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Abstract

Microtubules and motor proteins self-organize into biologically important assemblies including 

the mitotic spindle and the centrosomal microtubule array. Outside of cells, microtubule-motor 

mixtures can form novel active liquid-crystalline materials driven out of equilibrium by adenosine 

triphosphate–consuming motor proteins. Microscopic motor activity causes polarity-dependent 

interactions between motor proteins and microtubules, but how these interactions yield larger-scale 

dynamical behavior such as complex flows and defect dynamics is not well understood. We 

develop a multiscale theory for microtubule-motor systems in which Brownian dynamics 

simulations of polar microtubules driven by motors are used to study microscopic organization and 

stresses created by motor-mediated microtubule interactions. We identify polarity-sorting and 

crosslink tether relaxation as two polar-specific sources of active destabilizing stress. We then 

develop a continuum Doi-Onsager model that captures polarity sorting and the hydrodynamic 

flows generated by these polar-specific active stresses. In simulations of active nematic flows on 

immersed surfaces, the active stresses drive turbulent flow dynamics and continuous generation 

and annihilation of disclination defects. The dynamics follow from two instabilities, and 

accounting for the immersed nature of the experiment yields unambiguous characteristic length 

and time scales. When turning off the hydrodynamics in the Doi-Onsager model, we capture 

formation of polar lanes as observed in the Brownian dynamics simulation.

I. INTRODUCTION

Active matter, the novel class of nonequilibrium materials made up of self-driven 

constituents, presents scientific challenges to our understanding of material properties and 

has the potential to provide new technologies such as autonomously moving and self-healing 

materials. Examples of active matter include flocks of birds [1], swarms of swimming 

bacteria [2] or self-propelled colloidal particles [3], and the cellular cytoskeleton and 

cytoskeletal extracts [4–7]. Despite their differences in composition and length scale, these 

diverse systems show common features absent in equilibrium systems, including collective 

motion, nonequilibrium ordering transitions, and anomalous fluctuations and mechanical 

properties [8,9]. Understanding and predicting the properties of active matter require new 

theoretical approaches and models applicable to far-from-equilibrium, internally driven 

systems.
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Mixtures of cytoskeletal filaments and motors are an important class of active matter that 

can be reconstituted outside the cell to form novel materials. Filaments driven into self-

organized patterns such as vortices and asters are reminiscent of structures observed in cells 

[4–6,10–16]. In earlier experiments, filaments were driven into static self-organized patterns 

such as vortices and asters, reminiscent of structures observed in vivo. In recent experiments, 

active networks were formed of microtubules (MTs) and synthetic multimeric kinesin-1 

motor complexes, with the aid of a depletant [7,17,18]. In the presence of ATP, motor 

complexes can bind pairs of MTs and walk along MTs toward their plus ends. When 

suspended in bulk, depletion interactions drove the formation of extended, highly ordered 

MT bundles characterized by bundle extension and fracture and correlated with spontaneous 

large-scale fluid flows [7,18]. When MT bundles were adsorbed onto an oil-water interface, 

they formed a dense, nematically ordered surface state and exhibited an active nematic phase 

characterized by the spontaneous generation and annihilation of disclination defect pairs [7].

Theoretical studies [19–30] have investigated aspects of these active-matter systems at 

different scales, from the dynamics and mechanical properties of filament bundles to 

macroscopic behavior and stability of active suspensions. Inspired by the experiments of 

Sanchez et al. [7], both Giomi et al. [31,32] and Thampi et al. [33–36] have studied liquid 

crystal hydrodynamic models with fluid flow driven by an apolar active stress [37,38]. In 

these rather general models the precise origins of the active stress driving the system are 

unidentified. Giomi et al. developed a theory for the speed at which defects move apart in 

active nematics, assuming the presence of a defect pair as an initial condition. Thampi et al. 
found an activity-independent velocity-velocity correlation length, as found in the bulk flow 

measurements of Sanchez et al., and studied defect dynamics in 2D simulations. These 

models reproduce qualitative features of the experiments. However, MT–motor-protein 

interactions are intrinsically polar, and how these polarity-dependent microscopic 

interactions manifest themselves at meso- or macroscopic scales is still unknown. Thus one 

theoretical challenge is how to resolve microscopic interactions between constituents in 

order to predict macroscopic material properties. While particle-based simulations can 

represent microscopic interactions in detail, computational cost typically limits cross-scale 

studies. Continuum models are more tractable for describing dynamics at large scales but 

can be difficult to connect to the microscopic dynamics quantitatively.

Here we construct a multiscale model that identifies the sources of destabilizing active 

stresses and study their consequences in a large-scale model [39]. We first perform detailed, 

hybrid Brownian dynamics–kinetic Monte Carlo (BD-kMC) simulations which incorporate 

excluded-volume interactions among model MTs, thermal fluctuations, explicit motors with 

binding-unbinding kinetics that satisfy detailed balance, and a force-velocity relation. Active 

extensile stress is generated from polarity sorting of antialigned MTs and from crosslink 

relaxation of polar-aligned MTs. It also provides coefficients for polar-specific active 

stresses for a kinetic theory that incorporates polarity sorting and long-range hydrodynamic 

interactions, using a similar approach as that used to describe bacterial suspensions [40–45], 

where hydrodynamic instabilities lead to large-scale collective motions including jets and 

vortices [37,40,41,46–49]. We use this model to study actively streaming nematic states on 

an immersed surface, as in the Sanchez et al. experiments [7]. Numerical experiments 

demonstrate dynamics strikingly similar to the experiments, with large-scale turbulent-like 
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fluid flows and the persistent production and annihilation of defects. We correlate the defect 

dynamics with specific flow structures and with active stresses. We identify the 

hydrodynamic instability of nearly one-dimensional (1D) coherent “cracks” as being the 

source of the persistent dynamics. When turning off the induced background surface flow in 

the kinetic model, we capture the formation of polar lanes observed in the BD-kMC 

simulations.

II. THE MICROSCOPIC MODEL

Figure 1 outlines the basic physical picture that underlies both our BD-kMC simulations and 

the continuum kinetic model. Consider an immersed suspension of polar MTs, each with a 

plus-end-oriented director p, and all of the same length l and diameter b [Fig. 1(a)]. 

Adjacent MTs are coupled by plus-end-directed crosslinking motors consisting of one motor 

head on each MT connected by a tether that responds as a spring to stretching [Fig. 1(b)]. 

The motor on each crosslink end point moves with a linear force-velocity relation [50]: v = 

vm max[0, min(1,1 + f/fs)], where f is the magnitude of the crosslinking force, vm is the 

maximum translocation velocity, and fs is the stall force. For a nematically aligned 

suspension there are two basic types of MT pair interaction. For polar antialigned MTs [Fig. 

1(c)] the motors on each end of an active crosslink move in opposite directions, stretching 

the tether. This creates forces on each MT that, acting against fluid drag, slide the MTs 

relative to each other towards their minus ends. This process is termed polarity sorting [19]. 

Conversely, for polar-aligned MTs the motors on each end of the crosslink move in the same 

direction, there is little or no net sliding, and the tether pulling on the leading motor causes 

stretched tethers to relax [Fig. 1(d)].

III. BROWNIAN DYNAMICS–KINETIC MONTE CARLO MODEL AND 

SIMULATIONS

We first perform 2D BD-kMC simulations of MTs driven by explicit motors with binding-

unbinding kinetics. The main purpose is to quantify local MT pair interactions, with long-

ranged hydrodynamics neglected due to its high computational cost. Our model is related to 

previous simulations of filaments with crosslinking motors [51–53], but new in our work are 

algorithmic improvements for handling crosslinks and neglect of filament elasticity that 

allow us to more accurately treat the statistical mechanics of crosslinking motors, simulate 

larger systems, and measure the stress tensor.

The particle-based BD-kMC simulations use a simple, tractable model of active 

biomolecular assemblies that capture key physical features, including excluded volume 

interactions between filaments, attractive and sliding forces exerted by motors, and the 

thermodynamics and kinetics of crosslinking motor binding and unbinding. Filaments (MTs) 

are represented as perfectly rigid rods (discorectangles in 2D) of length l and diameter b that 

undergo Brownian dynamics. Forces and torques on the filaments occur due to motor-

mediated forces, particle-particle repulsion, friction, and thermal forces. To simulate the 

Brownian motion of filaments, we adopt the computational scheme of Tao et al. [54], which 

has been used successfully in simulations of concentrated solutions of high-aspect-ratio 

particles. In this scheme, the filament centers-of-mass equations of motion are
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(1)

for all filaments i, where the random displacement δxi(t) is Gaussian distributed and 

anisotropic, with variance

(2)

In the above, kB is Boltzmann's constant and T is the absolute temperature. Here  is 

the inverse friction tensor

(3)

where γ∥ and γ⊥ are the parallel and perpendicular drag coefficients of the rod, and Fi(t) is 

the systematic (deterministic) force on particle i. The equations of motion for particle 

reorientation are

(4)

where γr is the rotational drag coefficient, Ti(t) is the systematic torque on particle i, and the 

random reorientation δpi(t) is Gaussian distributed, with variance

(5)

The Weeks-Chandler-Andersen (WCA) potential between rods is

(6)

where ϵ = kBT, rmin is the minimum distance between the two finite line segments that 

define the filament axes, and ϵ sets the energy scale of the potential. Note that rmin is an 

implicit function of the center-of-mass positions and orientations of the two interacting MTs. 

For this value of ϵ, the typical distance of closest approach between rods is comparable to b, 

and the thermodynamic properties closely resemble those of hard rods with aspect ratio l/b, a 

model that is well characterized both in 2D [55] and 3D [56,57].

Because the Brownian dynamics scheme involves random particle displacements and 

rotations, close contacts between rods that produce large forces and torques occasionally 
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occur, leading to instabilities in the dynamics. Such instabilities are avoided by softening the 

WCA potential at short distances to keep the resulting forces and torques within reasonable 

bounds [54]. At the same time, we adjust the integration time step to ensure that pairs of 

interacting particles probe the softened region of the potential infrequently, so excluded 

volume effects are properly accounted for.

The frictional forces are orientation dependent: Translational diffusion is characterized by 

two diffusion constants, D⊥ and D∥, which describe diffusion perpendicular and parallel to 

the rod axis, respectively, and Dr is the rotational diffusion coefficient. For spherocylinders 

where a = l/b + 1, the diffusion coefficients are [58]

(7)

(8)

and

(9)

Here η is the fluid viscosity. Note that D∥ is approximately a factor of 2 larger than D⊥.

To model motor-mediated interactions and activity, we implement a semi-grand-canonical 

ensemble in which a reservoir of motors is maintained in diffusive contact at a fixed 

chemical potential μm with filaments to (from) which they can bind (unbind). The motors are 

assumed to be noninteracting both in solution and in the bound state, so the motor reservoir 

can be treated as an ideal solution, and there is no steric interference among bound motors. 

Bound motors have a free energy um(rm), where rm is the extension of the motor tether, 

which depends implicitly on the relative positions and orientations of the two filaments to 

which the motor is attached and on the positions of the points of attachment of the motor on 

the filament axes. We treat motor attachment (detachment) as a one-step process in which 

motors bind to (unbind from) two filaments simultaneously, and we assume a binding rate of

(10)

and an unbinding rate of

(11)
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where β = (kBT)−1 is the inverse temperature in energy units. This choice of binding and 

unbinding rates ensures that the correct equilibrium distribution is recovered for static 

(nontranslocating) crosslinks, is a convenient choice from a computational standpoint, and 

has been used previously [59]. Given a distribution of motors bound to filaments, we 

compute the forces and torques exerted on MTs by differentiating um(rm) with respect to the 

filament positions and orientations. As discussed in Sec. II, the end points of bound motors 

translocate toward the plus ends of the MTs to which they are attached with a force-

dependent velocity. Motors unbind immediately upon reaching the plus end of either of the 

two filaments to which they are attached.

Because the motor unbinding rate is k0, independent of motor tether extension, the 

probability that a given motor unbinds in a time interval δt is p = k0δt, and the average 

number of motors that unbind in δt is 〈Nd〉 = k0δtNm, where Nm is the current number of 

bound motors. The number Nd of motors that unbind in a time interval δt follows a binomial 

distribution,

(12)

In one time step we remove Nd randomly selected motors, where Nd is determined by 

sampling from the binomial distribution.

The kinetic MC procedure for motor binding is involved, because the rate of motor binding 

depends on motor tether extension, which in turn depends on the relative positions and 

orientations of the two MTs to which the motor is attached and on the positions of the points 

of attachment of the motor along the filament axes. To compute the relative probability and 

rate of motor binding to specific binding sites on a given pair of filaments we consider the 

statistical mechanics of the filament-motor system in the equilibrium limit of 

nontranslocating crosslinks. The semi-grand-canonical partition function of the filament-

motor system is

(13)

where zm = eβμm is the fugacity of the motor reservoir and Nm is the number of bound 

motors. Here Z(N,V,T,Nm) is the canonical partition function of a system of N filaments and 

Nm bound motors,

(14)

where (xN,pN) = (x1,x2, . . . ,xN,p1,p2, . . . ,pN) labels the particle positions and orientations; 

U(xN,pN) is the filament potential energy, including interparticle interactions and external 
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potentials; and q1 is the single-motor partition function and interactions between bound 

motors have been neglected. The single-motor partition function depends on the filament 

positions xN and orientations pN, i.e., q1 = q1(xN,pN). Substituting Eq. (14) into the grand 

partition function and carrying out the summation over Nm leads to

(15)

where

(16)

In the limit in which the rate of motor binding and unbinding is large compared with the 

filament diffusion rate (adiabatic limit), Um plays the role of an effective motor-mediated 

filament interaction potential that depends on the chemical potential of the reservoir. Static-

crosslink-mediated interactions are generally attractive and short ranged and bear a strong 

resemblance to depletion-type potentials [56].

The single-motor partition function q1 can be written as a sum of pairwise partition 

functions,

(17)

where the sum ranges over all distinct pairs of filaments, and the pairwise partition function 

qij is

(18)

Here the integration variables si and sj parametrize the positions of motor end points on 

filaments i and j, respectively; rm is length of a motor between points specified by si and sj; 

and ρ is the linear density of binding sites on a single filament. Then we can write the 

effective motor potential as the sum of pairwise effective interactions,

(19)

where

Gao et al. Page 7

Phys Rev E Stat Nonlin Soft Matter Phys. Author manuscript; available in PMC 2016 October 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(20)

is the effective motor-mediated pair potential in the adiabatic limit. Insertion of motors with 

the correct relative statistical weight in a kinetic MC procedure requires evaluation of the 

pairwise partition function qij [Eq. (18)] for all pairs of filaments. If the motor energy um 

increases rapidly (e.g., quadratically) with increasing motor extension, then the partition 

function qij (and the corresponding adiabatic effective potential Uij) falls off rapidly with 

increasing minimum distance between filament axes and is non-negligible only for pairs of 

filaments in close proximity. Thus, the pairwise partition function is analogous to a short-

range interaction potential, and the usual techniques for efficient handling of short-range 

interactions (e.g., neighbor lists) can be applied. To efficiently evaluate the double integral in 

Eq. (18), note that for motors modeled as zero-equilibrium-length harmonic springs, the 

integrand can be expressed as a sum of bivariate normal distributions. Then qij reduces to a 

sum of cumulative bivariate normal distributions, which can be rapidly evaluated using 

standard numerical procedures [60].

To proceed further, we consider the statistical mechanics of the motor subsystem for fixed 
filament positions and orientations. The grand partition function for the motor subsystem is 

given by

(21)

and the equilibrium number of bound motors for a given filament configuration is

(22)

where 〈Nij〉 is the average number of motors between filaments i and j,

(23)

Note that 〈Nij〉 = zmqij, so the problem of computing 〈Nij〉 is equivalent to that of computing 

qij. Introducing the explicit form of quadratic potential for harmonic motors 

 leads to

(24)
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where α = βK/2, and where the implicit dependence of rm on filament coordinates has been 

suppressed.

The average number of motors that bind to filaments in a time interval δt is

(25)

As above, the number Na of motors that bind in the interval δt follows a Poisson distribution,

(26)

In the kinetic MC cycle, the number of bound motors Na is drawn from this distribution, and 

Na motors are inserted by first selecting pairs of filaments with relative probability 

 and then sampling from the appropriate bivariate normal distribution to 

choose motor end points that lie on the selected pair of filaments.

The overall hybrid BD-kMC procedure thus consists of the following steps:

(1) Compute forces and torques on MTs and evolve MT positions and orientations 

δt forward in time according to the Brownian dynamics equations of motion 

[Eqs. (1) and (4)].

(2) Displace each motor end point by vδt along the MT to which it is attached with 

translocation velocity v given by the force-velocity relation.

(3) Determine the number Nd of motors that unbind in the time interval δt by 

drawing from a binomial distribution [Eq. (12)] and remove this number of 

motors at random.

(4) Compute average number of bound motors 〈Nij〉 for all pairs of MTs [Eq. (23)] 

and determine the number Na of motors that bind in the time interval δt by 

drawing from a Poisson distribution [Eq. (26)]. Randomly select Na pairs of 

MTs with relative probability , and insert a motor between 

each selected pair of MTs by sampling from a bivariate normal distribution.

The properties of the model depend on seven dimensionless parameters (Tables I and II): (i) 

the MT aspect ratio r = l/b, (ii) the MT packing fraction ϕ, (iii) the range of =motor mediated 

interaction Rm = [kBT/(Kb2)]1/2, (iv) the motor concentration c = zmρ2b2eu0/(kBT), (v) the 

motor run length , (vi) the motor stall force f = fsb/(kBT), and (vii) the Peclet 

number (the ratio of translocation and diffusion rates) Pe = vηb/(kBT). With current 

methods, it becomes more computationally expensive to simulate systems with MTs of high 

aspect ratio (e.g., r > 10). The computation time scales approximately as r3. If r doubles, 

then the linear dimension of the the box in the longitudinal direction must be doubled to 

study the same number of rods. We use square boxes to avoid any loss of information upon 
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nematic director reorientation. Therefore the number of rods scales as r2. Longer rods also 

have slower dynamics, because the translational and rotational mobilities go as 1/r to leading 

order. Therefore the time scale to reach steady state scales approximately linearly in r. We 

present here results of simulations with r = 10 for which we performed simulations of 

relatively large systems for long times over a wide range of parameters. A more limited 

investigation of longer rods reveal qualitatively similar behavior.

A. Measurement

The dynamics and stresses experienced by individual MTs depend strongly on their local 

environment, in particular on the relative polarity of neighboring MTs. To identify sub-

populations of MTs with distinct local environments, we define a local polar orientational 

order parameter

(27)

where qij is the motor pair partition function defined above. Since qij falls off rapidly with 

increasing pair separation, only near neighbors of particle i are included in the sums in Eq. 

(27). The polar order parameter mi ranges from −1 (MT i surrounded by neighbors of 

opposite polarity) to 1 (MT i surrounded by neighbors of the same polarity).

The osmotic stress tensor of a periodic system of N interacting MTs at temperature T in a d-

dimensional volume V is given by

(28)

where the first and second terms on the right-hand side represent the ideal gas and 

interaction contributions, respectively, I is the unit tensor, and W is the virial tensor,

(29)

where the sum ranges over all interacting pairs of MTs. The angular brackets in Eq. (28) 

denote an average over time. Here we have assumed that the temperature of the system is 

isotropic and well defined, so

(30)

where Pi is the momentum of MT i and mMT is the MT mass (here assumed the same for all 

MTs). Filaments have momentum based on their instantaneous movements on short time 
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scales. This motion is in thermal equilibrium with the background fluid, connecting 

molecular motion to Brownian motion. While this relation is clearly true in the equilibrium 

case, it is less obvious that this it holds for active MT–motor systems. However, a purely 

mechanical definition of osmotic pressure leads to the same expression even for 

nonequilibrium particle suspensions in the low-Reynolds-number hydrodynamic regime 

[65], and we will assume that Eq. (28) holds in the following discussion.

The isotropic pressure is defined as

(31)

The average extensile stress is

(32)

where the d direction corresponds to the average nematic director orientation. We further 

resolve the stress tensor into contributions from subpopulations of MTs, for example, 

according to the local polar order parameter mi introduced above. This can be done by 

writing the total virial as the sum of contributions from individual MTs,

(33)

where

(34)

To calculate the pair extensile stresslet as a function of the local polar order mi, we calculate 

the virial per spherocylinder. At a given time point, each interaction gives an associated 

virial contribution for the pair. The single-MT virial contribution is taken to be half of the 

pair's contribution. Contributions from forces for all interacting partners are summed to give 

the virial contribution for each MT. Similarly, the local polar order parameter mi is 

calculated for each MT. Then the virial anisotropy contribution per MT in the nematic 

reference frame is determined based on its local polar order. After repeating for all time 

points, the histogram is normalized, leading to the calculation of the extensile pair stresslet 

per MT as a function of mi.
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To calculate the extensile pair stresslet in bulk simulations, we consider interacting MTs 

only. At each time point, the total number of interactions is calculated by summing the 

number of pairs for which there is a nonzero force. The total parallel and antiparallel virials 

in the director reference frame are calculated. Any interactions between pairs with pi · pj > 0 

contribute to the polar-aligned virial, and the remainder contribute to the antialigned virial. 

This measurements is time averaged and the extensile pair stresslet calculated by dividing 

the average virial anisotropy by the average number of interactions.

B. Extensile stress and its origins

Figure 2 illustrates the long-time behavior of MT suspensions in the BD-kMC simulation 

model (also see video S1 [66]). Figure 2(a) shows a simulation of MTs interacting only 

through thermal fluctuations and steric interactions (without motors). The system develops a 

2D nematic state consistent with previous work [55]. Figure 2(b) shows the result of adding 

immobile crosslinkers with full binding-unbinding kinetics. The system shows MT bundling 

due to short-range crosslink-induced attraction. Figure 2(c) shows the behavior with motors. 

The system now shows active MT flows driven by polarity sorting, leading to the formation 

of polar lanes (domains of MTs with similar polarity). These polar lanes are highly dynamic 

and show large fluctuations. The mean-squared displacement of MT position as a function of 

time shows diffusive behavior at long times in the equilibrium cases [Figs. 2(a) and 2(b)] 

and for active MTs when measured perpendicular to the average alignment direction. For 

motion parallel to the average alignment direction, the active MT mean-squared 

displacement is superdiffusive and nearly ballistic at long times [Fig. 3(a)].

We characterized the dynamical properties of bound motors for polar-aligned and 

antialigned MT pairs. For two MTs labeled i and j with orientations pi and pj and center-of-

mass diplacement rij, we define the pair's longitudinal displacement by 

. For antialigned MT pairs (pi · pj < 0) undergoing motor-

driven relative sliding, sij is negative when the MT pair is contracting (minus ends closer 

than plus ends) and becomes positive when the MT pair is extending (plus ends closer than 

minus ends; see Fig. 1). When crosslinks are immobile or for motors on polar-aligned MTs 

(pi · pj ≥ 0), the distribution of motors as a function of sij is symmetric [Fig. 3(a)]. However, 

for motors on antialigned MTs, the distribution of motors skews toward positive values of 

sij: More motors are bound during the extensile motion of the pair. This asymmetry occurs 

because of the translocation of the motors toward the MT plus ends. This biases MT pairs 

toward extension, yielding an extensile stress that drives active flows (see below).

The distribution of motor extension alters significantly when crosslinks translocate [Fig. 

3(c)]. The minimum value of rm is approximately 1 due to excluded-volume interactions 

between MTs. For polar-aligned pairs, the distribution is shifted toward smaller extensions 

than in the equilibrium case due to nonequilibrium tether relaxation, with important 

implications for the generation of extensile stress, as discussed below. For antialigned pairs, 

the distribution is shifted toward positive extension due to oppositely directed motor motion; 

this combination of motor extension and motion applies active forces that drive polarity 

sorting.
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We measured the displacement distributions and average velocities of MTs along the 

nematic director and found that both are strongly correlated with an MT's initial local polar 

environment. Defining the nematic director n̂, we calculated MT displacement distributions 

in time along the projection of the local filament orientation vector onto the nematic vector: 

y(t) = sgn[n̂ · pi(t0)]n̂ · [ri(t + t0) – ri(t)]. In order to examine dynamical behavior on time 

scales comparable to the diffusion time scale, we grouped the MT displacements at a lag 

time of t = 4.98 (chosen to clearly illustrate the different distributions) and their initial polar 

environment mi(t0) ≈ (−1,0,1). For MTs in an initially polar environment [mi(t0) ≈ 1], the 

displacement distribution is approximately Gaussian with mean near zero, consistent with 

diffusive-like dynamics [Fig. 3(d)]. For MTs in an initially antipolar environment [mi(t0) ≈ 
−1], we again find an approximately Gaussian displacement distribution, but the mean is 

shifted toward the MT's minus end [Fig. 3(d)]. This profile is consistent with drift plus 

diffusion dynamics. For more mixed initial environments [mi(t0) ≈ 0], we find that the 

dynamics are more complicated and are not likely described by a simple drift and diffusion 

model [Fig. 3(d)]. MTs in initially mixed or antipolar environments exhibit significant 

displacements toward their minus ends due to antipolar sliding.

To further examine the polarity-dependent MT movements, we measured the instantaneous 

MT velocity component along the nematic director, dy/dt at t = 0. Velocities of MTs are not 

constant because MTs experience relatively rapid changes in the polarity of their neighbors. 

MTs in initially antipolar environments tend to slow down rapidly, indicating that they move 

into more mixed environments, while MTs in polar or mixed environments tend to maintain 

their velocities for longer times. Filaments in polar environments have velocities near zero 

[Fig. 3(e)]. The instantaneous velocity depends approximately linearly on the local polar 

environment, as expected when filament movements are determined mainly by polarity 

sorting [Fig. 3(f)].

We measured the time-averaged bulk stress tensor Σb for our active particle system and 

found that, over a wide range of parameters, Σb is anisotropic with larger components in the 

average MT alignment direction than in the perpendicular direction. That is, since the MT 

alignment direction is essentially ŷ, the stress difference  is positive, which 

corresponds to an extensile stress. Static crosslinkers or no motors [Figs. 2(a) and 2(b)] yield 

an isotropic Σb. The stress difference can be expressed as the sum of pair interactions 

between nearby MTs, with each ij pair contributing a stresslet Sij (with units of 

force×length), prior to division by the bulk volume. We have characterized how the stresslet 

varies with system parameters and configurations. The average pair stresslet S increases with 

the motor speed vm up to a maximum where the typical motor run length is the MT length 

[Fig. 3(g)]. Increasing vm further leads to decreasing S because the motors rapidly move to 

the ends of the MTs and unbind. To understand the origins of extensile stress, we studied 

how S varies with the local polar environment mi (27). The stresslet is largest when mi is 

near −1, suggesting that polarity sorting is the dominant source of pairwise extensile stress 

[Fig. 3(h)]. As mi increases, S drops with approximate linearity, at least away from the two 

isolated peaks that close examination show originate through strong steric interactions of 

nearly parallel MTs. Nearly, but not exactly, parallel MTs experience aligning torques due to 
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motor-mediated attraction; the resulting steric collisions tend to promote pair extension that 

increases the extensile stress for nearly aligned pairs (relative to perfectly aligned pairs).

The extensile stress from antialigned pair interactions arises from asymmetries during 

polarity sorting: If an MT pair begins sliding when the two minus ends touch (sij −10) and 

slides under a force proportional to pair overlap until the two plus ends meet (sij = 10), then 

the contractile motion would perfectly balance the extensile motion and the total extensile 

stress would be zero [20,26,59,67]. In our simulations we observe two effects that break this 

symmetry. First, MTs are unlikely to begin interacting exactly when their minus ends are 

touching, decreasing the range of negative sij over which sliding occurs. Second, more 

motors are bound on average during extensional motion [so sij > 0; see Fig. 3(b)].

We also find the surprising and counterintuitive result that S remains positive even when mi 

is near 1, that is, for polar-aligned pairs of MTs. This effect occurs due to an interplay 

between motor motion and excluded-volume interactions. We propose that the effect can be 

understood by considering equilibrium and nonequilibrium motor relaxation. For immobile 

motors, the system is at equilibrium and the stress tensor is isotropic; attractive interactions 

due to motors are balanced by excluded volume interactions and thermal fluctuations, and 

the system is at mechanical equilibrium. When motors are active, stress anisotropy becomes 

possible due to the nonequilibrium nature of the motor force-velocity relation. The tether of 

a longitudinally stretched motor pulls back on the leading motor, slowing it, and pulls 

forward on the trailing motor. Hence, the motor relaxes its longitudinal extension. This 

effect is observable in Fig. 3(c) as a slight but significant shift in the distribution of motor 

extension toward smaller values relative to the equilibrium case. As a result, the motor-

induced contractile stress along the MT alignment direction is decreased, while there is no 

change in the transverse stress induced by motors. This leads to a net anisotropic extensile 

stress in the alignment direction. In this scenario, we would predict that if the motors had a 

force-independent velocity, the polar-aligned extensile stress would vanish because the 

longitudinal motor extension would be unable to relax. We tested this prediction by studying 

how S varies as stall force increases for simulations of perfectly aligned (unable to rotate) 

isolated filament pairs. We find that the extensile stress changes little with stall force for 

antialigned MT pairs. However, for polar-aligned MT pairs the extensile stress drops as stall 

force increases and goes to zero for infinite stall force [which corresponds to force-

independent velocity, Fig. 3(i)]. When effects of filament rotation are also included, the 

results are more subtle; we find that the interplay of filament rotation and motor activity can 

induce extensile stress for polar-aligned pairs in bulk simulations even for infinite stall force.

While the extensile stress due to polar-aligned MT pairs is typically a factor of 2–5 smaller 

than for antialigned pairs, when measured per pair [Fig. 3(h)], polarity sorting and the 

tendency to form polar lanes [Fig. 2(c)] lead to larger numbers of polar-aligned MT pairs 

than of antialigned. In our BD-kMC simulations, which lack the effect of hydrodynamics, 

the overall contributions of polar-aligned and antialigned pairs to the extensile stress are 

comparable.
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IV. CONTINUUM KINETIC THEORY

The BD-kMC simulations show how polar-specific MT-pair interactions give rise to 

extensile active stresses. To study the effect of hydrodynamic interactions and to make 

analytical predictions we have developed a Doi-Onsager theory [68] similar to those used to 

describe the dynamics of motile rod suspensions [40,41,45]. The theory's fluxes and active 

stresses arise from polar-aligned and antialigned MT pair interactions produced by active 

motors. These stresses induce chaotic flows driven by the formation of disclination defects.

A. Dynamics of polarity sorting

To coarse grain the BD-kMC simulation results and make connections with the kinetic 

model, we first derive a continuum-mechanics model to describe the MT dynamics. Here we 

assume the motor run length to be approximately the MT length, meaning that, once bound, 

the motors will stay on the MTs until reaching the plus ends. As shown in Fig. 4, we 

consider a nematically ordered local cluster of MTs undergoing polarity sorting, with n MTs 

pointing rightwards and m MTs pointing leftwards. Let all the MTs in this cluster be coupled 

by active motors which create springlike forces between the MTs and whose bound ends 

move at a characteristic (constant) speed vw toward MT plus ends. For an antipolar MT pair 

this induces a relative sliding, each towards its negative end. The cluster is assumed small 

enough so all MTs experience the same local flow field. Using Stokesian slender body 

theory [69] we can find the velocities of the left-and rightward-pointing MTs. For each MT, 

the center locates at xc, with the director p. We assume that in the cluster there are m MTs 

pointing leftwards (p = –x̂, with superscript L) and n MTs pointing rightwards (p = x̂, with 

superscript R). Each antialigned pair (say the jth and the kth MT) shares Q (Q > 1) motors

(35)

where j = 1, . . . , m,k = 1, . . . , n and q = 1, . . . , Q. As shown on the right in Fig. 4, one 

motor locates at  and the other locates at , with initial 

positions  and . The characteristic motor speed vw is constant for the antialigned pair. 

Hence the distance between the two motors in the tangential direction can be calculated as

(36)

where , . When the motor is walking, it 

behaves like a linear spring with rigidity κ by exerting equal and opposite forces,
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(37)

As a result, the two MTs slide past one another undergoing polarity sorting. Following 

slender-body theory [69], the MT speed is given by , leading to

(38)

where , and η is the fluid viscosity. We seek the time-dependent solutions of 

the form . The coefficients A and B can be solved as

(39)

leading to

(40)

which suggests , . This expression shows that the speed of each 

population depends on how many opposing MTs there are to pull against, with their drag as 

the anchor and their relative velocity fixed at vL – vR = 2vw by the motor protein speed. This 

latter observation is in agreement with observations of antialigned sliding of MTs in the 

mitotic spindle [70].

Next, we consider a general situation when the MTs are not perfectly aligned but with an 

intersection angle, i.e., , where θjk is a small angle between the jth 

and the kth MTs. As discussed later, at high concentration, the steric interactions align the 

neighboring MTs, which makes the small-angle assumption a reasonable approximation. 

Similarly to the perfectly aligned case, the positions of the two motors can now be written 

as:

(41)

where j,k = 1, . . . , N,q = 1, . . . , Q, and s = sq,0 + vwt. So the relative distance becomes
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(42)

where , . The motors exert tangential force . 

Following the same procedure, we seek solutions of the form , 

yielding

(43)

Then the relative moving speed of the two MTs becomes

(44)

When pk = –pj, Eqs. (43) and (44) exactly recover the solutions in (40) for the perfectly 

aligned case. To further coarse grain the above results to facilitate a continuum modeling as 

discussed below, we take an average in p of Eq. (44) which directly yields a translational 

particle flux ẋ = q – p.

B. Flux velocity, active stress, and kinetic model

The system is described by a distribution function Ψ(x,p,t) of MT center-of-mass positions x 
and polar orientation vectors p (|p| = 1), evolved through a Smoluchowski equation,

(45)

which reflects conservation of particle number. Here ẋ and ṗ are MT conformational fluxes. 

Important macroscopic quantities for describing a polar nematic system are the local 

concentration , the local polarity vector , the second-moment tensor 

 which arises generically in capturing active stresses produced by active 

suspensions [37], the (trace-free) order parameter tensor Q = D/Φ – I/d, with d = 2 or 3 the 

spatial dimension, and the fourth moment .

Slender-body theory yields the forces each rod exerts on the fluid, and hence the volume-

averaged stress [71] by polarity sorting, can be calculated. If the cluster occupies a volume 

Vc, then the induced extra stress tensor from antialigned sorting is . 

Here  is proportional to fluid viscosity η, and αaa = s/l with s the signed distance between 

the centers of mass of the p and –p oriented subclusters. If the cluster is extending, then s < 

0, as would be the case if motor protein binding and unbinding kinetics biased motor 
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densities towards the plus end of the MTs. This is seen in the BD-kMC simulations [Fig. 

2(e)] and is associated with local extensile flows similar to those of motile Pusher particles 

which collectively can drive macroscopic flow instabilities [40,41,72]. The antialigned (aa) 

pair stresslet strength can be derived as . When taking vw as vm, we extract the 

value of αaa ≈ −2 from the BD-kMC simulations.

While active motor motion between polar-aligned MTs yields little MT mobility, the BD-

kMC simulations show that it does yield an extensile stress. However, unlike polarity sorting 

we lack a simple first-principles model of how polar interactions yield extensile stress, 

though the number of polar pair interactions within a cluster scales as m2 + n2. Given that 

the anti- and polar-aligned stresses are of the same order [Fig. 2(h)] we assume the form 

. Comparison with the BD-kMC simulations suggests that αpa ≈ 
−0.5.

We have generalized this simple example to a continuum model that captures polarity 

sorting of MTs and the dependence of the stress upon the local polarity of the MT field. The 

fluxes for Eq. (45) are given in dimensionless form by

(46)

(47)

To nondimensionalize the above equations, we assume that there are M MTs in the entire 

computational domain of volume Vc. At high concentration, it is useful to introduce an 

effective volume fraction ν = nbl2, where n = M/Vc is the mean number density [45,68]. 

Further, we=choose the characteristic length scale lc = b/ν, the velocity scale vc = vw, as 

well as the stress scale ηvw/lc. In Eq. (46), U is the background fluid flow, and the last term 

yields translational diffusion with constant Dt. For nematically ordered suspensions, the term 

q – p exactly reproduces the cluster velocities induced by polarity sorting given above (note 

that for a perfectly polar system, no polarity sorting occurs and the flux q – p makes no 

contribution). In Eq. (47), the MTs are rotated by the background flow gradient ∇xU 
according to Jeffery's equation [73] while the second term arises from the Maier-Saupe 

potential with coefficient ζ0 which models torques and stresses arising from steric 

interactions at high concentration [45,74]. The last term yields rotational diffusion of the rod 

with constant Dr. We do not account for MT rotation through interactions with the local 

field, as is appropriate when the MT field is nematically ordered. All constants have been 

made nondimensional using characteristic velocity vw and a characteristic length lc 

appropriate for dense suspensions [45,68].

Our system is closed by specifying how U and ∇xU are recovered from Ψ, which involves 

specifying the extra stress created in the fluid by activity and other sources. We assume the 

active stress arises separately from antialigned and polar-aligned MT interactions and 
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construct it from D and Φqq (i.e., the simplest symmetric tensors quadratic in p). In 

dimensionless form, the active stress tensor takes the form

(48)

The first term (second term) captures active stress production via polarity sorting (motor 

relaxation) and exactly reproduces the form of Σaa (Σpa) for nematically ordered 

suspensions. The total extra stress tensor is given by Σe = Σa + Σ′, where Σ′ models extra 

stresses arising from flow-induced constraint forces on MTs and steric interactions [45]:

(49)

where .

For bulk flow modeling one typically closes the system by balancing viscous and extra 

stresses and solving the forced Stokes equation −∇xp = Δxu = −∇x · Σe and ∇x · u = 0 with 

velocity u and pressure p. This generates the background velocity and its gradient needed to 

evolve Eq. (45) [40]. However, this approach does not describe the streaming nematic 

experiments of Sanchez et al. [7], where the active material is confined to an interface 

between oil and water, so surface motions are coupled to external fluid motions. To capture 

that coupling, we consider a flat layer of interacting MTs bound in the xy plane at z = 0 and 

immersed between two half-spaces filled with Newtonian viscous fluid (for simplicity, of the 

same viscosity). The activity in the MT layer generates a stress jump across the z = 0 plane 

and so generates a global 3D flow which is continuous at z = 0. In order to close the system, 

we solve the surface velocity U in terms of the extra stress Σe. To accomplish this, we first 

solve the (3D) velocity field u = (u, v, w) of fluid flow using the Stokes equations

(50)

where ∇ is a regular 3D spatial gradient operator. Under Fourier transform in (x,y), the 

above equations can be written as:

(51)

where k is a 2D wave vector and v = (u,v) is a 2D velocity field. When solving these 

equations in=the upper (+) and lower (−) halves of the domain, we match at the MT layer 

through the continuous (2D) surface velocity U, ie., v+ = v− = U and w+ = w− = 0. After 

some algebra, we obtain
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(52)

where k = |k| and k̂ = k/k is a 2D unit wave vector. We further assume that the capillarity of 

the surface bounding the MT layer acts against the concentration of MTs. We denote the 

liquid viscous stress as σ = –pI + ∇u and match the two solutions through a traction jump on 

the layer σ+ · n – σ−. n = ∇x · Σ. Here ∇x is a 2D operator on the surface, and Σ = Σe + Σp, 

arising from both the extra stress Σe due to MTs and the stress Σp due to a transverse 

pressure gradient within the MT layer which results in the background flow being 

incompressible in the plane (i.e., ∇x · U = 0). Then it is easy to eliminate Σp and solve the 

surface flow U in terms of Σe as:

(53)

It is useful to compare this expression to that for the 2D Stokes equation forced by a bulk 

stress: . The missing factor of k in Eq. (53) profoundly changes the 

nature of system stability for the surface and 2D bulk systems. Equation (53) not only closes 

the system but facilitates a pseudospectral method to solve the Smoluchowski equation (45) 

and the fluid flow in a coupled manner.

C. Flow, polarity, and defects

Assuming 2D periodic boundary conditions, we have simulated our active polar nematic 

model over long times, using Eqs. (45)–(49) as well as the velocity-stress kernel (53). For 

the simulations shown here, we choose αaa,pa from −0.1 ~ −4.0 and fix β = 1.74 (i.e., aspect 

ratio 10), ν = 0.5, ζ0 = 1.0, Dt = 0.5, and Dr = 0.1 (estimated from the BD-kMC 

parameters). The computation is performed on a 2D periodic domain of a square box with 

dimension L = 80. The governing equations are solved spectrally in a coupled manner, using 

the fast Fourier transform algorithm by expanding the variables in Fourier series and 

truncating the series after 200–400 modes in each spatial direction [40,45,75].

Simulating in regions of flow instability we find persistently unsteady flows correlated with 

continual genesis, propagation, and annihilation of ±1/2 defect pairs. When we examine 

simulation results at late times, from initial data near uniform isotropy, we find dynamics 

that are complex and appear turbulent, qualitatively similar to those reported by Sanchez et 
al. [7] (Fig. 5). The surface velocity and vorticity show formation of jets and swirls (Fig. 

5(a), also see video S2 [66]). The local MT orientation is highly correlated with the flow 

structures, and the surface is littered with ±1/2 defects which propagate freely about the 

system (Fig. 5(b), also see video S3 [66]). These defects exist in regions of small nematic 

order (dark blue) and are born as opposing pairs in elongated “incipient crack” regions. 

These are associated with surface jets, locally decreasing nematic order, and increasing 

curvature of director field lines. Characteristically, the +1/2 defects propagate away along 
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their central axis and have a+much higher velocity than those of −1/2 order. The relatively 

higher surface velocity in the neighborhood of a +1/2 defect appears as a well-localized jet, 

in the direction of defect motion, between two oppositely signed vortices.

The active force vector field fa = ∇x · Σa is correlated with regions of rapidly changing 

nematic order (Fig. 5(c), also see video S4 [66]). Large active force is present along an 

interconnected network of ridges correlated with the stringy regions of diminished nematic 

order and particularly with incipient cracks. Along such cracks, the active force points in the 

direction from which newly nucleated +1/2 defects will emerge and propagate. Isolated 

high-force peaks correlate and move with +1/2 defects, with the force pointing in the 

direction of their motion. Negative order defects are associated with regions of relatively low 

force magnitude, likely due to the local symmetry of the nematic director field.

We observe both nucleation and annihilation of defect pairs (Fig. 6). The birth and 

separation of a defect pair begins from an incipient crack wherein the initially smooth 

director field [e.g., lower arrow in Fig. 5(b)] morphs into singular forms in regions of low 

nematic order [Fig. 6(a)]. Typically, the positively signed defect moves away faster and 

roughly along its symmetry axis. Following annihilation of an oppositely charged defect pair 

[Fig. 6(b)], the nematic order increases as the director field reknits itself into a smooth form 

[e.g., upper arrow in Fig. 5(b)]. We examined how the polarity field q changes near a defect 

and incipient crack [Fig. 6(c)]. As the +1/2 defect propagates, it leaves behind a region of 

increased polarity. The polarity field rapidly rotates across the incipient crack (by 

approximately π/2) and sometimes forms a shocklike structure that precedes the birth of a 

new defect pair. We measured the relative speed of the defect pairs [Fig. 6(d)]. The speeds 

are similar to each other and on the order of the motor protein speed in our model 

(normalized to unity). This is consistent with experimental observations (cf. Fig. 3 of 

Sanchez et al. [7]). The average fluid velocity around the defect pair is much lower than the 

defect speeds. Hence, as is the case for defects in more standard liquid crystalline materials, 

the defects here are not material structures carried along by the background surface flow.

Because our model is based on polar-specific fluxes and active stresses, the polarity field q 
[76], polarity-dependent active stresses Σaa and Σpa, and the local MT dynamics are coupled 

(Fig. 7). The polarity field develops considerable spatial variation with regions of high and 

low polar order (Fig. 7(a), also see video S5 [66]). The two active stresses vary in strength 

depending on the local polarity—the polar-aligned (antialigned) stress is large in regions of 

high (low) polar order [Figs. 7(b) and 7(c)]. The antialigned stress yields the largest forces, 

by about a factor of 3 (close to the ratio αaa/αpa). The polarity field varies rapidly around 

+1/2 defects, leading to gradients in the active stresses and large active force (open circles in 

Fig. 7). For comparison, we did another numerical test where we assume the active stress 

generated during motor tether relaxation is contractile [i.e., αpa > 0, Figs. 7(d)–7(f)]. The 

ratio between the antialigned and polar-aligned stress is still close to the ratio |αaa|/|αpa|. 

However, since the sign of the polar-aligned stress changes, the two stresses exist in 

approximately the same regions.

To illustrate the dramatic variation of local MT fluxes with the local polarity field, we 

simulated the results of a photo-bleaching experiment in which a circular region is exposed 
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to high-intensity laser light to bleach the fluorescing molecules on the corresponding MTs 

[77] [Figs. 7(g)–7(i)]. In a small high-polarity region [marked A in Fig. 7(a)], little or no 

polarity sorting occurs. Therefore the photobleached spot remains approximately circular 

[Figs. 7(g) (top) and 7(h)] and would deform due to the fluid flow over longer times. In a 

low-polarity region of high nematic order [marked B in Fig. 7(b)], strong polarity sorting of 

antialigned MTs causes a photobleached spot to separate into two lobes [Figs. 7(g) (lower) 

and 7(i)]. Each lobe mixes with unbleached surrounding MTs due to their active relative 

flux, showing decreased bleaching. Through the lens of our theory, this type of experiment 

probes the local polarity field, and hence the origins of active stress.

D. Coherent structures and hydrodynamic instabilities

In our simulations, defect pairs are generated along elongated cracks that develop in regions 

of high polar order. To understand this instability, we consider nematically aligned MTs 

using reduced equations where particle diffusion is neglected (i.e., Dr = Dt = 0) in (47). We 

then adopt bipolar solutions of the form Ψ(x,p,t) = A(x,t)δ[p – q1(x,t)] + B(x,t)δ[p – 

q2(x,t)], where the concentrations A and B and orientations q1,2 are governed by:

(54)

We consider the solutions for two groups of MTs undergoing polarity sorting along 

, , , , , when q1,2 · x̂ = 0 which 

ensures that the length of q1,2 remains 1 to order ε2 for |ε| << 1. At order ε, we obtain a set 

of linearized reduced equations:

(55)

and the linearized active stress 

 in 

velocity-stress kernel in Eq. (53). Next, we consider plane-wave solutions 

 and  and assume 
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that k̂ lies in the plane defined by . This dispersion relation can be solved 

analytically with two branches of solutions:

(56)

where

(57)

As k → 0, the growth rate approaches two solutions: σ1 = f(θ) and σ2 = −2ζ0, which clearly 

illustrates a competition between a destabilizing effect due to the active stress and a 

stabilizing effect due to MT alignment through steric interactions. At large k, the growth rate 

has an asymptotic limit Re(σ) → f(θ)/2 – ζ0. In addition, we find that the fluid constraining 

stress tends to stabilize the system by effectively decreasing the magnitude of the active 

stress in f(θ).

Next, we perform linear stability analysis for full nonlinear equations. At the nematically 

ordered base state, we seek a spatially uniform solution in 2D by balancing the angular 

diffusion and the alignment torque as a result of steric interactions in the rotational flux [45], 

i.e.,

(58)

where ξ = 2ζ0/Dr. This equation admits a symmetric solution as shown in Fig. 8(a):

(59)

where δ satisfies

(60)

We then perform a shift in coordinates and rewrite the equation as

(61)
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We numerically calculate δ as a function of ξ. For small ξ there is only one solution, δ = 0 

associated with . This bifurcates into two solutions when g′(0) = 0. Therefore, we 

have

(62)

which gives that there is a second solution only for ξ > 8 [see Fig. 8(b)], suggesting that in 

two dimensions, the Maier-Saupe potential yields an isotropic to nematic phase transition, 

with increasing ζ0, when ζ0 = 4Dr. For all the simulations shown in the paper, we fix ζ0 = 

1.0 and Dr = 0.1, which corresponds to ξ = 20 and δ = 4.38.

We perturb the nematically ordered base-state solution such that Ψ = Ψ0(p) + εΨ′
(x,p,t),U(x) = εu′(x), leading to a linearized Smoluchowski equation for Ψ′:

(63)

By using the plane-wave solutions  and 

, this can be rewritten as:

(64)

The perturbed velocity field satisfies

(65)

with the linearized extra stress

(66)

In the above equations, , , , , 

 and . By changing the direction of the wave vector k̂, we 
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discretize Ψ′ and use pseudospectral collection in the ϕ direction with 256 modes and 

numerically solve the eigenvalue problem for Eqs. (64)–(66) to obtain the growth rate [40].

We find that the plane-wave vector of maximal growth is aligned with the nematic director 

(θ = 0 in Fig. 9(a) inset; also see Refs. [40,41,45]) with a wave number of maximal growth, 

kcr, along this direction [Fig. 9(a)]. We find kcr grows approximately linearly with α = αaa + 

αpa. In the 2D bulk model, the maximal growth occurs at k = 0, and so does not produce a 

characteristic length scale. However, in this immersed layer system, long-wave growth is cut 

off [see discussion following Eq. (53)] and yields a finite length scale of maximal growth. 

Similar effects have been reported by Leoni and Liverpool [78] in their study of swimmers 

confined to immersed thin films, while Thampi et al. [36] showed that adding substrate 

friction changes length-scale selection in 2D active nematic models.

The result of this instability is captured in nonlinear simulations by perturbing an MT 

suspension that is aligned along x̂, causing a series of cracks to form along ŷ [Fig. 9(b)]. 

These cracks are associated with up and down moving fluid jets and bending of nematic 

field lines. The spatial variations of the velocity field are in excellent agreement with the 

velocity eigenmode associated with kcr for the linearized system [Fig. 9(b) (inset)]: The 

distance between these cracks matches the half-wavelength, i.e., λcr = π / kcr ≈ 10, which is 

in fact representative of the characteristic length between cracks seen in the full dynamics of 

motile defects [Fig. 5(b)]. At late times, these cracks lose stability when interacting with 

each other and are eventually terminated to form defect pairs reminiscent of pattern 

formation observed in other studies of active nematics [79,80] [Fig. 5(c)].

1. Contributions of polar-specific active stresses—Motivated by the linear stability 

analysis, we are able to tune the system length scale by changing the magnitude of the two 

active stresses. Generally, increasing either αaa or αpa increases the number of defect pairs, 

which shortens the characteristic length scale in the dynamics [Figs. 9(d)–9(f)]. However, 

these two stresses arise from different polar arrangements of MTs. To understand the 

contributions of the two active stresses, we fixed the total stress α = αaa + αpa while varying 

the individual αaa and αpa [Figs. 10(a)–10(c)]. The case with only polar-aligned active stress 

(αaa = 0) produces more defects than does the case with only antialigned active stress (αpa = 

0). Curiously, this seems due to the defects themselves, as the passage of a +1/2-order defect 

leaves behind it regions of higher polar order, and thus large bulk regions for polar-aligned 

interactions. On the other hand, it appears that either active stress (aa or pa) taken 

individually will produce qualitatively similar flows and defect dynamics. Hence, the 

qualitative nature of the large-scale dynamics does not by itself isolate the precise origins of 

a destabilizing stress.

The linear stability analysis indicates that the instability is coupled to the long-range 

hydrodynamic interactions. Consistent with this, if we begin in a state with streaming 

defects and then turn off the fluid flow by setting U = 0, defect creation stops while defect 

annihilation continues, and the system relaxes to an aligned nematic [Figs. 10(d)–10(f)].

2. Formation of polar lanes—One apparent difference between the BD-kMC model and 

continuum kinetic theory is the formation of polar lanes observed in the BD-kMC model. To 
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examine this discrepancy, we turned off hydrodynamics in our continuum theory by forcing 

U = 0. Then we find emergence of polar lanes (Fig. 11) for simulations initialized in the 

nematically aligned state [Eq. (59)] along the x direction. The polarity field still aligns in x̂ 
but forms oscillating switching bands in ŷ, with relatively small corresponding oscillations 

in the nematic director. Therefore, removing hydrodynamic interactions leads to dynamics 

that strikingly differ from the crack formation due to hydrodynamic instability discussed 

above. We performed numerical linear stability analysis [as in Eq. (64)] for the laning 

instability. This leads to a characteristic length scale π / kcr that agrees well with the lane 

size in nonlinear simulations [Fig. 11(b)].

These results suggest that the observation of polar lanes in the BD-kMC model is related to 

the lack of long-range hydrodynamic interactions in this model. We found that the laning 

instability has a slow time scale compared to the hydrodynamic instabilities [Fig. 9(a)]; 

therefore, in the continuum kinetic theory with long-range hydrodynamic interactions we 

observed the onset of hydrodynamic instabilities rather than the laning instability. This 

laning instability is inherently polar, because it is driven by the separation of the polarity 

field. Therefore, it arises from different physics than similar patterns observed in apolar 

models [79].

V. CONCLUSION

We have developed a multiscale polar theory to describe a suspension of MTs driven by the 

activity of plus-end-directed motor protein complexes (Fig. 1). First, we performed detailed 

BD-kMC simulations that revealed polarity sorting and polar-specific active stresses. This 

model differs from previous simulation models of motor-filament systems [51–53] in the 

treatment of motor binding and unbinding: Previous work used simple binding rules that do 

not obey the principle of detailed balance. Our more accurate treatment of crosslink 

statistical mechanics is important to determine how alterations from equilibrium motor 

distributions occur due to nonequilibrium activity and the resulting active stresses generated.

For MT densities that form an equilibrium 2D nematic in the absence of motors, adding 

motor activity leads to MT flows driven by polarity sorting and the formation of polar lanes 

(Figs. 2 and 3). The mean-squared displacement of MT position becomes superdiffusive and 

nearly ballistic at long times along the nematic director. For polar-aligned pairs, the 

distribution of motor tether extension shifts toward smaller extensions than in the 

equilibrium case due to nonequilibrium tether relaxation; for antialigned pairs, the 

distribution shifts toward positive extension due to oppositely directed motor motion that 

drives polarity sorting. MT displacement distributions and instantaneous speeds along the 

nematic director are strongly dependent on the local polar environment, consistent with the 

continuum model: The instantaneous velocity depends approximately linearly on the local 

polar environment, as expected when filament movements are determined mainly by polarity 

sorting.

Over a wide range of parameters in the BD-kMC model, anisotropic extensile stress is 

generated. The stress produced per MT is largest for filaments in antipolar environments, 

suggesting that polarity sorting is the dominant source of pairwise extensile stress. As 
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previously noted, if an MT pair begins sliding when the two minus ends touch and slides 

under a force proportional to pair overlap until the two plus ends meet, then the contractile 

motion would perfectly balance the extensile motion and the total extensile stress would be 

zero [20,26,59,67]. Symmetry appears to be broken in our BD-kMC simulations first, 

because MTs are unlikely to begin interacting exactly when their minus ends are touching, 

and, second, because more motors are bound on average during extensional motion (Fig. 3). 

Extensile stress is also generated for polar-aligned pairs of MTs due to nonequilibrium 

motor tether relaxation: The tether of a longitudinally stretched motor on parallel filaments 

pulls back on the leading motor, slowing it, and pulls forward on the trailing motor. Because 

the motor relaxes to become more perpendicular to the filament pair, the motor-induced 

contractile stress along the director is decreased, leading to a net anisotropic extensile stress 

in the alignment direction. This is to our knowledge a novel mechanism of extensile stress 

production [39]. While the per-pair extensile stress due to polar-aligned MT pairs is 

typically smaller than for antialigned pairs, polarity sorting and lane formation produce 

larger numbers of polar-aligned MT pairs than of antialigned. In our BD-kMC simulations, 

which lack the effect of hydrodynamics, the overall contributions of polar-aligned and 

antialigned pairs to the extensile stress are comparable.

An interesting aspect of our BD-kMC study is that active stresses are extensile, which differs 

considerably from the contractility observed in actin-myosin gels [12]. Actin filament 

buckling appears to be a key microscopic mechanism driving contractility in actin-myosin 

systems [59,67,81–83]. The greater rigidity of MTs in our model, the nematic ordering, and 

the fluidity of MT motion may all contribute to extensile stress generation in our system.

We incorporated the polar-specific active stresses into a kinetic theory of Doi-Onsager type 

(Fig. 4) and studied the effect of hydrodynamic interactions. In the continuum model, we 

can derive the origin and dependencies of extensile stresses driven by polarity sorting. 

However, our understanding is less clear of the stress from polar-aligned interactions, and a 

reduced continuum model of them would be useful. We find a streaming-nematic state 

similar to that observed in recent experiments by Sanchez et al.[7]. Defect pairs are born 

along incipient cracks of low nematic order, and these cracks correlate with fluid jets (Fig. 

5). The movement of +1/2 defects can be tracked by associated vortex pairs and strongly 

correlates with the active force (Figs. 6 and 7). We also identify a hydrodynamic instability 

of nearly aligned MTs that causes formation of incipient cracks (see also Giomi et al. [79]) 

and hence serves as a source of complex dynamics (Figs. 8 and 9).

Our results are qualitatively similar to previous work studying liquid crystal hydrodynamic 

driven by an apolar active stress [31–36]. These works have improved our understanding of 

the speed of defect motion, velocity correlations, and defect dynamics in active nematics but 

cannot address the microscopic origins of active stresses. Our work seeks to connect these 

phenomena to MT–motor-protein interactions that are intrinsically polar. Therefore, we link 

microscopic polar interactions to macroscopic phenomena. In future work it would be 

interesting to further coarse grain our kinetic model, say, through a moment closure 

approximation, and to generalize current apolar active liquid crystal models to include 

polarity sorting and polarity-dependent stresses.
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Interestingly, in modeling the experiments of Sanchez et al. [7], we find that by accounting 

for the outer fluid drag on the immersed layer dynamics, we are able to determine a clear 

characteristic length scale. This does not occur in active nematic models based on bulk 

dynamics [31,33,45], although length selection has been reported for swimmers confined to 

immersed thin films [78], and substrate friction changes length-scale selection in 2D active 

nematic models [36].

We find that either polar-specific active stress—associated with polarity sorting or motor 

tether relaxation—taken individually produces qualitatively similar flow and defect 

dynamics. Therefore such dynamics alone do not isolate the origins of a destabilizing stress. 

Generally, increasing either αaa (from antialigned interactions) or αpa (from polar-aligned 

interactions) increases the number of defect pairs, which shortens the characteristic length 

scale in the dynamics (Fig. 9). However, these two stresses arise from different polar 

arrangements of MTs. Fixing α = αaa + αpa, the case with the case αaa = 0 (only polar-

aligned active stress) produces more defects than does the case with αpa = 0 (only 

antialigned active stress). Curiously, this seems due to the defects themselves, as the passage 

of a +1/2 defect leaves behind it regions of higher polar order, and thence large bulk regions 

for polar-aligned interactions (Fig. 10). Perhaps the systematic experimental study of the 

dynamics of photobleached regions would reveal which of these two stresses, antialigned or 

polar-aligned, is actually dominant or whether the unstable dynamics arises from some other 

source.

One apparent difference of the kinetic theory with the BD-kMC model is the polar laning 

evinced by the latter. To explore this we turned off hydrodynamics in the kinetic model, 

since it is absent in the BD-kMC model and also found polar laning there (Fig. 11). Further, 

as revealed by linear stability analysis of the kinetic model, there is an instability to polar 

laning that occurs on a much longer time scale (consistent with the time for lanes to emerge 

in the BD-kMC model) than the hydrodynamic instabilities studied here. Additionally, 

without long-range hydrodynamic interactions, the kinetic theory does not show the 

persistent production of defects. It would be illuminating to compare the kinetic theory with 

BD-kMC simulations that incorporate hydrodynamic interactions. This might be done using 

fast-summation methods applied earlier to the study of motile suspensions [84].
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FIG. 1. 
(Color online) (a) Schematic of a cluster of polar-aligned and antialigned MTs, with plus 

ends marked by red rings. Motors walk on neighboring MTs, and (b) exert springlike forces 

with a piecewise linear force-velocity relation. (c) An antialigned MT pair. (d) A polar-

aligned MT pair. Gray arrows characterize the magnitude of the extensile stress.
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FIG. 2. 
(Color online) Snapshots of the BD-kMC particle simulations. Insets are zoomed views with 

motors explicitly shown in white. (a) System with no motors, illustrating the 2D nematic 

state. (b) An equilibrium system with static crosslinkers exhibits MT bundling due to short-

range crosslink-induced attraction. (c) An active system with motors exhibits active flows 

and formation of polar lanes.
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FIG. 3. 
(Color online) Measurements of BD-kMC simulations. (a) Mean-squared deviation of MTs 

as a function of time. (b) Mean velocity of filaments along nematic director as a function of 

time t for different initial polar environments mi. (c) Histogram of motor extension rm, 

broken into contributions from polar-aligned and antialigned pairs in the active case. (d) 

Histogram of motor occupancy as a function of the particle filament longitudinal 

displacement sij, broken into contributions from polar-aligned and antialigned pairs in the 

active case. (e) Variation of average instantaneous velocity of filaments along the nematic 

director in time for different initial polar environments mi. (f) Histogram of filament 

velocities at time separation t = 4.98 for various initial polar environments mi. (g) Variation 

of extensile pair stresslet S with motor run length , showing results from the entire bulk 

simulation and contributions of polar-aligned and polar-antialigned pairs. (h) Variation of 

extensile pair stresslet with local polar environment mi. (i) Variation of extensile pair 

stresslet with motor stall force from simulations of isolated, perfectly parallel filament pairs.
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FIG. 4. 
(Color online) Schematic for a cluster of MTs undergoing polarity sorting. The plus ends are 

marked by red rings. Right: an antialigned pair of the jth and the kth MTs.
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FIG. 5. 
(Color online) Snapshots of streaming MT nematics on a liquid-liquid interface. The active 

stress magnitudes are chosen as αaa = −2.0 and αpa = −0.6. (a) The background fluid 

velocity vector field superposed upon the color map of the associated vorticity. (b) The 

nematic director field n superposed on the color map of the scalar order parameter (twice the 

positive eigenvalue of the tensor Q). Disclination defects of order ±1/2 appear in localized 

regions of low order. Two defects are marked by an open circle (+1/2) and a square (−1/2). 

The arrow at right marks a pair of annihilating defects, while the arrow at left identifies an 

“incipient crack” from which a defect pair is about to emerge. Here λcr is a calculated 

characteristic length between the cracks. (c) The vector field of the active force, 

superimposed on its magnitude.
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FIG. 6. 
(Color online) Time sequential snapshots of the nematic director field n for nucleation (a) 

and annihilation (b) of defect pairs, where αaa = −2.0 and αpa = −0.6 are fixed. The 

(dimensionless) time spacing between frames is 5. (c) Polarity field associated with a motile 

+1/2 defect and an incipient crack on the bottom. (d) Relative speed of the two oppositely 

charged defects, as well as the mean flow speed near this defect pair, as a function of 

dimensionless time t′. In (a), (b), and (c), the color shows the scalar order parameter, plotted 

with the same scale as Fig. 5(b).
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FIG. 7. 
(Color online) Dynamics of the polarity field, the polarity-dependent active stresses, and the 

predicted dynamics of a photobleaching experiment. [(a)–(c)] Results from the simulation 

shown in Fig. 5. (a) The polarity vector field q superimposed upon its magnitude |q| (the 

local polar order). Circular areas labeled A and B mark regions of high and low polarity, 

respectively. [(b) and (c)] Polarity-dependent|active stress magnitudes, showing principal 

eigenvalues of the active stresses due to polarity sorting [Σaa (b)] and motor relaxation (Σpa, 

c). In (a)–(c), the stress magnitudes are chosen as αaa = −2.0 and αpa = −0.6. For 

comparison, (d)–(f) shows the polarity field and the polarity-dependent active stress fields 
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when choosing αaa = −2.0 and αpa = 0.2. In (a)–(f), positions of +1/2-order defects are 

marked by open circles. (g) Schematic of predicted dynamics for a bleached spot of high 

nematic order in a region of high polar order (area A) and in a region of low polar order 

(area B). Arrows represent MTs with arrowheads denoting plus ends. In panels (h) and (i) 

these predictions are borne out by simulations of photobleached spots in areas A and B, 

respectively.
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FIG. 8. 
(Color online) (a) Steady-state solution Ψ0 as a function of the orientation angle ϕ when 

choosing δ = 4.38 and ξ = 20. (b) δ as a function of ξ. The bifurcation occurs at ξ = 8.
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FIG. 9. 
(Color online) Linear stability analysis (a) and nonlinear simulation [(b) and (c)] for strongly 

antialigned MTs. (a) The real part of the growth rate as a function of wave number k for 

several α (α = αaa + αpa). Here kcr corresponds to the maximum growth rate. Inset: Real 

part of the growth rate as a function of wave-angle θ when fixing k = kcr. The black line 

represents the growth rate of the laning instability (without hydrodynamics). (b) Crack 

formation. Inset: The fluid velocity vector field (blue) and the eigenmode (red line) 

associated with kcr for the linear system. (c) Genesis of defects at late times. In panels (d), 

(e), and (f), the active-stress magnitudes are chosen as αaa = −0.4, 2.0, and −4.0, 

respectively, while αpa = −0.6 is fixed. The snapshots accordingly show the distribution of 

disclination defects streaming in the domain with changing length scale. In panels (b)–(f), 

the nematic director field n is plotted with the contour map of the scalar order parameter. 

The color scale is the same as Fig. 5(b).
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FIG. 10. 
(Color online) Snapshots of motile defects when choosing different stress magnitudes. For 

plots in (a)–(c), α1 + α2 −2.0 is fixed: (a) α1 = −2.0 and α2 = 0; (b) α1 = −1.0 and α2 = 

−1.0; (c) α1 = 0 and α2 = −2.0. Panels (d)–(f) show time sequential snapshots (t = 

0,100,300) of a case initially starting from the state with streaming defects but the fluid 

velocity field in turned off (U = 0). The system slowly relaxes to a globally nematic-aligned 

state. In (a)–(f), the color scale is the same as Fig. 5(b).
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FIG. 11. 
(Color online) Snapshots of polar lanes: (a) The polarity vector field q superimposed upon 

its magnitude, and (b) the nematic director field n superposed on the color map of the scalar 

order parameter.
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Gao et al. Page 45

TABLE I

Parameter values of the BD-kMC simulation.

Quantity Parameter Value Notes

kBT Thermal energy 4.11 ×10−21 J Room temperature

l MT length 250 nm Chosen

b MT diameter 25 nm Ref. [61]

ϵ Energy scale of the WCA potential kBT Refs. [55–57]

η Fluid viscosity 1.0 Pa s Cytoplasmic viscosity, Ref. [62]

ρ Linear density of motor binding sites along 
MT

— Appears only in dimensionless concentration

μ m Motor chemical potential — Appears only in dimensionless concentration

u 0 Motor binding free energy — Appears only in dimensionless concentration

vw Motor speed (zero force) Reference 4.5 μm/s, range 
0.14–18 μm/s

Of order 1 μm/s, Ref. [50]

k 0 Unbinding rate of motors 28.1 s−1 Processivity of 160 nm, Ref. [63]

fs Stall force 1 pN Ref. [50]

K Motor spring constant 0.013 pN/nm Decreased from Ref. [64] to give appropriate range 
of motor-mediated interaction for zero-equilibrium-
length springs
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Gao et al. Page 46

TABLE II

Dimensionless groups of the BD-kMC simulation.

Quantity Parameter Value Notes

ϕ MT packing fraction 0.54 Chosen to give nematic state at equilibrium in the 
absence of motors

r = l/b MT aspect ratio 10

c = ρ 2 b 2 e β(μm+u0) Motor concentration 1 Chosen to give average of 2 motors per nearby MT pair

Rm = kBT Kb2 Range of motor interaction 1 2 Chosen to be of order 1 for a short-range interaction

ℓ = vw k0l Motor run length Reference 0.64, range 
0.2–12.8

Motor-induced active stresses are largest when ℓ is of 
order 1.

f = fsb/(kBT) Motor stall force 6

Pe = vwηb/(kBT) Peclet number Reference 0.68, range 
0.02–2.7
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