use of a parametric bootstrap with
B = 100, except when both relatively large autocorrelation and contaminated normally
distributed errors are thought possible. Our results can also be used to facilitate various
experimental designs and provide guidelines for future N-of-1 studies. Further, we
compare two different intervention designs of the same total duration and find that the
tests under the design with more change points (D1) have better properties. This provides
support for designs with three changes in the intervention as set out in the single case
intervention research design standards (Kratochwill et al., 2013).

The bootstrap methods used in the study examine an intervention effect under the
assumption of no trend (Figure 1a). They can also be applied to the case where the model
under the null hypothesis includes a trend (Figure 1¢) and the model under the alternative
hypothesis has a trend and a phase effect on the intercept (Figure 1d). Therefore, the results
in this paper can also be used when designing a study to detect a phase effect on the
intercept irrespective of whether or not there is a trend. The scenario our study has not
covered is the case where the model under the alternative hypothesis has a phase effect on
the slope (Figure 1e), although the method could easily be modified to handle this situation
by adding a trend and trend by phase interaction to model (1). The method could also be
extended to the situation where more than one individual is studied (V-of-k study, & > 1) by
appropriately modifying model (1) to account for between-individual differences.
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Appendix : Statistical power tables

Table Al. Statistical power for Wald tests under normally distributed residuals for two intervention
designs

Design 1 (D1) Design 2 (D2)

B p=0 p=.2 p=.5 p=.7 p=0 p=.2 p=.5 p=.

0.1 .0719 .0795 .0844 .0847 .0716 .0762 .1052 1244
0.2 .0951 .0967 .0975 .0950 .0948 .0915 .1099 1283
0.3 1341 1257 .1183 1167 1297 1204 1243 .1402
0.4 .1870 .1700 1516 .1409 1825 .1608 .1439 .1558
0.5 2613 2218 .1888 1721 .2561 2123 1719 .1705
0.6 3475 .2827 2362 .2103 3357 .2696 .2007 .1897
0.7 4427 3549 2901 2523 4257 3344 2345 2142
0.8 5394 4340 .3466 3034 5226 .4048 2758 .2405
0.9 .6343 .5190 4134 36006 .6081 .4800 3182 2734
1 7145 5973 4773 4228 .6954 5528 3690 3021
1.2 .8532 7472 .6065 5439 .8380 .6953 4748 3772
1.5 9592 .8978 .7819 .7183 9531 .8601 .6212 4943
1.8 9912 9674 .9007 8522 9902 .9440 .7561 .6168
2 .9976 .9868 .9476 9152 .9969 9728 .8263 .6904
25 9997 .9986 9903 .9833 .9997 9951 .9360 .8417
3 9999 9999 9990 9977 .9998 9976 9781 .9287

4 1.0000 1.0000 1 1 .9999 9991 .9939 .9896
5 1 1 1 1 .9999 .9996 .9985 .9993
6 1 1 1 1 1 1 1 1



http://dx.doi.org/10.1177/0741932512452794
http://dx.doi.org/10.1037/1082-989X.5.1.87
http://dx.doi.org/10.1037/1082-989X.5.1.87
http://dx.doi.org/10.2196/jmir.3579
http://dx.doi.org/10.3758/s13428-011-0111-y
http://dx.doi.org/10.3758/s13428-011-0111-y

Properties of bootstrap tests for N-of-1 studies 287

Table A2. Statistical power for Wald tests under contaminated normally distributed residuals for
two intervention designs

Design 1 (D1)

Design 2 (D2)

B p=0 p=.2 p=.5 p=. =0 p=.2 p=. p=.

0.1 .0560 .0657 .0865 .0954 .0553 .0758 1142 .1258
0.2 .0651 .0698 .0903 .0932 .0611 0774 .1092 1265
0.3 .0789 .0864 .0966 .0995 0772 0858 1140 1297
0.4 .1016 .1009 1014 1015 .1018 1042 1207 1314
0.5 1264 1163 1170 1158 1250 1156 1272 1374
0.6 1521 1432 .1260 .1188 1517 1463 .1460 1431
0.7 .1870 1667 1473 1324 .1885 1678 1472 1510
0.8 2334 .1922 1633 .1465 .2280 1942 .1685 1604
0.9 2712 2294 .1853 .1687 .2668 2142 1837 1673
1 3107 2728 2168 .1894 .3008 2456 .1968 .1801
1.2 .3985 3401 .2648 2305 3952 .3099 2339 .2029
1.5 .5289 4434 3546 3159 .5204 4220 3019 .2466
1.8 .6364 5577 4428 .3989 .6259 5231 3754 .2859
2 .7074 6142 5025 4494 .0911 5720 4131 3317
25 .8259 7427 .6462 .5889 .8213 7100 .5287 4190
3 9073 .8457 .7510 7158 .9068 8120 .6342 .5148
4 9775 .9482 .8910 .8657 .9730 9343 .8041 .6952
5 9952 .9878 9554 9441 .9943 9723 .8994 .8191
6 9991 .9962 9857 .9781 .9981 .9875 .9459 .8987
7 .9997 9991 9958 9918 .9988 9934 9672 9418
8 9999 .9999 .9987 9973 9990 .9948 .9789 .9628
9 9997 9999 .9990 9991 .9960 .9833 9762
10 .9998 .9999 9995 .9998 9973 .9894 .9813

Table A3. Statistical power for parametric bootstrap tests under normally distributed residuals for
two intervention designs

Design 1 (D1)

Design 2 (D2)

B p=0 p=.2 p=.5 p=.7 p=0 p=.2 p=.5 p=.7
0.1 .0591 .0552 .0553 0574 .0556 .0527 .0518 .0558
0.2 .0753 .0640 .0621 .0635 .0736 .0606 .0559 .0573
0.3 1118 .0853 0754 .0723 .1091 .0821 .0672 .0605
0.4 1524 1233 1011 .0925 1519 .1100 .0790 .0628
0.5 .2187 .1663 1247 1174 .2186 1432 .0899 .0722
0.6 .2936 2168 1597 .1409 .2860 .1856 .1098 .0891
0.7 3781 .2804 .2049 .1836 3745 2364 .1296 .0962
0.8 .4638 3425 2471 2172 .4586 .2874 .1501 .1181
0.9 .5658 4215 3042 2705 5474 3410 .1780 .1368
1 .6476 4957 3548 .3097 .6365 4136 .2187 1474
1.2 7987 .6402 4718 4241 7943 .5468 .2844 1944
1.5 .9349 .8310 .6627 .6006 9236 .7166 .4022 2732
1.8 .9839 9352 .8143 .7603 .9789 .8395 .5403 3717
2 9935 .9660 .8882 .8453 9930 .8935 .6146 4446

Continued
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Table A3. (Continued)

Design 1 (D1)

Design 2 (D2)

B p=0 p=.2 p=.5 p=.7 p=0 p=.2 p=.5 p=.7
2.5 9997 9969 9727 9585 9994 9672 7948 6115
3 9999 9999 9976 9943 9996 9889 8964 7610
4 1.0000  1.0000  1.0000  1.0000  1.0000 9977 9769 9373
5 1.0000  1.0000  1.0000  1.0000 9999 9987 9961 9878
6 1.0000  1.0000  1.0000  1.0000  1.0000 9998 9977 9977
7 1.0000  1.0000  1.0000  1.0000 1 9999 9996 9996
8 1.0000 1 1 1 1 1.0000 9999 9999
9 1 1 1 1 1 1.0000  1.0000  1.0000
10 1 1 1 1 1 1 1.0000  1.0000

Table A4. Statistical power for parametric bootstrap tests under contaminated normally dis-
tributed residuals for two intervention designs

Design 1 (D1)

Design 2 (D2)

B p=0 p=.2 p=.5 p=.7 p=0 p=.2 p=.5 p=.7
0.1 .0409 .0439 .0508 .0608 .0409 .0464 .0626 .0674
0.2 .0490 .0465 .0516 .0632 .0485 .0504 .0602 .0638
0.3 .0560 .0521 .0562 0615 .0587 .0544 0642 .0721
0.4 .0755 .0663 .0635 .0726 .0729 .0654 .0661 0711
0.5 .0937 .0818 .0752 .0764 .0989 .0802 .0759 .0688
0.6 1197 .0993 .0865 .0865 1197 .0931 .0801 .0792
0.7 .1495 1214 .0954 .0834 1435 1074 .0839 .0815
0.8 .1858 1424 1061 .1052 1738 1247 .0904 .0838
0.9 2174 1731 1252 1202 .2033 .1486 .1025 .0892
1 2567 .1967 1512 .1309 2364 1694 1127 .0967
1.2 3363 .2615 1919 1667 3129 .2160 1293 1031
1.5 4546 3574 .2581 2232 4209 3066 .1710 1315
1.8 5739 4714 .3408 .2998 5319 .3852 2178 1566
2 .6253 5318 4099 3501 .6079 4552 2570 .1847
25 7674 .6743 5522 4937 .7468 .5943 .3598 .2478
3 .8628 7798 .6638 .6235 .8469 .7089 4478 3245
4 9631 9143 .8327 .8053 9426 .8565 6377 4743
5 .9889 9719 9310 9129 .9830 .9297 7673 .6237
6 9981 .9908 9720 .9609 9939 .9685 .8503 7493
7 9995 9971 .9898 .9847 9959 .9846 9168 .8400
8 9999 .9996 9964 9926 .9981 .9908 .9481 .8930
9 1 9999 9989 9974 9985 9932 .9682 9320
10 1 1 .9990 9991 .9992 .9960 .9803 9575
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Table A5. Statistical power for semi-parametric bootstrap tests under normally distributed
residuals for two intervention designs

Design 1 (D1)

Design 2 (D2)

B p=0 p=2 p=.5 p=. p=0 p=2 p=.5 p=.
0.1 0577 0478 0509 0481 0523 0501 0507 0535
0.2 0729 0678 0663 0605 0674 0625 0588 0531
0.3 1018 0929 0816 0769 0990 0834 0659 0581
0.4 1489 1211 1007 0930 1429 1031 0722 0647
0.5 2094 1604 1285 1176 1961 1444 0881 0720
0.6 2828 2207 1688 1480 2629 11803 1109 0828
0.7 3649 2769 2026 1786 3395 2321 1358 0957
0.8 4535 3333 2401 2140 4227 2881 1560 1122
0.9 5435 4241 3020 2686 5042 3517 1877 1271
1 6317 4876 3531 3153 5870 4080 2142 1449
1.2 7786 6488 4814 4331 7377 5374 2880 1927
15 9189 8261 6671 6053 8819 7144 4201 2795
1.8 9780 9287 8157 7669 9537 8378 5427 3778
2 9913 9645 8897 8471 9767 8951 6241 4505
25 9996 9961 9781 9634 9955 9670 7982 6259
3 9999 9994 9972 9946 9994 9899 9029 7709
4 1 1 9999 9999 1 1 9816 9423
5 1 1 1 1 1 1 9958 .9895
6 1 1 1 1 1 1 1 9982
7 1 1 1 1 1 1 1 9998
8 1 1 1 1 1 1 1 1

9 1 1 1 1 1 1 1 1

10 1 1 1 1 1 1 1 1

Table AG. Statistical power for semi-parametric bootstrap tests under contaminated normally
distributed residuals for two intervention designs

Design 1 (D1)

Design 2 (D2)

B p=0 p=.2 p=.5 p=.7 p=0 p=.2 p=.5 p=.7
0.1 .0475 .0464 .0541 .0574 .0422 .0448 .0550 .0619
0.2 .0582 .0568 .0537 .0554 .0483 .0458 .0597 .0617
0.3 .0660 .0558 .0614 .0575 .0585 .0504 0577 .0590
0.4 .0788 0677 .0649 .0620 .0742 .0605 .0606 .0610
0.5 .1027 .0903 .0699 .0699 .0936 .0716 .0649 .0627
0.6 1261 .0964 .0847 .0783 1144 .0855 .0718 .0654
0.7 1596 1222 .0951 .0877 .1409 .0994 .0774 .0684
0.8 1842 .1500 1132 .0968 .1701 1159 .0841 .0736
0.9 2293 .1789 1328 .1095 .2051 1358 .0924 .0753
1 2721 .2008 1423 1232 2433 .1606 .1007 .0805
1.2 3420 .2690 .1950 1559 3149 .2079 1215 .0917
1.5 4711 3743 .2638 .2140 4282 .2890 1587 1113
1.8 .5805 4747 .3468 2851 5355 3760 .1992 1359
2 .6509 .5420 3935 3358 5978 4271 .2299 1543
2.5 .7828 .6708 5315 4644 .7384 .5569 3157 .2105

Continued
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Table A6. (Continued)

Design 1 (D1)

Design 2 (D2)

B p=0 p=.2 p=.5 p=.7 p=0 p=.2 p=.5 p=.7
3 8705 7869 6564 5865 8305 6692 4105 2774
4 9675 9223 8331 7810 9338  .8233 5635 4132
5 9923 9713 9218 8945 9746 9083 7016 5467
6 9975 9914 9688 9531 9887 9487 8083 6690
7 9998 9980 9877 9826 9957 9727 8671 7663
8 1 9994 9969 9935 9975 9822 9187 8343
9 1 9999 9981 9973 9981 9889 9446 8848
10 1 1 9997 9989 9985 9924 9626 9234




