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Abstract

Purpose—We sought to investigate genetic variation in hormone pathways in relation to risk of 

overall and subtype-specific breast cancer in women of African ancestry (AA).

Methods—Genotyping and imputation yielded data on 143,934 SNPs in 308 hormone-related 

genes for 3663 breast cancer cases (1098 ER-, 1983 ER+, 582 ER unknown) and 4687 controls 

from the African American Breast Cancer Epidemiology and Risk (AMBER) Consortium. 

AMBER includes data from four large studies of AA women: the Carolina Breast Cancer Study, 

the Women's Circle of Health Study, the Black Women's Health Study, and the Multiethnic Cohort 

Study. Pathway- and gene-based analyses were conducted, and single SNP tests were run for the 

top genes.

Results—There were no strong associations at the pathway level. The most significantly 

associated genes were GHRH, CALM2, CETP, and AKR1C1 for overall breast cancer (gene-based 

nominal p ≤0.01); NR0B1, IGF2R, CALM2, CYP1B1, and GRB2 for ER+ breast cancer (p 

≤0.02); and PGR, MAPK3, MAP3K1, and LHCGR for ER- disease (p ≤0.02). Single-SNP tests 

for SNPs with pairwise linkage disequilibrium r2 <0.8 in the top genes identified 12 common 

SNPs (in CALM2, CETP, NR0B1, IGF2R, CYP1B1, PGR, MAPK3, and MAP3K1) associated 
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with overall or subtype-specific breast cancer after gene-level correction for multiple testing. 

Rs11571215 in PGR (progesterone receptor) was the SNP most strongly associated with ER- 

disease.

Conclusion—We identified eight genes in hormone pathways that contain common variants 

associated with breast cancer in AA women after gene-level correction for multiple testing.
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Introduction

Women of African ancestry (AA) have been under-represented in genetic studies of breast 

cancer to date. At the same time, AA women experience higher mortality from breast cancer 

compared to women of European ancestry [1] and are more likely to be diagnosed with 

estrogen receptor negative (ER-) tumors, which carry a poor prognosis [2–6]. Given these 

racial disparities, it is critical that more studies be conducted in AA women, taking 

advantage of their greater genetic variability to identify risk variants.

There is extensive evidence that steroid hormones affect breast cancer risk. In vitro studies 

have shown that estrogens and other hormones promote breast cell proliferation [7, 8], and 

estrogen metabolites may initiate DNA damage and mutations [9–13]. Also, increased rates 

of mammary tumor development have been reported in rodents given estrogens [7, 14]. In 

humans, reproductive and hormonal factors such as age at menarche, parity, lactation, and 

use of exogenous estrogens and progestogens are associated with the risk of breast cancer 

[15–23]. Prospective studies in humans have shown that low blood concentrations of sex-

hormone-binding globulin (SHBG) [24, 25] and increased estrogen [24–27] and androgen 

[24–28] concentrations are associated with an increased risk of breast cancer. Hormonal 

profiles vary by race [29], and polymorphisms in steroid hormone pathway genes have been 

linked to hormone levels [30–34]. Therefore, differences in population allele frequencies at 

these loci may contribute to racial disparities in breast cancer.

At least three breast cancer GWAS loci, ESR1 [35], MAP3K1 [36], and ITPR1 [37], fall 

within biological pathways related to steroid hormone metabolism. ESR1 and MAP3K1 
associations have also been replicated in AA populations [38–42]. Candidate gene studies 

conducted by the National Cancer Institute Breast and Prostate Cancer Cohort Consortium 

(BPC3) [7] in more than 6,000 breast cancer cases and 8,000 controls found no significant 

associations with 37 steroid hormone metabolism genes [7, 34, 43–48]. However, the BPC3 

subjects were mostly of European ancestry, and the list of assayed genes was limited. 

Therefore, the present study in an African American population was initiated to evaluate a 

more comprehensive set of steroid hormone metabolism genes for associations with overall, 

ER+, and ER- breast cancer. Given the small effect sizes seen for common susceptibility 

variants, the present analyses utilized pathway- and gene-based testing approaches in an 

attempt to identify important biological pathways and genes with multiple risk variants that 

might otherwise be missed in a SNP-based approach.
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Methods

Study Population

The present analyses were conducted using data from the African American Breast Cancer 

Epidemiology and Risk (AMBER) Consortium, a collaboration of four of the largest studies 

of breast cancer in African American women. The AMBER Consortium [49] and the four 

individual studies – the Carolina Breast Cancer Study (CBCS) [50], the Women's Circle of 

Health Study (WCHS) [51, 52], the Black Women's Health Study (BWHS) [53], and the 

Multiethnic Cohort (MEC) [54] – have been described previously, and each was granted 

Institutional Review Board approval. All study subjects provided informed consent.

Briefly, the CBCS is a population-based case-control study of women aged 20 to 74 years 

that began in North Carolina in 1993. Cases were identified through the North Carolina 

Central Cancer Registry's rapid case ascertainment system, and controls were enrolled 

through 2001 using Division of Motor Vehicles lists (age <65 years) and Health Care 

Financing Administration lists (age ≥65). Questionnaire data and samples for DNA analysis 

were obtained by interviewers in home visits.

The WCHS is an ongoing case-control study that began in 2002 with ascertainment of cases 

aged 20 to 75 years from New York City hospitals, later expanding to several counties in 

New Jersey with case identification using the New Jersey State Cancer Registry's rapid case 

ascertainment system. Controls have been recruited through random digit dialing as well as 

community-based efforts [52]. In-person interviewers collect risk factor data and obtain 

samples for DNA analysis.

The BWHS is a prospective cohort study that began in 1995 when 59,000 African American 

women 21-69 years of age from across the United States completed a postal health 

questionnaire. Breast cancer cases are identified by self-report in biennial follow-up 

questionnaires, and cases are confirmed by medical records or from state cancer registry data 

and the National Death Index. Approximately 27,000 BWHS participants provided saliva 

samples for DNA analysis.

The MEC study is a prospective cohort study in Hawaii and California that began in 1993 

with the enrollment of men and women aged 45-75 years. Data is collected through 

questionnaires mailed at 5-year intervals, and breast cancer cases are confirmed by linkage 

with the California and Hawaii state cancer registries and the National Death Index. Blood 

samples were obtained from study subjects for DNA analysis.

Eligible cases were women with incident invasive breast cancer or ductal carcinoma in situ, 

with available DNA for genotyping. For BWHS and MEC, controls were selected from 

among participants who did not have breast cancer, and were frequency matched to cases on 

5-year age group and geographical region. Determination of ER status for cases was based 

on pathology data from hospital records or cancer registry records.
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SNP Selection

We selected eight pathways related to steroid hormone synthesis from the Molecular 

Signatures Database (MSigDB) [55]. These pathways contained a total of 261 genes. We 

also added some specific genes (N=47) that were not in those eight pathways but had been 

associated with reproductive traits in candidate gene studies. Tag SNPs were then selected 

for all 308 genes +/- 10kb flanking regions in order to capture (at r2 ≥0.8) as many SNPs as 

possible with minor allele frequency ≥10%, based on the haplotype structure of the Yoruban 

population (YRI) in 1000 Genomes [56] (http://www.1000genomes.org/).

Genotyping and QC

Genotypes were attempted for 6,936 study subjects from the BWHS, CBCS, and WCHS, 

and were completed with call rate >98% for 6,828 participants, which included 3,130 cases 

(963 ER-, 1,674 ER+, 493 ER unknown) and 3,698 controls. The variants considered in the 

present study had been included as part of >159,000 custom content SNPs added to an 

Illumina Exome Beadchip in line with the aims of the AMBER project. SNPs that were 

monomorphic, had Hardy-Weinberg Equilibrium p <1×10-4, call rate <0.98, or had >1 

Mendelian error in trios from HapMap [57], or >2 discordant calls in duplicate samples, 

were excluded. A total of 9,576 SNPs in the 308 genes of interest for this study were 

successfully genotyped and passed quality control. The University of Washington performed 

imputation using the IMPUTE2 software [58] and the 1000 Genomes Phase I reference 

panel (5/21/2011 1000 Genomes data, December 2013 haplotype release).

Genetic data from 533 cases (135 ER-, 309 ER+, 89 ER unknown) and 989 controls in the 

MEC were available from a previous GWAS on the Illumina Human 1M-Duo chip [59], 

with SNPs imputed to the same release of 1000 Genomes. Imputed genotypes from MEC 

were combined with imputed data for the BWHS, CBCS, and WCHS into a final data set. 

After excluding variants with mismatching alleles or allele frequencies that were different by 

more than 0.15 in MEC vs. the other three studies, and variants with allele frequencies 

<0.5% or imputation score INFO <0.5 in either study, the final data set for analysis 

contained 143,934 genotyped and imputed SNPs in the 308 genes of interest. The final 

sample size for analysis was 8,350 total subjects: 3,663 cases (1,098 ER-, 1,983 ER+, 582 

ER unknown) and 4,687 controls.

Genotype principal components were computed using the smartpca program in the 

EIGENSOFT package [60]. Relationship checking using PLINK version 1.07 [61] identified 

several related subjects across and within the individual studies. Relatives (N=156) and 

those with more extreme principal components (N=35) were flagged so that sensitivity 

analyses could be performed. The principal components of genotype were tested for 

association with case status after accounting for the study covariates: study, DNA source 

(blood, saliva[Oragene], saliva[mouthwash]), and the matching variables age and geographic 

region. No principal components were strongly associated with case status after controlling 

for these covariates. For case status and subtype association analyses, we included principal 

components that were associated in the multivariable model with p <0.1.
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Association Analysis

Pooled, gene-based pathway analyses were conducted using the adaptive rank truncated 

product (ARTP) statistic [62] as implemented in the R package PIGE [63]. The ARTP 

method was chosen for its ability to optimize the number of SNP p-values combined in each 

gene-level test and the number of gene p-values combined in each pathway test. Prior to 

implementing this approach, a subset of SNPs was selected such that all SNP pairs had 

linkage disequilibrium (LD) r2 <0.8 using the filter.R2 option in the R package AdaJoint 

[64]. We call this the “pruned-in” set of SNPs. This pruning process was done to avoid 

capturing only one or two association signals for some genes due to correlations between 

their top SNPs. Based on the program parameters chosen, the ARTP gene-level tests 

combined the optimal number of most significant SNP p-values from among the top 10 

pruned-in SNPs for each gene. The ARTP pathway tests combined the optimal percentage 

(in 5% increments) of the most significant gene p-values in each pathway, without exceeding 

50%.

The single SNP association tests, required as input to do the ARTP analyses, were 

performed using logistic regression analyses of the imputed dosage genotype data. All 

statistical models were adjusted for study, age, geographic region, DNA source, and 

genotype principal components 5, 6, and 8.

Results

Pathway analyses yielded one nominal association, for the Steroid Biosynthetic Process 

Pathway with ER+ breast cancer (p = 0.046). Given the eight pathways tested, this result 

was not considered to be significant or borderline. Because of the null results seen at this 

level of analysis (Supplementary Table S1) and our objective of implicating specific genes 

and SNPs, we turned our focus to the gene-level test results.

Gene-level testing produced a number of nominally significant associations with overall, ER

+, and ER- breast cancer (Table 1), although none survived a Bonferroni correction based on 

the 308 genes tested (Supplementary Table S1). The top four genes for overall, ER+, and 

ER- breast cancer were selected for follow-up. For overall breast cancer, the most significant 

gene was GHRH, with p = 0.001; the other top genes were CALM2, CETP, and AKR1C1, 
which all had p ≤0.01. For ER+ breast cancer, NR0B1 was the most significant gene, with p 

= 0.001, and the other top genes, all with p ≤0.02, were IGF2R, CYP1B1, and GRB2 (as 

well as CALM2, which was also a top gene for overall breast cancer). For ER- disease, PGR 
was the top result with p = 0.003, and the other top genes were MAPK3, MAP3K1, and 

LHCGR, each with p ≤0.02.

Individual SNP associations within the 12 prioritized genes were then examined, and 17 

SNPs across 11 of the 12 genes (none in GRB2) survived a within gene correction for 

multiple testing based on the number of SNPs pruned in for each gene. We refer to these 

SNPs as “gene-wide significant”. Five of these SNPs (two in GHRH and one in each of 

AKR1C1, MAP3K1, and LHCGR) were imputed SNPs with allele frequencies <1%; thus, 

we did not consider those SNPs further (or genes GHRH, AKR1C1, and LHCGR, which 

contained no other SNPs of interest). Of the 12 remaining gene-wide significant SNPs, three 
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were associated with overall breast cancer, four with ER+ breast cancer, and five with ER- 

disease (Table 2).

CALM2 was the most significant gene of interest for overall breast cancer. The most 

significant SNP in CALM2 was rs13032512 (p = 1.3×10-4). The A allele at this SNP had a 

frequency of 5.5% in AMBER controls and was associated with an increased risk of breast 

cancer (OR 1.33, 95% CI 1.15, 1.54). The most significant SNP in the top ER+ gene, 

NR0B1, was rs138860909 (p = 3.4×10-4). The A allele at this SNP had a frequency of 

16.6% in AMBER controls and was associated with a decreased risk of ER+ breast cancer 

(OR 0.80, 95% CI 0.71, 0.90). The most significant SNP in the top ER- gene, PGR, was 

rs11571215 (p = 1.0×10-5). The C allele at this SNP had a frequency of 9.2% in AMBER 

controls and was associated with a decreased risk of ER- breast cancer (OR 0.64, 95% CI 

0.52, 0.78). In addition, a common nonsynonymous coding SNP in gene CYP1B1 (rs10012) 

was associated with an odds ratio of 0.85 (95% CI 0.79, 0.92; p = 1.1×10-4) for ER+ breast 

cancer.

Given that the BWHS, WCHS, and CBCS subjects were genotyped and imputed together, 

separately from the MEC subjects, we checked and confirmed that the allele frequencies for 

the 12 common gene-wide significant SNPs were similar in the two groups (MEC vs. non-

MEC). Also, effect estimates were in the same direction and most were of similar magnitude 

(data not shown).

As expected, the most significant genes – CALM2 for overall breast cancer, NR0B1 for ER+ 

breast cancer, and PGR for ER- disease – each contained multiple SNPs with gene-wide 

significance. The two SNPs in CALM2 had r2 = 0.53, while the two SNPs in NR0B1 were 

not correlated (r2 = 0.07). For PGR, two SNPs were strongly correlated (r2 = 0.74), but 

neither was strongly correlated with the third (r2 <0.5).

Allele frequencies in AMBER controls and 1000 Genomes African samples were similar. 

However, the minor allele frequencies for 10 of the 12 SNPs of interest were lower in 1000 

Genomes Europeans vs. Africans (Table 2). Furthermore, 5 of the 12 SNPs of interest had 

1000 Genomes European allele frequencies <1%, and 2 of these were monomorphic in 1000 

Genomes Europeans.

In a sensitivity analysis, we reanalyzed these 12 SNPs with exclusion of 156 first-degree or 

second-degree relatives (identified via the genotypes), as well as 35 PCA outliers who 

clustered with HapMap 3 Europeans, Mexicans, or Asians. With these exclusions, all odds 

ratios changed by ≤3%. Therefore, results of the original analysis on the full sample 

remained the focus for interpretation.

Discussion

Our analyses found eight genes that may be involved in the etiology of breast cancer in 

African American women: CETP for overall breast cancer; CALM2 for overall and ER+ 

breast cancer; NR0B1, IGF2R, and CYP1B1 for ER+ disease; and PGR, MAPK3, and 

MAP3K1 for ER- disease.
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The most significant of these were CALM2 (overall breast cancer), NR0B1 (ER+), and PGR 
(ER-). The most significant SNP in CALM2, intronic SNP rs13032512, is less common in 

1000 Genomes European ancestry samples (2.2%) than in African samples (5.9%). The 

other gene-wide significant SNP in CALM2, intronic SNP rs114416221, is rare in 1000 

Genomes Europeans (0.1%). CALM2 maps to chromosome 2p21 and is one of three genes 

that encode the protein calmodulin (CaM). CALM2 was included in the present study 

because of CaM's involvement in gonadotropin-releasing hormone (GnRH) signaling: GnRH 

induces calcium influx, which activates CaM leading to a variety of downstream effects that 

result in gonadotropin gene expression [65]. Thus, CALM2 may impact breast cancer 

susceptibility through its effects on hormone synthesis.

The most significant SNP in the NR0B1 region, rs138860909, is located about 2kb upstream 

of the gene. This SNP is rare in 1000 Genomes European ancestry samples (0.3%). NR0B1 
maps to chromosome Xp21.2 and encodes the orphan nuclear receptor DAX1, for which 

high expression has been associated with excellent survival in node-negative breast cancer 

[66]. DAX-1 is expressed in tissues involved in steroid hormone function and acts as an anti-

steroidogenic factor by serving as a corepressor for the expression of enzymes such as 

aromatase [67]. The ability of DAX-1 to inhibit aromatase expression suggests a possible 

role for NR0B1 variants in the etiology of ER+ breast cancer, consistent with our results 

showing that associations with the top NR0B1 SNPs were restricted to ER+ disease.

The most significant SNP in the PGR gene, intronic SNP rs11571215, is monomorphic in 

1000 Genomes European ancestry samples. PGR is the progesterone receptor gene, located 

on chromosome 11q22.1. Multiple studies have reported breast cancer associations with 

PGR SNP rs1042838 [68–71], but a later, larger meta-analysis showed no association [72]. 

Breast cancer associations have also been reported in a small AA sample for rs590688 and 

rs10895054 [73]. These three SNPs were not associated with breast cancer in the present 

study. Several studies have reported evidence that PGR variants modify the effect of 

hormone replacement therapy on breast cancer risk [74–76], and a few studies have reported 

PGR associations with mammographic density [77, 78]. Still, the role of PGR variants in 

breast cancer development remains uncertain. Nevertheless, the associated variants in this 

AA study are of interest given that they are absent from or rare in European ancestry 

populations, the source of subjects for most prior studies.

Associations observed for CYP1B1 are also of interest. This gene contains two common 

missense SNPs that were gene-wide significant for ER+ breast cancer: rs10012 (Arg48Gly) 

and rs1056827 (Ala119Ser). These two SNPs have previously been associated with other 

cancers (prostate [79–81], lung [82], endometrial [81, 83]) in mostly European samples. 

Modest associations have also been reported for rs1056827 with breast cancer in recent 

meta-analyses [80, 81], although another meta-analysis reported no association [84]. These 

two SNPs were correlated at r2 = 0.87 in AMBER, and only rs10012 remained after pruning.

CYP1B1 maps to chromosome 2p22.2 and encodes the cytochrome P-450 1B1 enzyme, 

which is expressed in breast tumors [85–87]. CYP1B1 is capable of activating a variety of 

carcinogens and is responsible for the 4-hydroxylation of estradiol [85, 88], leading to the 

formation of carcinogenic semiquinones and quinones [82]. Our study suggested a protective 
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effect for the 48Gly allele. It is unclear what mechanism would explain such an effect given 

that this allele has been shown to cause enhanced activity of the CYP1B1 enzyme [89], 

which one might assume would lead to increased risk. However, the all cases odds ratio of 

0.92 (95% CI 0.86, 0.99) in the current study is consistent with the odds ratio of 0.93 (95% 

CI 0.81, 1.08) reported for carriers of one Gly allele in the meta-analysis by Economopoulos 

and Sergentanis [84]. Another meta-analysis reported an odds ratio of 0.93 (95% CI 0.79, 

1.10) for the 48Gly variant based on a recessive model [81]. While these modest 

associations were not significant in either meta-analysis, these studies did not conduct 

analyses by ER subtype, whereby we discovered a stronger ER+ association. Further 

evidence of subtype-specific effects comes from Wen and colleagues who reported that 

patients carrying the 48Gly allele were less likely to have ER+ disease [90]. Also of note, 

prior studies have included mostly Caucasian subjects, and the 48Gly allele, with a 

frequency of 29.0% in 1000 Genomes Europeans, is the major allele in African populations 

(57.4%).

One of the implicated genes from our study, MAP3K1, is a breast cancer GWAS locus [36]. 

Following its discovery, replication and fine mapping studies in Europeans, Asians, and AAs 

confirmed and identified a number of associated SNPs in this region [37, 39, 41, 42, 91– 96]. 

Two of these SNPs, rs16886397 and rs832539, were analyzed in the present study. Results 

for rs832539 were null, while rs16886397, previously shown to affect MAP3K1 
transcription [96], was nominally associated with ER+ breast cancer (OR = 1.22 for the G 

allele, p = 0.044). Of note, although MAP3K1 was one of the top ER- genes in our analysis, 

it was also nominally associated with ER+ disease (p = 0.023). None of the gene-wide 

significant MAP3K1 SNPs from our analysis were in high LD with the top MAP3K1 SNPs 

from the literature, based on 1000 Genomes African ancestry samples.

Most of the SNPs of interest from the current study are of lower frequency in European vs. 

African populations. This may explain why aside from MAP3K1, statistically significant 

associations have not been found for these same genes/variants in the numerous European 

breast cancer GWAS. Reported gene associations may represent the causal effects of one or 

multiple variants. Therefore, although these analyses identify specific SNPs for follow-up, 

future work should consider the entire gene.

Despite having over 3,500 cases and 4,500 controls, the present study had limited power to 

detect individual SNP associations of small magnitude as well as stronger associations for 

rare SNPs, especially for subtype analyses. Nevertheless, it is the largest study to date on the 

genetics of breast cancer in African Americans. Results from sensitivity analyses minimized 

concerns about potential bias from PCA outliers or inflation of test statistics by relatives in 

the study. Most of the SNPs of interest presented here were imputed. Although this is a 

potential limitation, we focused on common SNPs with high imputation INFO scores (Table 

2).

In summary, gene-based and single SNP analyses suggested that CALM2, CETP, NR0B1, 
IGF2R, CYP1B1, PGR, MAPK3, and MAP3K1 may be involved in the etiology of breast 

cancer in African American women. The most significantly associated genes containing 

common SNPs of interest were CALM2 for overall breast cancer, NR0B1 for ER+ breast 

Haddad et al. Page 8

Breast Cancer Res Treat. Author manuscript; available in PMC 2016 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



cancer, and PGR for ER- disease. Several of the top SNPs identified here are rare or absent 

in European populations, possibly explaining their lack of discovery to this point.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Table 1
Associations of genes from steroid hormone pathways with overall, ER+, and ER- breast 
cancer risk in the AMBER Consortium

Gene Number of SNPs Number of SNPs retained after pruning All cases p-value ER+ p-value ER- p-value

GHRH 166 101 1.0×10-3 0.16 0.41

CALM2 158 78 5.0×10-3 0.013 0.48

CETP 312 176 9.0×10-3 0.31 0.30

AKR1C1 484 143 0.010 0.15 0.061

CGA 101 53 0.013 0.074 0.74

CAMK2A 555 331 0.016 0.13 0.41

HSD17B3 509 191 0.018 0.022 0.27

CAMK2G 224 69 0.018 0.20 0.14

SULT1E1 206 89 0.028 0.32 0.12

PRKCD 298 158 0.034 0.096 0.30

ITPR2 3130 1251 0.041 0.36 0.61

GSTP1 170 75 0.049 0.41 0.14

NR0B1 79 68 0.067 1.0×10-3 0.88

IGF2R 883 401 0.052 7.0×10-3 0.59

CYP1B1 139 75 0.51 0.013 0.20

GRB2 607 129 0.33 0.019 0.14

SLC10A2 329 153 0.15 0.025 0.73

DIO3 53 30 0.59 0.027 0.75

CYP2R1 63 43 0.076 0.028 0.42

ADCY9 1414 644 0.38 0.031 0.85

PGR 711 202 0.47 0.61 3.0×10-3

MAPK3 24 19 0.75 0.95 0.010

MAP3K1 544 141 0.13 0.023 0.015

LHCGR 426 224 0.84 0.81 0.020

SULT2B1 604 290 0.27 0.59 0.026

LSS 284 115 0.75 0.85 0.026

PLCB3 83 54 0.060 0.62 0.029

HSD17B2 677 296 0.12 0.18 0.037

DPE P2 128 49 0.78 0.69 0.038

MAP2K7 78 45 0.53 0.77 0.039

FABP6 513 216 0.72 0.15 0.040

PRKACA 99 51 0.71 0.64 0.044

HSD11B2 45 24 0.82 0.54 0.048

ACOT8 103 56 0.10 0.79 0.049

ER+ estrogen receptor positive, ER- estrogen receptor negative

Nominally significant results in bold font
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