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Abstract

Ovarian carcinomas can be aggressive with a high mortality rate (e.g., high-grade serous

ovarian carcinomas, or HGSOCs), or indolent with much better long-term outcomes (e.g.,

low-malignant-potential, or LMP, serous ovarian carcinomas). By comparing LMP and

HGSOC tumors, we can gain insight into the mechanisms underlying malignant progres-

sion in ovarian cancer. However, previous studies of the two subtypes have been focused

on gene expression analysis. Here, we applied a systems biology approach, integrating

gene expression profiles derived from two independent data sets containing both LMP and

HGSOC tumors with protein-protein interaction data. Genes and related networks impli-

cated by both data sets involved both known and novel disease mechanisms and

highlighted the different roles of BRCA1 and CREBBP in the two tumor types. In addition,

the incorporation of somatic mutation data revealed that amplification of PAK4 is associ-

ated with poor survival in patients with HGSOC. Thus, perturbations in protein interaction

networks demonstrate differential trafficking of network information between malignant and

benign ovarian cancers. The novel network-based molecular signatures identified here

may be used to identify new targets for intervention and to improve the treatment of inva-

sive ovarian cancer as well as early diagnosis.

Introduction

Ovarian cancer is the most lethal gynecologicalmalignancy, and serous carcinomas of the
ovary account for the majority of ovarian cancer deaths[1]. Papillary serous ovarian cancer, the
most common ovarian tumor subtype, comprises a spectrumof disease, ranging from invasive
carcinomas to benign, low-malignant-potential (LMP) tumors. Invasive serous carcinomas
have been further subdivided into low-grade and high-grade subtypes based on molecular
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characteristics, disrupted functional pathways, and patient outcomes[2]. Low-grade serous car-
cinomas have characteristics similar to those of LMP tumors; both differ substantially from
high-grade serous carcinomas (HGSOCs) [2–6]. Currently, it is poorly understoodwhy LMP
tumors follow a benign clinical course, despite their malignant features and metastatic poten-
tial, whereas HGSOCs are very aggressive and can spread quickly to other organs.

Comparisons of LMP and HGSOC tumors may offer unique insights into malignant ovarian
tumors by revealing the characteristics of aggressive tumors. However, the methods available to
make such comparisons have significant limitations. Genome-widemicroarray data have been
usedwidely in ovarian cancer research [7–13] to provide information on the relative abundance
of transcripts [14, 15]. But these expression profiles do not reveal the presence of somatic muta-
tions. By contrast, whole genome sequencing and exome sequencing can be used to identify dis-
ease-associatedmutations. For example, the Cancer GenomeAtlas (TCGA) Consortium recently
published a large-scale, comprehensive overviewof HGSOCs that revealed recurrentTP53muta-
tions in more than 90% of samples [16]. What is currently missing is an integrative means of
analysis designed to identify somatic mutations that affect downstream gene expression levels
and protein interaction networks. By integrating expression and mutation data, we can better
identify driver mutations and dysregulated functional pathways present in cancer cells.

Models depicting protein-protein interaction (PPI) data provide a useful proxy for cellular
communication lattices [17, 18] and, when integrated with transcript expression data, can
reveal disruptions cascading from gene mutations or other functional alterations. The commu-
nication lattice consists of a grid-likematrix of multiple interleaved protein interaction net-
works, including smaller focal interaction units known as subnetworks. These individual
components constitute single targeted outcomes within the larger, more dispersed framework
of the network. Tying together the interactions of multiple subnetworks are centralized con-
duits, or hub proteins, such as MYC, P53, and EGFR, which play information-trafficking roles
in the cell. Hub proteins are defined as the proteins with the highest numbers of interactions
with other proteins in the proteome [19–21]. Due to their essential functions, the mutation,
deletion, or functional alteration of hub proteins causes severe, though rare, phenotypic out-
comes [22–24]. Thus, proteins severely affected by mutation are more likely to reside in less
central network locations. A network-basedmethod that incorporates transcriptome and
human interactome enable the identification of genes acting as regulators by mediating expres-
sion of downstream genes and play essential roles in disease.

Here, we integrate the vast amount of expression data available fromHGSOC and LMP
microarrays with PPI data to identify disrupted downstream PPIs. Our method proceeds by
objectively selecting the most strongly affected protein interactions from over 100,000 options.
We also demonstrate our method’s predictive ability by using our gene set to classify an inde-
pendent set of ovarian tumor samples according to HGSOC or LMP subtype. This information
may aid diagnosis of HGSOC, which is often asymptomatic in its early stages and thus detected
late, contributing to the low survival rate associated with this subtype [7, 25, 26]. In addition to
strengthening our ability to classify tumors at the molecular level, this type of systems biology
approach aids in identifyingmolecular perturbations that are camouflaged in gene expression
data, providing insight into the biologicalmechanisms underlying cancer.

Results

Comparison of methods to rank genes with respect to differential

expression

Two independentmicroarray expression profiles, GSE17308 [9] and GSE9891 [12], were
obtained from the Gene Expression Omnibus (GEO) to compare LMP and HGSOC samples
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across independent patient groups. We first created lists of genes ranked by fold-change and
statistical significance [27]. We then compared the reproducibility rate of lists created with fold
change in mean values, fold change in median values, t-test P-values, andWilcoxon rank-sum
test P-values, selecting sets of genes at random to calculate the statistical significance of our
findings (Fig 1). Here, reproducibility was defined as the percentage of differentially expressed
genes from one expression profile’s list also included in the other profile’s list (i.e., those genes
identified by both the GSE17308 and GSE9891 comparisons). The reproducibility rate of the
lists generated with each of the four methods was significantly higher than the rate for the ran-
dom gene list, as indicated by P<2 × 10−12 for all four statistical tests. However, the lists

Fig 1. Reproducibility rates for various methods of identifying genes differentially expressed between

low-malignant-potential (LMP) and high-grade serous carcinoma (HGSOC) samples in two data sets,

GSE17308 (9) and GSE9891 (12). Genes were selected by: the P-values from t-tests (solid red line); the P-values

from Wilcoxon rank-sum tests (dotted red line); mean fold change (FC; solid blue line); median FC (dotted blue

line); and random selection (dotted grey line). Reproducibility was defined as the percentage of differentially

expressed genes from one data set’s list also included in the other data set’s list.

doi:10.1371/journal.pone.0163353.g001
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compiled on the basis of fold-change in median expression values demonstrated a higher rate
of reproducibility than those compiled on the basis of fold-change in mean expression levels
(Fig 1). Further, we evaluated the effectiveness of these gene lists in discriminating between dif-
ferent phenotypes using hierarchical cluster analysis. More homogeneous sample clusters were
achieved with the top-ranked genes from theWilcoxon rank-sum test (S1A Fig) than with
those identified by median fold change (S1B Fig), with homogeneity being defined as how well
the selected genes were able to separate disease types (i.e., LMP vs HGSOC). In other words,
more homogeneous clusters contain more samples with the same phenotype. For instance, the
bottoms of panels A and B in S1 Fig display the hierarchical clusters of samples from
GSE17308. Five of sevenHGSOC tissue samples were placed in the invasive clusters, indicating
less homogeneous clusters, by median fold change, whereas all seven samples were correctly
clustered together by the genes from theWilcoxon rank-sum test.

Thus, to simultaneously maximize reproducibility and effectiveness at classifying tumor
types, as well as ensure that differential expression was sufficiently large to be biologicalmean-
ingful [28], we used both theWilcoxon rank-sum test and median-fold change to identify dif-
ferentially expressed genes in subsequent analyses.

Analysis of differentially expressed genes concordant between

expression profiles

Differential gene expression. We identified 195 differentially expressed genes (P<0.01,
FC>0.6) for GSE17308 and 230 (P<10−6 and FC>1.5) for GSE9891. To attain similar num-
bers of top-ranked differentially expressed genes, different thresholds were adopted. The distri-
butions of the median fold-changes and the P-values from theWilcoxon rank-sum test differed
between the two GEO data sets (S2 Fig) were varied, which may cause by different platforms
used in experiments for attaining expression profiles and other technical variations [27]. The
list of genes differentially expressed between tumor types in the two independently generated
GEO data sets converged on a common set of 23 genes (8 upregulated and 15 downregulated
in HGSOC) that were directionally consistent and statistically significant in both expression
profiles (Fig 2A). To measure the reliability of these data, we used expression levels of these 23
genes to perform hierarchical clustering of a third, independent patient expression profile
(GSE27651) [29] containing LMP and HGSOC samples (S3 Fig). Not a single one of the tissue
samples in this third data set was clustered erroneously.

Data interpretation using pathway analysis. Six of the 23 differentially expressed genes
have already been implicated in the ovarian cancer literature (STAT1, MYBL2, SPRY2,
NR2F1,DUSP4, and RPS23) [30–35]. However, most of these genes represent potentially
novel disease biomarkers. An Ingenuity pathway analysis showed that the list of 23 genes is
enriched in tumor-related processes such as cellular movement, cancer, and cellular develop-
ment (12 genes, Fig 2B) and cell cycle, drugmetabolism, and molecular transport (11 genes,
S4 Fig). Importantly, DUSP4, a known cancer risk gene [36], is represented in both of these
pathways, suggesting pleiotropy with multiple functional associations. In addition, the analy-
sis identified canonical networks whose members relay signals from the plasma membrane to
the nucleus. Pathways enriched for this gene list included aryl hydrocarbon receptor (AhR)
signaling, which is linked to homologous recombination [37]; chromosomal instability, as
reported in HGSOC [16]; and retinoic acid receptor (RAR) activation. Thus, LMP and
HGSOC tumors exhibit differences in cellular pathways, as revealed by altered expression of
the genes involved.

The static mapping of differentially expressed genes onto network and pathway illustra-
tions showed that known disease processes are affected by differential gene expression
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(Fig 2B and S4 Fig). However, contrary to our expectation, the majority of affected genes
were localized to the periphery of the pathway/network maps rather than to interior posi-
tions, suggesting limited impact on information dissemination. By contrast, some well
known ovarian cancer genes whose expression was not altered, such as VEGF, ERK,MAPK,
TGF-β, and SMARCA4 [38–45], displayed centralized placement in these same network
maps, indicating high connectivity within the gene networks. We postulated that genes
encoding proteins with important regulatory functions may not be differentially expressed
themselves but could mediate downstream effects on genes whose expression levels were
altered in our microarray meta-analysis.

Fig 2. Differentially expressed genes concordant between two data sets containing low-malignant-potential (LMP) and high-grade serous

carcinoma (HGSOC) samples. (A) Heatmap of 23 genes differentially expressed between LMP and HGSOC tumors in two independent GEO

expression profiles, GSE17308 (9) and GSE9891 (12), organized by median fold change. (B) The “cellular movement, cancer, and cellular

development” network is enriched for genes differentially expressed between LMP and HGSOC, as determined by pathway analysis. In both panels,

red represents overexpression and green represents underexpression in HGSOC. Genes highlighted in orange are well-known ovarian cancer

genes that have been used as biomarkers and targets for drug design.

doi:10.1371/journal.pone.0163353.g002
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Subnetwork Analysis

To identify characteristics that can be used to discriminate betweenHGSOC and LMP samples,
we employed a subnetwork analysis method adapted from Chuang et al. [46] and projected
pairwise PPI data onto a larger combinatorial lattice informed by gene expression values. We
overlaid the expression value measured for each gene onto its corresponding protein, as we
built an increasingly large, interconnected protein framework.We searched for subnetwork
conduits whose differential activities scored as being highly discriminative for tumor type, as
assessed by amutual information score and statistical thresholds (seeMaterials and Methods).
Starting from a single gene as a subnetwork “seed,” neighboring genes were added to expand
the interaction framework by prioritizing choices that maximized the differential scores
between tumor types; a computationally intensive approach was used to check all options
before proceeding to the next addition. To ascertain the statistical significance of the differen-
tial networks, we compared our finished network data to a null distribution, which we gener-
ated by randomizing tumor type assignments or gene assignments within each subnetwork.
We then sampled the randomized sets 10,000 times to evaluate the statistical significance of the
results returned for each subnetwork. In this way, we identified 175 subnetworks from the
GSE9891 data set and 179 from the GSE17308 data set that were differentially affected in
HGSOC and LMP tumors (each with P�10−4, discrimination score, or DS�0.66; S1 Table).
Among these subnetworks, we found 75 genes including 9 seed genes implicated in both data
sets.

Differential expression and subnetwork participation. Six genes present in the signifi-
cantly impacted subnetworks also showed differential expression in both data sets: STAT1,
MYBL2, RPS23,NR2F1, SOX9, and SPRY2. Each gene participated in from one to eight subnet-
works, the components of which showed enrichment in gene ontology (GO) terms for the cell
cycle, apoptosis, regulation of transcription, signal processing, cell communication, and recep-
tor protein tyrosine kinase signaling pathways.

Differential subnetwork participants associatedwith tumor type. We postulated that
the 75 subnetwork genes that were implicated in both data sets and could implicate events that
disrupt the protein interaction lattice. In particular, we hypothesized that mutations may have
significantly impacted the expression of protein interaction partners and their downstream tar-
gets or network affiliations, without affecting the expression of the mutant genes themselves [7,
47]. The majority of the subnetworks we identified consisted of a mixture of genes with and
without significantly altered expression levels. For example, although TP53 displays driver
mutations in HGSOC samples[48–50], we did not find significant changes in TP53 expression
betweenHGSOC and LMP samples. Nevertheless TP53was present in subnetworks that distin-
guishedHGSOC from LMP (Fig 3A, P<10−4). Similarly, BRCA1 [51] participated in the sig-
nificant differential subnetworks (P<10−4) but was not differentially expressed (Fig 3B).
Other examples of driver genes identified in the subnetwork analysis that were not differen-
tially expressed included ERBB2 [52] (Fig 3C),MYC (Fig 3D) [53–55], and CTNNB1 (Fig 3G)
[56] (P<10−4 for each). Although we did not have the original tumor samples with which to
assess the presence of somatic mutations, the disrupted pathway interactions detected by the
subnetwork analysis implicate consistent alteration of these gene functions between tumor
types. Thus, this network-basedmethod allowed us to assess mutations in the context of net-
works, enhancing our ability to identify driver mutations.

Data interpretation using pathway analysis. To address the biological roles of the subnet-
work genes, we performed a GO analysis on all significant subnetworks. A large proportion of
GSE9891- and GSE17308-generated subnetworks (59.7% and 52.8%, respectively) were
enriched for biological process terms related to cancer, including proliferation, apoptosis, cell
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cycle, differentiation, kinase activity, stress response, DNA replication, and DNA damage
repair. By contrast, only 8.6% and 8.3% of randomly generated networks were associated with
these biological processes (P< 2.2�10−16, Fisher’s exact test) Additionally, a KEGG pathway
analysis showed that 41.5% of the GSE9891 and 28.3% of the GSE17308 significantly altered
subnetworks were enriched for TP53, ERBB2,MAPK, B-cell receptor, cell cycle, and focal adhe-
sion pathways, compared with 0.5% and 1% of random networks (P< 2.2�10−16, Fisher’s exact
test). Importantly, disruption of TP53, ERBB, andMAPK pathways has been implicated in
ovarian tumorigenesis [57–60], focal adhesion is the most deregulated pathway in ovarian

Fig 3. Representative subnetworks that discriminate between low-malignant-potential (LMP) and high-grade serous carcinoma (HGSOC)

samples. (A-I) Subnetworks include genes such as TP53, BRCA1, and MYC, which are mutated in ovarian carcinomas although their expression level is

not significantly altered (white nodes). Red nodes indicate overexpression of genes in HGSOC subnetworks, and green nodes indicate underexpression.

Abbreviations: cell cycle (CC), cell growth (CG), cell proliferation (CP), cell differentiation (CD), DNA damage (DD), DNA repair (DDR), DNA replication

(DRN), regulation of kinase activity (RKA), receptor protein tyrosine kinase signaling pathway (RTKs), positive regulation of metabolic process (PRM),

response to drug (RD), response to stress (RS).

doi:10.1371/journal.pone.0163353.g003
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cancer [61], and B-cell infiltration of ovarian carcinoma effusions is associated with worse out-
comes [62]. Thus, the reproducibility of our findings across data sets and their alignment with
the existing literature show that an in silico approach can be used to implicate subnetworks
that play important functional roles in tumorigenesis and identify known processes involved in
tumor progression.

Significantly Modified Hub Protein Interactions

The connectivity of disease-relevant proteins and their interaction partners was further investi-
gated by assessing the involvement of the most highly connected proteins in the cell: the hub
proteins. Because these proteins play critical roles in development and reproduction, deleteri-
ous mutations are typically lethal [24, 63, 64]. Compared with mutations at the network
periphery, loss-of-functionmutations in these genes are rare and devastate network functions
in cells. However, tumor cells can adapt to a partial loss of hub protein function by rewiring
their networks to establish workarounds. To assess altered hub protein function, we applied
differential network mapping [65] to our HGSOC and LMP comparison. To do so, we calcu-
lated the average Pearson correlation coefficient (PCC) between gene expression values of all
hub proteins and their interaction partners, directly comparing LMP and HGSOC samples.
We analyzed 3,128 hub proteins that interact with at least 5 other proteins and identified 178
hub proteins in GSE17308 and 220 in GSE9891 whose PCCs differed across tumor types (P
<0.05); each was connected to genes with measurable expression changes between the tumor
types. Of these hub proteins, 34 were implicated in both data sets (S2 Table).

One of the hub proteins was BRCA1. BRCA1 expression was less correlated with TP53 and
BRCA2 expression in HGSOC than in LMP samples. The value of the PCC decreased signifi-
cantly from 0.704 and 0.551 in LMP to 0.096 and 0.065 in HGSOC for TP53 and BRCA2,
respectively (P = 0.0023 and P = 0.022, Fig 4, Table 1). Several additional genes also had PCCs
with BRCA1 that differed significantly across tumor types, includingAKT1, which encodes a
multifunctional serine-threonine protein kinase;XRCC1, a DNA repair gene; and RBBP7,
CDS1, and SMARCC2. All of the genes mentioned exhibited decreased expression correlations
with BRCA1 in HGSOC (Fig 4, Table 1), suggesting disrupted function of the BRCA1 protein.

Similar to the BRCA1 results, the vast majority of significant hub proteins in each GEO set
were not differentially expressed themselves [205/220 (93.2%) in GSE9891 and 168/178
(94.4%) in GSE17308]. Instead, hub proteins were implicated through differential expression
PCCs among interaction partners between tumor types.

Data interpretation using pathway analysis. We tracedmost of the significant hub pro-
teins detected in GSE17308 (109/178) and GSE9891 (167/220) to an interconnected network
enriched for cancer pathways, cell cycle, signaling, and growth factor binding (as defined by
IPA: P<0.05 for Fisher’s exact test; Fig 5A and 5B). Of the 34 hub proteins found in both data
sets, 19 are associated with cancer (P<0.05), 23 have been linked to genetic disorders (P
<0.05), and 31 have been associated with the molecular functionGO term “protein binding”
(P<5.3 × 10−5). Moreover, 10 of the 34 hub proteins interacted with each other (Fig 5C, mid-
dle panel; five interacting hub protein pairs), and 13 directly participated in the same intercon-
nected network we derived from known protein interactions, whereas 11 proteins lacked any
central ties (Fig 5C). Notably, CREBBP, whose product plays an essential role in the cell cycle,
was frequently interconnected with hubs identified here and also directly interacted with three
of the genes differentially expressed in both data sets: STAT1, MYBL2, and SOX9. The pub-
lished TCGA data have documented five nonsynonymous and two frameshift somatic muta-
tions in CREBBP in 316 HGSOC cases [16]. Our data implicate CREBBP interactions as a
source of differential information trafficking between LMP and HGSOC tumors.
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Analysis of missing links in network data. To further explore the extent of hub protein
disruption, we searched for “bridge” or “broker” proteins [66] that connect isolated hub pro-
teins with mainstream core networks. This analysis revealed that TP53 connects the largest
number of orphan hubs (n = 6), with SRC, EGFR, and TP73 providing additional connections.
The central position of these four proteins in a larger network implicates them in disrupting
network lattice interactions (Fig 5D). As is true for TP53, the documented involvement of
these genes in ovarian cancer or tumors in general supports their inclusion as genes of interest
[48, 67–69].

Fig 4. Pearson correlation coefficients (PCCs) for expression levels of BRCA1 and interaction partners in low-malignant-potential (LMP)

and high-grade serous carcinoma (HGSOC) samples. The color of an edge represents the value of the PCC for the genes that it connects. Blue

circles indicate genes whose expression levels are highly correlated with BRCA1 expression levels in LMP, but not in HGSOC.

doi:10.1371/journal.pone.0163353.g004

Table 1. The correlation coefficients of expression levels of BRCA1 and interaction partners in low-malignant-potential (LMP) and high-grade

serous carcinoma (HGSOC) data sets.

LMP HGSCO Z-value* P-value*

TP53 0.704 0.096 2.84 0.0023

BRCA2 0.551 0.065 2.02 0.022

AKT1 0.577 -0.163 3 0.0013

XRCC1 0.746 0.043 3.35 0.0004

RBBP7 0.72 0.34 2.02 0.022

CDS1 0.55 -0.66 5.14 0

SMARCC2 0.623 0.067 2.4 0.008

* Fisher’s z transformation was appled to obtain Z-value and P-value.

doi:10.1371/journal.pone.0163353.t001
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Fig 5. An overarching network connecting hub proteins differentially involved in low-malignant-potential (LMP) and high-

grade serous carcinoma (HGSOC) samples. Nodes and edges illustrate the network diagrams of GEO data sets (A) GSE17308 and

(B) GSE9891. Each functional complex is represented by a different color. (C) There are 34 hubs that overlap between the two data sets.
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Comparison with Indexed Literature

To explore alternative and complementary approaches to our network analysis, we used the
GeneIndexer tool, which reconstructs functional relationships among genes based on extensive
literature searches and semantic indexing.We fed our list of 34 hub proteins to GeneIndexer,
along with three genes that contain causal mutations in HGSOC genes, either hereditary
(BRCA1 and BRCA2) or somatic (TP53). Using a functional hierarchy tree built using our list
of 34 hub proteins and three disease-associatedgenes, GeneIndexer indicated that BRCA1,
BRCA2, and TP53were the genes from the list with the strongest functional connection to each
other (S5 Fig). The gene most closely related to these three genes was APEX1, a base excision
repair gene with elevated or altered expression in breast, cervical, and germ cell tumors; glio-
mas; rhabdomyosarcomas; and non–small cell lung cancer [70, 71]. CREBBP, the fifthmost
connected gene using the GeneIndexer approach (S5 Fig), clustered withNCOR1 (nuclear
receptor corepressor 1) in the functional relationship tree. The close functional relationship
betweenCREBBP and NCOR1was also demonstrated in our hub protein network (Fig 5C and
5D). A number of studies have suggested that NCOR1 plays an important role in human can-
cers [16, 72–75].

Known Genetic Mutations in Concordant Gene Lists

Using TCGA data, which contain information on somatic mutations and copy number varia-
tion for HGSOC patient samples, we searched for genetic mutations occurring in our concor-
dant differentially expressed genes, significant subnetwork genes, and genes encoding
significant hub proteins. The somatic mutations were identified using a combination of three
algorithms, VarScan 2, SomaticSniper and GATK, applied to 316 high-grade serous carcino-
mas (HGSOC) samples and 236 normal tissue samples in the TCGA project[16]. Variants were
annotated as somatic mutations if they were not observed in the normal samples [16]. We
found that 17 of those genes were somatically mutated in HGSOC cases, and that each of these
mutant genes was present in 5 to 95% (or 16 to 300 of 316) of patient samples (Fig 6A). For
example, TP53 somatic mutations were found in 95% (300/316) of HGSOC samples. When
TP53was removed from consideration, 67% (210/316) of the samples contained one or more
somatic mutations from the 16 remaining concordant genes. We also assessed the presence of
amplification and deletion events among the genes implicated in our analyses. Collectively,
homozygous deletions occurred in PTEN,CREBBP, andWWOX in 43/316 (13.7%) of HGSOC
samples, whereas amplifications of AP2M1, RYR1, DNAJB1, YWHAZ, PAK4, RGS19,ARRB1,
STAT1, APEX1,UPF2,DNALI1, NEDD9, and SORL1were found in 179/316 (56.7%) of
HGSOC samples (Fig 6A and 6B). Notably, RYR1 and APEX1 are the targets of two FDA-
approved cancer drugs (caffeine and lucanthone, respectively).We also found that amplifica-
tion of PAK4 and RGS19 tended to be mutually exclusive, although this trend did not reach sta-
tistical significance, (P = 0.07, Fisher’s exact test, Fig 6C), whereas amplification of RYR1 and
PAK4 tended to co-occur, an association that did reach statistical significance (P<0.001, Fish-
er’s exact test, Fig 6D).

The known roles of these proteins in tumorigenesis support our predictions of their rele-
vance. For example, PAK4 mutations promote oncogenic transformation, and PAK4 deletions
inhibit tumorigenesis [76, 77], whereas RGS19 deregulates cell proliferation throughmultiple
pathways [78]. In addition, we performed a univariate survival analysis for 17 significant genes

(D) Additional gene products, highlighted in purple, have the largest number of connections to the 34 concordant hubs, interconnecting

all of the hubs except for six orphans.

doi:10.1371/journal.pone.0163353.g005
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identified by our study and also displayed somatic mutations reported by TCGA project in
more than 5% HGSOC patients. The PAK4 has lowest P-value in the survival analysis
(P = 0.004, P-adjust = 0.068) (Fig 7). Despite amplification of RYR1 and PAK4 tended to co-
occur, survival times in patients with RYR1 alterations alone were not significantly shorter
(P = 0.18). Both RYR1 and PAK4 participate in diverse functional pathways in the cell. RYR1 is
present in several KEGG pathways, including calcium signaling, circadian entrainment, long-
term depression, and oxytocin signaling.PAK4 is present in pathways for renal cell carcinoma,
ErbB signaling (S6 Fig), focal adhesion, T-cell receptor signaling, and regulation of the actin
cytoskeleton. Although RYR1 and PAK4 are not known to act in the same pathways, their
observed co-occurrence in our PPI data suggests that these two genes could interact indirectly
through other proteins (S7 Fig).

Comparison of Differentially Expressed Genes, Subnetworks, and

Significant Hubs

To evaluate the effectiveness of the various approaches to identifying disease genes used in this
study, we compiled a list of 18 known ovarian cancer susceptibility genes present in the GEO
expression data sets; we identified these genes by searching for known somatic and germline
mutations in ovarian cancer from the OnlineMendelian Inheritance in Man (OMIM) data-
base.We identified 195 and 230 differentially expressed genes, 179 and 175 differential subnet-
works that consist of 502 and 397 genes, and 178 and 220 significant hubs, for GSE17308 and
GSE9891, respectively (S8 Fig). The comparison of our findings with this known list showed
that the subnetwork analysis identified nine of these known genes (50%), the hub protein anal-
ysis identified five (27.8%), and the differential expression analysis identified one (5.6%). The

Fig 6. Mutations in genes that significantly differed between low-malignant-potential (LMP) and high-grade serous carcinoma (HGSOC)

samples in two data sets, GSE17308 (13) and GSE9891 (16), using gene expression, network, or hub protein analyses. (A) At least 5% (16/316) of

Cancer Genome Atlas HGSOC samples contained one or more mutant versions of 17 genes identified from differential expression, network, or hub protein

analyses. (B) The majority of genetic alterations in WWOX, PTEN, and CREBBP in HGSOC samples were homozygous deletions. (C) Amplifications in

PAK4 and RGS19 tended to be mutually exclusive, although this association was not statistically significant (P <0.07). (D) Amplifications in PAK4 and

RYR1 frequently co-occurred (P <0.001).

doi:10.1371/journal.pone.0163353.g006

Ovarian Cancer Systems Biology

PLOS ONE | DOI:10.1371/journal.pone.0163353 October 27, 2016 12 / 26



difference in sensitivity between these methods was not statistically significant (P = 0.18 for the
subnetwork vs. differentially expressed genes comparison, P = 0.1 for the hub vs. differentially
expressed genes comparison, Fisher exact test). However, TP53, BRCA1, ERBB2,MLH1,
PIK3CA, and RAD51Cwere detectable only with the two network-based approaches. When we
examined the methods’ ability to detect a list of 288 genes from the Catalogue of SomaticMuta-
tions in Cancer (COSMIC) database that display somatic and germlinemutations in general
cancer, our subnetwork (21.1%; P = 0.01, Fisher exact test) and hub approaches (12.5%,
P = 0.07) identified significantly or nearly significantlymore genes than did the differential
expression analysis (5.2%; S9 Fig). This result indicates that network-based approaches may be
more useful in terms of identifying important cancer-associated genes and aiding in hypothesis
generation than differential expression analyses.

Fig 7. A Kaplan-Meier survival analysis of HGSOC patients with PAK4 amplification. HGSOC patients (n = 32) with PAK4

amplification have a significantly shorter survival time (P = 0.004) than patients without PAK4 amplification (n = 283).

doi:10.1371/journal.pone.0163353.g007
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Blind Classification Using a Support Vector Machine Classifier

Finally we constructed support vector machine (SVM) classifiers, which adopted different
types molecular signatures (i.e., subnetworks, hub proteins, and differential gene expres-
sion, details in the Materials and Methods section) as input features, to assess and compare
their effectiveness in classifying blinded sets of HGSOC and LMP tumor samples. Perfor-
mance was evaluated using threefold cross-validation with bootstrap sampling. Regardless
of the molecular signature used in the classification, we achieved robust separation of the
samples, as shown by area under the ROC curve (AUC) values (S10 Fig, S3 Table). AUCs
reached 0.98 for both intra-data set classification, in which the molecular signatures used
for training and classification were derived from the same data set, and inter-data set classi-
fication, in which the molecular signatures used for training and classification were derived
from different data sets. The successful classification of HGSOC and LMP samples suggests
that these signatures capture the molecular perturbations and alterations occurring in the
tumors and, moreover, that the pathways that underlie the initiation and progression of
LMP and HGSOC are different.

Discussion

We have extended traditional gene expression analyses by incorporating a systems biology
approach to dissect the molecular differences between LMP and HGSOC. Although the differ-
entially expressed genes that we identified characterized distinct properties of the tumors, the
cause-and-effect relationships underlying transcriptional disruption could not be explained
with gene expression data alone. Our subnetwork analysis identified a series of significantly
altered, interacting complexes that coordinate higher-level functions in important biological
pathways, demonstrating that differential gene expression reflectsmultiple processes in tumor
cells. In addition, our hub protein analysis identified consistent alterations in the information-
dissemination centers that perpetuated the largest numbers of downstream events. Many hub
proteins involve in multiple signaling pathways such as P53 and BRCA1. Mutation of the genes
encoding these hub proteins could affect multiple pathways. Thus, targeting these genes could
simultaneously activate or inhibit disease pathways.

In this analysis, 6 of 23 differentially expressed between LMP and HGSOC samples in two
independent patient data sets also participated in subnetworks that were altered between
tumor types in both data sets. Hence, these six genes (STAT1, MYBL2, RPS23,NR2F1, SOX9,
and SPRY2) merit the highest priority for further study. Furthermore, our results suggest sev-
eral hypotheses regarding diseasemechanisms. For instance, CREBBP (CBP) interactions with
STAT1 andMYBL2 appeared in three altered subnetworks, suggesting that each of these sub-
networks is disrupted through CREBBP dysfunction.CREBBPmutations are documented in
HGSOC (11), and our results suggest that CREBBPmay contains causative mutations or
homozygous deletions in the expression data sets we studied.

On the basis of a static GO analysis of differentially expressed genes concordant in both
GEO data sets, we infer that RAR activation and AhR signaling pathways may be disrupted in
HGSOC.However, our dynamic subnetwork analysis suggests that other pathways are differ-
entially affected as well, including the P53, ERBB, chemokine,MAPK, and B-cell receptor sig-
naling pathways. Consistent with our results, the P53, ERBB, and MAPK signaling pathways
have documented regulatory roles in ovarian carcinomas (63–66). In addition, several genes
mutated in HGSOC, such as TP53, BRCA1, andMYC, were identified as participants in signifi-
cant subnetworks. Our results suggested that the network method, which combines expression
profile and protein-protein interactions, can infer disease genes carried causative mutations
and regulated the expression levels of the downstream genes.
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In addition, by combining our network analysis results with HGSOC genotype data from
TCGA, we found co-occurringmutations in RYR1 (which encodes the ryanodine receptor)
and PAK4, a result with potential clinical applications. RYR1 alteration has been implicated in
various types of disease, including cancer [79]. Presently, RYR1 is a target of four FDA-
approved drugs, including procaine, dantrolene, suramin, and caffeine (S7 Fig). Our survival
analysis suggests that HGSOC patients with PAK4 mutations have poor survival rates, but cur-
rently there is no drug that specifically targets PAK4, and it is often very expensive and time-
consuming to develop a new therapeutic. As mutations of PAK4 and RYR1 tend to co-occur in
HGSOC, and the two genes might interact, we hypothesize that caffeine, a cancer drug that tar-
gets RYR1 [80] (S7 Fig),may represent a useful intervention strategy to treat HGSOC patients
with PAK4 mutations. Caffeine has been reported to impact cell cycle function, trigger apopto-
sis or programmed cell death or and disturbe key cell cycle regulatory proteins[81]. In addition,
PAK4 lies downstream of EGFR in the ERBB signaling pathway; hence, the nine FDA-
approved cancer drugs targeting EGFR should be assessed to see if they ameliorate the effects
of PAK4 mutations and could be used to treat HGSOC patients.

A previous study reported that LMP affects women at a younger age than invasive ovarian
cancer [82]. Consistently, the age distribution of patients of the two datasets (GSE17308 and
GSE9891) showed a similar trend. For GSE17308, LMP patients ranged in age from 25 to 76
years (mean = 52 years), whereas HGSOC patients ranged in age from 25 to 80 years
(mean = 62 years). For GSE9891, LMP patients ranged in age from 22 to 79 years (median = 50
years), whereas HGSOC patients ranged in age from 23 to 80 years (median = 59 years). In the
original study that analyzed GSE9891[12], the author found that the age difference between the
subtypes was significantly different (Kruskal-Wallis test for age as continuous variable,
P = 0.003). However, the original study that analyzed GSE17308 showed that the difference did
not quite reach significance (P = 0.08, Kruskal-Wallist test) and had no observable effect on
gene expression profiles in unsupervisedclustering analysis or in supervisedANOVA analyses
[9]. The age differencemight impact the gene expression analysis in some datasets. However,
in this study our goal is to identify the common differentially expressed genes.We found that
the common differentially expressed genes of the two datasets (GSE17308 and GSE9891) suc-
cessfully clustered LMP and HGSOC patients in the third independent data (GSE27651, S3
Fig), suggesting the age influence on gene expression analysis is minimized in our approach.

In this study, networkmethods implicated a larger number of known ovarian cancer suscep-
tibility genes than differential expression analysis. Given that ovarian cancer is a highly hetero-
geneous disease, the insights gained through network analyses may improve our
understanding of the biologicalmechanisms involved in disease development and progression.
Comparisons between LMP and HGSOC tumors using network approaches indicate that cellu-
lar regulatory pathways are wired differently between these tumor types. By considering LMP
samples as the reference group, our results provide insight into the mechanisms responsible for
the formation and progression of malignant ovarian cancer. More broadly, our work demon-
strates that differential gene expression translates into altered network communication at the
protein level. Hence, network models, which integrate multilayer information, foster the identi-
fication of genomic mutations and aberrant pathways, while facilitating the development of
strategies for disease detection and points of intervention.

Conclusions

A comprehensive catalog of biomarkers is critical for improving our understanding and treat-
ment of HGSOC.Our systematic, systems biology comparison of LMP and HGSOC tumors
provides new insights into probable mechanisms underlyingmalignancy. Integrating gene
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expression profiles from two independent patient data sets with PPI data allowed us to identify
a set of biomarkers that can be used to distinguish between the two tumor types.We then
applied these molecular signatures to a third, independent data set to demonstrate their utility.
In addition, by combining information on networks altered between the two types of tumors
with mutation data, we were able to prioritizemutations for further examination. Our results
underscore the strength of systems biology approaches in implicating novel diseasemecha-
nisms, and our network approach is especially valuable when a single type of tumor displays
recurrent alterations to the same pathways but varies in terms of the individual mutations
responsible.

Materials and Methods

Data Availability and Online Tools

Subnetwork data have been deposited on the website http://mqyang.net/CancerResearch/
HGSOC_Biomarker2.cgi.A web tool that allows users to stratify ovarian cancer samples on
the basis of expression data, are available on our website http://mqyang.net/CancerResearch/
ClusterTissues.cgi. Supplemental data including our gene lists and related tools are available
at http://mqyang.net/CancerResearch/HGSOC_Biomarker2.cgi.

Disease-related subnetwork and hub proteins are searchable on the website, and data from
external databases, such as OMIM and TCGA, are linked to the query genes as well. In addi-
tion, each gene is linked to external databases, including the UCSC genome browser, KEGG
pathways, and the genetic mutations identified in TCGA.

Expression profiles

Two ovarian tumor expression profiles, GSE17308 [9] and GSE9891 [12], were obtained from
the GEO database. In GSE17308, microarray expression profiling was conducted using the PC
human Operon 21k v2 platform; 7 LMP and 22 HGSOC samples were collected from patients
who were diagnosedwith ovarian cancer and treated at the Royal Brisbane andWomen's Hos-
pital. LMP patients ranged in age from 25 to 76 years (mean = 52 years), whereas HGSOC
patients ranged in age from 25 to 80 years for GSE17308. Experiencedpathologists indepen-
dently reviewed all tumor tissues. GSE9891 contains 18 LMP and 118 HGSOC samples from
the AOCS (Australian Ovarian Cancer Study); here, profiling was carried out on well-charac-
terized ovarian cancer tissues from patients with the AffymetrixU133_plus2.0 platform. LMP
patients ranged in age from 22 to 79 years (median = 50 years), whereas HGSOC patients ran-
ged in age from 23 to 80 years (median = 59 years) for GSE9891. Because two distinct array
platforms were compared, official gene symbols were used to identify genes present in both
data sets. Duplicate genes and low-quality data were removed from the analysis, leaving a total
of 9,016 genes present in both profiles for evaluation. A third expression profile, GSE27651
[29], was used for validation. It contained 8 LMP and 24 HGSOC samples from the archives of
the Department of Pathology at The University of Texas MD Anderson Cancer Center (Hous-
ton, Texas). This profile was generated with the commercial GeneChipHuman GenomeU133
Plus 2.0 Array [29].

Reproducibility of Differentially Expressed Genes

Four methods of ranking differentially expressed genes in the GSE17308 and GSE9891 data
sets were compared: (i) fold change calculated with sample means, (ii) fold change calculated
with sample medians, (iii) t-test P-values, and (iv) Wilcoxon rank-sum test P-values. After
genes were ranked either by P-value or fold change, the reproducibility rate was calculated as
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the percent overlap of top-ranked genes in the independent GEO profiles. To estimate the null
reproducibility rate, we randomly extracted genes from both profiles for the overlap calculation
1,000 times.

Human Protein-Protein Interaction Data

We combined human PPI data from five public databases: IntAct, MINT, BioGrid, DIP, and
HPRD [82–86]. Each database contains PPIs curated by experts. After removing redundant
entries, we obtained a total of 122,403 unique human PPIs.

Construction of Distinguishing Subnetworks

To construct a subnetwork, expression levels of genes in the profile were first normalized so
that the mean and variance across samples were 0 and 1, respectively:

Zi;j ¼
xi;j� mi

si
ð1Þ

where Zi,j represents the normalized expression value of the ith gene for the jth sample. The
expression level Zj of a network of n interacting genes was obtained by averaging expression
values over all n genes in the jth sample, as follows:

�Zj ¼
1

n� 1

P1

i¼1
Zi;j ð2Þ

We then usedmutual information to estimate the ability of each subnetwork to identify dis-
tinct phenotypes. Mutual information quantifies the degree to which two random variables are
independent.When a random variable, X, is independent of another random variable, Y, I (X;
Y) = 0. When applied to subnetworks, the larger the mutual information value,MI, the greater
the discrimination power of the subnetwork. Thus, the DS of a subnetwork was defined asMI,
given by

MI X;Yð Þ ¼
X

x2X

X

y2Y

PfX ¼ x; Y ¼ yglog
2

PfX ¼ x;Y ¼ yg
PfX ¼ xgPfY ¼ yg

� �

ð3Þ

where X refers to the average normalized expression level of the subnetwork and Y refers to the
tissue phenotype. In the equation above, X is assumed to take discrete values, but the average
normalized expression level, Z, defined by (2), is not a discrete variable. We therefore discre-
tized Z by dividing its range into equally spaced bins defined by split points, sk, resulting in the
following expression for the DS:

DS �Z;Yð Þ ¼
Pm

k¼1

P
y2YPfsk<�Z � sk¼1;Y ¼ yglog

2

Pfsk < �Z � sk¼1;Y ¼ yg
Pfsk < �Z � skþ1gPfY ¼ yg

� �

ð4Þ

To cover all values, we took s1 = min(Z) − δ, and sm+1 = max(Z) + δ. The number of bins
wasm = log2(# samples) + 1.

The growth of each subnetwork was guided by a greedy algorithm in an iterative procedure.
At each iteration, genes that neighbored at least one gene in the network were candidates for
addition.

For each candidate gene, the DS was evaluated using the average expression of that gene
and the genes in the current subnetwork. Among all candidate genes, the one that generated
the largest DS was selected and added to the current network. The search procedure was termi-
nated when the improvement rate, defined as the ratio of the winning DS for successive
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iterations, either increased or was<0.1, or if the distance between the winning gene and the
seed of the network was>2.

To test the hypothesis that a subnetwork could distinguish between different phenotypes,
we obtained two DS null distributions by selecting two groups of genes with the same number
of members as the given subnetwork, one with the same seed protein and the other with a dif-
ferent seed protein; we repeated this process 10,000 times. To test the hypothesis that genes in
a subnetwork were associated with a particular phenotype, we constructed a DS null distribu-
tion by randomly permuting the phenotypes of tissues 10,000 times. Subnetworks with P-val-
ues<10−4 in both tests and DS>0.66 were selected.

Identification of Significant Hub Proteins

Hub proteins were required to have at least five interactions. These hubs represented approxi-
mately the top 20% of all proteins in terms of number of interactions. For each hub (H), the dif-
ference in the PCC between LMP and HGSOC samples for an individual interaction (I) was
calculated as follows:

rrH;I ¼
P

jðIj;L� �ILÞðHj;L�
�HLÞ

ðnL� 1ÞSILSHL

�

P
jðIj;C� �ICÞðHj;C�

�HCÞ

ðnC� 1ÞSICSHC

ð5Þ

,where L and C denote LMP and HGSOC, respectively, and S represents the standard deviation.
The average of these PCC differences is given by

AvgPCC ¼
1

m� 1

Pm
i¼1
jrrH;Ii j ð6Þ

wherem is the total number of interactions of the hub. To test the hypothesis that hub protein
modularity is significantly altered by disease type, we constructed a null distribution by ran-
domly shuffling the tissue phenotypes 1,000 times. Hubs with P-values<0.05 were selected for
our study. In addition, by searching known PPIs, the proteins that had the most frequent inter-
actions with isolated hub proteins or protein clusters were identified and used to bridge these
isolated instances into a larger network.

Cross-check with Literature, Pathway Databases and Know Disease

Genes

We employed the GeneIndexer webtool (http://geneindexer.com/) to examine and validate
functional relationships among the significant hub proteins implicated in both data sets, as
well as three well-known cancer genes (TP53, BRCA1 and BRCA2). On the basis of the scien-
tific literature, GeneIndexer generates a tree by clustering functionally related genes together.
In addition, we performed a hypergeometric test to identify the KEGG pathways enriched in
gene clusters from the subnetwork analysis. The hypergeometric test was also used to find GO
terms that were significantly associated with each discriminative subnetwork. Canonical path-
ways enriched by differentially expressed genes were detected using Ingenuity’s IPA software.

We identified our list of 18 known ovarian cancer susceptibility genes by downloading gene
map file from the OMIM database and searching on the phrase “ovarian cancer susceptibility”.
The 288 cancer genes were obtained directly from the COSMIC database.
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Genetic Mutations in Differentially Expressed Genes and Significant

Hub Proteins

Geneticmutations in differentially expressed genes and significant hub proteins, which were
concordant between expression data sets, were detected using mutation data from a total of
316 sequencedHGSOC tissue samples from TCGA [16]. The statistical significance of the
mutual exclusivity and co-occurrenceof genetic mutations in gene pairs was assessed using
Fisher’s exact test. We used the cBioPortal [87, 88] tool to perform these analyses.

Prediction of Tumor Types

To evaluate the prediction performance of the molecular signatures identified, we randomly
selected two-thirds of the data for training and used the remaining one-third for testing; we
repeated this procedure 50 times. The ROC curve and the AUC were plotted and analyzed
using the R package ROCR [89]. The features used for classification for the three different
types of molecular signatures were calculated as followings: (1) the expression levels of differ-
entially expressed genes, (2) the average expression level of genes comprising discriminative
subnetworks, (3) the expression correlation changes of significant hub proteins with their
interacting genes.

Statistical Tests and Network Visualization

We used the R software package to perform statistical tests. Cytoscape 2.8.1 [90] was used to
visualize networks.

Supporting Information

S1 Fig. Low-malignant-potential (LMP) and high-gradeserous carcinoma (HGSOC) sam-
ples, clustered based on the expression levels of top-ranked, differentially expressed genes
identifiedusingWilcox rank-sum test P-values or median fold-change. (A) represents tissue
clusters for expression data sets GSE9891 (top) and GSE17308 (bottom) obtained using expres-
sion levels of top genes ranked by theWilcox rank-sum test. (B) represents tissue clusters for
GSE9891 (top) and GSE17308 (bottom) obtained using expression levels of top genes ranked
by median fold-change.
(PDF)

S2 Fig. The P-values andmedian fold changes for gene expression in low-malignant-poten-
tial (LMP) and high-gradeserous carcinoma (HGSOC) samples in the GEO data sets
GSE17308 (left) and GSE9891 (right). The red circle represent the top differentially expressed
genes selected by P-value and fold change.
(PDF)

S3 Fig. Hierarchical cluster analysis on an independent group of samples.Based on expres-
sion levels of 23 genes differentially expressed in low-malignant-potentihujujiijnal (LMP) and
high-grade serous carcinoma (HGSOC) samples in both the GSE9891 and GSE17308 data sets,
samples from a third, independent patient data set (GSE27651) were separated into two
homogenous sets. (A) represents a heatmap of tissue clusters for the GSE27651 data set, and
(B) represents a hierarchical tree of the same data.
(PDF)

S4 Fig. The cell cycle, drugmetabolism, and molecular transport network is enrichedwith
genes differentially expressed between low-malignant-potential(LMP) and high-grade
serous carcinoma (HGSOC) samples in both the GSE9891 and GSE17308 data sets.Red
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indicates overexpression in HGSOC and green represents underexpression. Genes highlighted
in yellow participate in RAR activation and AhR signaling.
(PDF)

S5 Fig. The functional relationships among genes that encode common protein hubs differ-
entially expressed between low-malignant-potential(LMP) and high-gradeserous carci-
noma (HGSOC) samples in both the GSE9891 and GSE17308 data sets.Using GeneIndexer,
which can search over one million Entrez Gene abstracts to identify mechanistic functional
relationships among genes, a functional hierarchy tree was constructed. It suggests that the
known ovarian cancer genes BRCA1, BRCA2, and TP53 have the strongest functional relation-
ships with each other, followed by APEX1, a protein hub gene identified in this study.
(PDF)

S6 Fig. ERBB signal pathway. PAK4 is located downstream of EGFR in the ERBB signalling
pathway.
(PDF)

S7 Fig. PAK4 and RYR1 protein interaction networks suggest that the two proteins interact
indirectly. The yellow octagons respresent FDA approved drugs target the corresponding
gene.
(PDF)

S8 Fig. The total number of molecular signatures by differentialmethods.
(PDF)

S9 Fig. Comparison of the ability of differentially expressed genes, subnetwork connec-
tions, and significant hubs to identify known cancer genes.We compiled a list of ovarian
cancer susceptibility genes affected by somatic and germlinemutations from the OMIM data-
base, and also a list of general cancer genes that carry somatic and germlinemutations from
the COSMIC database. Subnetwork and hub protein analyses did not reveal significantlymore
known cancer genes than differential expression analysis in the ovarian cancer gene set, but
they did reveal significantlymore of the general cancer genes.
(PDF)

S10 Fig. ROC curves of support vectormachine (SVM)-basedclassifiers.The purple line
represents the classification performance ROC curve for expression profile data set GSE9891,
whereas the green line represents that for expression profile data set GSE17308.
(PDF)

S1 Table. The significant subnetworks that differentiate HGSOC from LMP.
(DOCX)

S2 Table. The common significant hub proteins.
(DOCX)

S3 Table. The performance of classificationusing different typemolecular signature as fea-
tures.
(DOCX)
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