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Abstract

Migraine is the third most common disease worldwide, the most common neurological disorder, 

and one of the most common pain conditions. Despite its prevalence, the basic physiology and 

underlying mechanisms contributing to the development of migraine is still poorly understood and 

development of new therapeutic targets is long overdue. Until recently, the major contributing 

pathophysiological event thought to initiate migraine was cerebral and meningeal arterial 

vasodilation. However, the role of vasodilation in migraine is unclear and recent findings challenge 

its necessity. While vasodilation itself may not contribute to migraine, it remains possible that 

vessels play a role in migraine pathophysiology in the absence of vasodilation. Blood vessels 

consist of a variety of cell types that both release and respond to numerous mediators including 

growth factors, cytokines, adenosine triphosphate (ATP), and nitric oxide (NO). Many of these 

mediators have actions on neurons that can contribute to migraine. Conversely, neurons release 

factors such as norepinephrine and calcitonin gene-related peptide (CGRP) that act on cells native 

to blood vessels. Both normal and pathological events occurring within and between vascular cells 

could thus mediate bi-directional communication between vessels and the nervous system, without 

the need for changes in vascular tone. This review will discuss the potential contribution of the 

vasculature, specifically endothelial cells, to current neuronal mechanisms hypothesized to play a 

role in migraine. Hypothalamic activity, cortical spreading depression (CSD), and dural afferent 

input from the cranial meninges will be reviewed with a focus on how these mechanisms can 

influence or be impacted by blood vessels. Together, the data discussed will provide a framework 

by which vessels can be viewed as important potential contributors to migraine pathophysiology, 

even in light of the current uncertainty over the role of vasodilation in this disorder.

1.1 Introduction

Migraine headache is the most common neurological disorder and one of the most common 

pain conditions. It is characterized by recurrent multiphasic symptoms, which include 

episodes of unilateral pulsating head pain. The entire sequence of migraine symptoms can 
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last many hours to days and can vary greatly among patients. There are four distinct phases 

of migraine: the premonitory phase, aura phase, headache phase, and postdrome phase 

(Charles, 2013). Up to 80% of individuals who suffer from migraines experience 

premonitory symptoms hours or even days leading up to the headache attack (Becker, 2013). 

Premonitory symptoms including excessive yawning, food cravings, mood changes, fatigue, 

sore neck, and confusion among others, and are considered a reliable predictor of an 

impending migraine (Blau and MacGregor, 1994; Becker, 2013). Toward the end of the 

premonitory phase before the onset of headache, about 15-30% of migraine suffers report 

visual disturbances known as aura (Goadsby, 2012). Patients with aura can experience 

geometric patterns (e.g. fortification spectra), light oscillations of varying intensities, or 

partial vision loss (e.g. scotoma). The headache phase of migraine, which typically follows 

aura, is characterized by moderate to severe unilateral throbbing head pain that persists for 

longer than 4 hours but can last up to 72 hours. Additional symptoms associated with the 

headache phase include nausea, vomiting, enhanced sensitivity to light, sound and smell, and 

cutaneous allodynia (Piovesan et al., 2003; Goadsby, 2009a; Levy, 2010; Giamberardino, 

2003; Burstein et al., 2004). After the headache subsides, many patients report postdrome 

symptoms such as cognitive impairments, fatigue, and changes in mood that can persist for 

18-24 hours post-headache (Goadsby, 2009a).

Two distinct clinical states of migraine have been identified: episodic and chronic migraine. 

Episodic migraines are characterized as 14 or fewer headache days per month, while chronic 

migraine is characterized by 15 or more headache days per month for more than 3 months 

where at least 8 of the headaches meet the criteria for migraine (Headache Classification 

Committee of the International Headache Society, 2013). Clinical and epidemiological 

observations demonstrate that episodic migraine can progress to chronic migraine at a rate of 

2.5% annually (Bigal et al., 2008). The migraine phases combined can last several days, and 

given their severity, migraines have a significant impact on overall quality of life by 

negatively affecting physical, social, and occupational function. According to the World 

Health Organization's Global Burden of Disease Study analysis of data collected from 1990 

to 2010, migraine headache is the third most prevalent disease in the world (Vos et al., 

2012). Additionally, a recent review of 4 national surveillance studies on migraine reinforces 

what is commonly known in the general population and also reported consistently 

throughout the literature, that migraine is 2-3 times more prevalent in females than males 

(Smitherman et al., 2013). Despite the prevalence, the basic physiology and underlying 

factors contributing to the development of migraine headache is still poorly understood.

Unlike other pain states, migraine sufferers report multiple distinct triggers. These triggers 

are innocuous in healthy patients which suggests that the sensitivity to different triggers in 

migraine is due to maladaptive changes within the nervous system. The higher incidence of 

migraine headache in females compared to males strongly suggests a role for female 

hormones in the onset of migraine. Before puberty, the annual incidence of migraine 

between males and females is similar (approximately 4%) (Bille, 1997), but at puberty, rates 

in females increase to 18% while only increasing to 6% in males (Lipton et al., 2001). 

Incidence remains higher in females until post-menopause. Further, approximately 50% of 

female migraineurs have attacks related to specific times of their menstrual cycle (Martin, 

2004) with up to 20% of female migraineurs experiencing what are termed “pure menstrual” 
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migraines, which by definition occur between days -2 and +3 from the onset of menstruation 

(Brandes, 2006). This implicates changes in hormone levels as an important migraine trigger 

in females. Besides changes in sex hormones, the most commonly reported migraine trigger 

is stress (Spierings et al., 1997; Martin and MacLeod, 2009; Houle and Turner, 2013). As 

many as 80% of patients indicate that stress is their primary trigger for migraine (Kelman, 

2007). The physiological stress response involves the activation of the hypothalamic-

pituitary-adrenocortical axis (HPA) and the autonomic nervous system. Possible 

mechanisms whereby activation of these systems evoke headache include stress hormone-

mediated activation/sensitization of afferent nociceptors, changes in descending inhibitory 

control and alterations in immune system responses, among others (Burstein and 

Jakubowski, 2005; Imbe et al., 2006; Meng and Cao, 2007; Maier, 2003; Sauro and Becker, 

2009). Recent reports also show that the peak susceptibility to migraine is in the 18-24 hours 

after a stressful event and therefore stress itself may not be the trigger, rather the 

consequences of the stressful event such as sleep disturbances, changes in diet, or other 

physiological changes that occur after the resolution of stress (Kemper et al., 2001; Lipton et 

al., 2014; Goadsby, 2014). Other common migraine triggers include alcohol, environmental 

irritants, exercise, changes in the weather, improper duration of sleep and intense sensory 

stimuli (Kelman, 2007). Patients who identify their individual triggers are often successful at 

reducing the frequency of migraine attacks by consciously decreasing their exposure to the 

trigger (Martin et al., 2014). Despite such interventions, migraine remains highly prevalent.

Since the discovery of elevated levels of the 5-HT metabolite 5-HIAA (5-

hydroxyindoleacetic acid) in the urine of patients during migraine attacks (Sicuteri, 1972), 

the role 5-HT plays in migraine has been hotly debated. Although it is unclear whether 

levels increase, decrease, or remain unchanged during migraine attacks, the general 

consensus in the migraine field is that 5-HT plays an important role in this disorder (Dussor, 

2014). In fact, the most widely utilized pharmacological agents for the acute treatment of 

migraine are 5-HT based. Triptans are a family of serotonin (5-HT) -1B, -1D, and -1F agonists 

which include sumatriptan, zolmitriptan, rizatriptan, eletriptan, and naritriptan. They are 

taken at the onset of migraine symptoms in order to terminate attacks or at the very least to 

decrease headache intensity/duration. Triptans alone account for up to 80% of medications 

prescribed for migraine (Diener et al., 2011). Unfortunately, less than 50% of patients taking 

oral triptans are pain-free at 2 hours, and 30% have a reoccurrence of headache within 24 

hours (Ferrari et al., 2001; Goadsby and Sprenger, 2010). Although they are the only drugs 

specifically developed to treat migraine headache, the exact mechanism by which triptans 

reduce migraine pain is unknown. They possess vasoconstrictive properties and therefore are 

generally not prescribed in patients with cardiovascular disease or abnormal blood pressure 

(Dodick et al., 2004). Moreover, repeated dosing with triptans can lead to a phenomenon 

known as medication-overuse headache (MOH) (Kristoffersen and Lundqvist, 2014). MOH 

is characterized as a headache occurring on more than 15 days per month with regular 

overuse (more than 3 months) of one or more drugs that can be taken for acute and/or 

symptomatic treatment of headache (Headache Classification Committee of the International 

Headache Society, 2013). Therefore, triptans are not recommended for daily use and are not 

prescribed as a migraine prophylactic. As a preventative measure to decrease the frequency 

of migraine headaches, patients will often be prescribed antiepileptics such as topiramate, 
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beta-blockers such as propranolol, or anti-depressants such as amitriptyline off-label. 

However, these drugs can cause severe adverse effects including nausea, vomiting, weight 

gain, decreased cognition, and withdrawal symptoms upon discontinuation of the medication 

(Edvinsson and Linde, 2010; Stovner et al., 2009). Furthermore, migraine prophylactics only 

decrease the frequency of headache by about 50% in 40-50% of patients (Tfelt-Hansen and 

Olesen, 2012).

The development of new migraine compounds is long overdue. Recently, several studies 

have shown that selective 5-HT-1F agonists (e.g. lasmitidan (Nelson DL et al., 2010) have 

efficacy in several clinical trials as an abortive migraine treatment (for review see (Tfelt-

Hansen and Olesen, 2012; Hoffmann and Goadsby, 2014). In addition, targeting calcitonin 

gene-related peptide (CGRP) directly has been shown to be a promising therapy. CGRP was 

found to be significantly elevated in the plasma of patients during acute migraines (Goadsby 

et al., 1990) and administration of CGRP to migraineurs can trigger attacks (Lassen et al., 

2002). This led to the hypothesis that CGRP-based therapeutics may have efficacy for 

migraine. In a phase 3 clinical study, the CGRP-receptor antagonist telcagepant was more 

effective than placebo for the reduction in migraine symptoms; unfortunately elevated liver 

enzymes were detected and further development of this compound was halted (Ho et al., 

2008). More recently, phase 2 clinical trials have shown that monoclonal antibodies to 

CGRP and the CGRP receptor significantly reduce the number of migraine headache days 

(Dodick et al., 2014a, Dodick et al., 2014b; Bigal et al., 2015a, Bigal et al., 2015b). 

Importantly, the CGRP antibodies by design are extremely specific, have long half-lives and 

are unlikely to cause liver toxicity given that they are not subject to hepatic metabolism 

(Mitsikostas and Rapoport, 2015). Currently, these antibodies are in phase 3 clinical trials 

for management and prevention of episodic and chronic migraine headache.

For many decades, the major contributing pathophysiological event thought to initiate 

migraine was cerebral and meningeal arterial vasodilation (Goadsby, 2009a; Shevel, 2011). 

Support for the vascular migraine hypothesis grew, in part, due to the use of the 

vasoconstrictor ergotamine, an ergot alkaloid that was found to reduce temporal artery 

pulsations and relieve headache pain in migraine patients (Graham, 1938; Drummond and 

Lance, 1983). Furthermore, other vasoconstrictors were soon discovered to abort migraine 

attacks including noradrenaline and 5-HT (Ostfeld and Wolff, 1955; Kimball et al., 1960; 

Anthony et al., 1967). Since ergotamine was a non-selective vasoconstrictor with affinity for 

5-HT, noradrenaline and dopamine receptors, more selective 5-HT receptor agonists were 

developed to reduce the side-effect profile of perspective migraine therapies (for review see 

Humphrey, 2007). This resulted in the eventual development of the 5-HT-1B/1D agonist, 

sumatriptan, which was shown to cause vasoconstriction and effectively reduced migraine 

symptoms (Humphrey et al., 1990). Although there is a strong correlation between migraine 

pathology and the associated vasculature, other studies have concluded that vasodilation is 

an epiphenomenon and does not contribute to migraine directly (Olesen, 1990; Goadsby, 

2009b). For example, vasoactive intestinal polypeptide (VIP) has been shown to dilate 

cranial arteries to a similar extent as pituitary adenylate cyclase activating peptide 

(PACAP-38), however VIP does not produce migraine in migraineurs (Rahmann et al., 

2008) while PACAP-38 does (Amin et al., 2012). In addition, vasoactive substances known 

to trigger migraine, such as the NO donor nitroglycerine (NTG; Thomsen et al., 1994) and 
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sildenafil (Kruuse et al., 2003) were reported not to cause cerebral and meningeal blood 

vessel dilation in migraineurs during attacks (Schoonman et al., 2008). Although this may be 

true for NTG, CGRP administration, which also triggers migraine in migraineurs, has been 

shown to cause blood vessel dilation at time points where headaches occur (Asghar et al., 

2010). Discrepancies reported in the literature may be due at least in part to the use of 

different vasodilators (and the differential downstream effects of nitric oxide vs. CGRP) 

and/or different methods to detect changes in the vasculature. However, a recent study 

showed no significant changes in blood vessels during spontaneous migraines in humans 

(Amin et al., 2013) leading the authors to conclude that vasodilation is not the cause of 

migraine. Consequently, attention within the migraine field has largely shifted to the role 

that changes in the nervous system play in migraine pathophysiology. Moreover, it is likely 

that migraine is a consequence of dysfunctional neuronal networks (Edvinsson et al., 2012) 

as certain neurological symptoms of migraine cannot be explained solely by the vascular 

model of headache (e.g. VIP does not trigger migraines, but causes vasodilation).

Although the migraine field seems poised to discard the vascular hypothesis, this is 

primarily based on an unclear role of vasodilation in migraine. Before vessels are completely 

discarded however, it seems appropriate to further discuss whether vessels might contribute 

to migraine in the absence of vasodilation. The cells comprising blood vessels (e.g. 

endothelial and smooth muscle cells) do not merely exist to dilate and constrict blood 

vessels, and they may make an important contribution to migraine without a change in 

vascular diameter. Consequently, migraine symptoms may arise from a combination of 

dilation-independent vascular events (Tietjen and Khubchandani, 2015) and neurogenic 

mechanisms interacting throughout the brain and within the trigeminovascular system in the 

meninges (Levy, 2010). The purpose of the remainder of this review is to discuss the 

potential contribution of the vasculature to current neuronal mechanisms hypothesized to 

play a role in migraine including altered hypothalamic activity, cortical spreading depression 

(CSD), and dural afferent input from the cranial meninges. Focusing on dilation-independent 

mechanisms may help determine whether the vascular hypothesis as a whole should be laid 

to rest, or whether the field should simply move beyond vasodilation as the cause of 

migraine.

1.2 Blood vessel anatomy

Before discussing the potential role of blood vessels in several neuronal mechanisms thought 

to contribute to migraine, it is important to briefly review the anatomy of the blood vessel 

(see figure 1). The inner-most layer of the blood vessel, the tunica intima, is comprised of 

endothelial cells surrounded by a subendothelial layer of connective tissue and internal 

elastic lamina which provides a flexible barrier between the endothelium and the inner 

smooth muscle cell layer. The middle layer, the tunica media, is comprised of smooth 

muscle cells, connective tissue and a thick elastic band called the external elastic lamina, 

which separates the middle and outer layers. The outermost layer, tunica adventitia, consists 

of nerve fibers, fibroblasts, perivascular adipose tissue and collagen. Vascular smooth 

muscle cells within the tunica media have been shown to regulate vascular tone primarily in 

response to sympathetic nervous system innervation (e.g. adrenergic receptor activation), 

NO, as well as the local synthesis, uptake and release of 5-HT (Green, 200; Ni et al., 2008). 
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The contribution of smooth muscle cells and their contribution to vascular tone in migraine 

has largely overshadowed the diverse functions of another major vascular cell type, 

endothelial cells. Endothelial cells directly contact the circulating blood in the lumen and 

also control vessel function. They express a variety proteins including growth factors (e.g. 

vascular endothelial cell growth factors, VEGF) (Breier and Risau, 1996), coagulants/

anticoagulants (Stern et al., 1985), lipoproteins (e.g. low density lipoprotein, LDL) 

(Sawamura et al., 1997), and junction proteins (e.g. platelet endothelial cell adhesion 

molecule, PECAM-1) (Albelda et al., 1991) as well as metabolites (e.g. NO and 5-HT) 

(Palmer et al., 1988; Green, 2006), hormones (e.g. endothelin-1) (Yanagisawa et al., 1988), 

and cytokines (tumor necrosis factor, TNF-α) (Mantovani et al., 1997). Thus, endothelial 

cells are involved in the regulation a variety of functions including cell-cell barrier 

maintenance, vascular tone, vascular remodeling, immune surveillance, blood coagulation, 

and nutrient uptake among others (for review see Cines et al, 1998). Taken together, these 

studies demonstrate that the blood vessel does not simply provide a conduit for the 

movement of blood that can constrict and dilate; rather it coordinates a much more 

complicated web of signaling between multiple cell-types. Dysregulation of any part of this 

vascular signaling process may contribute to migraine pathology. The remainder of this 

review will highlight the potential contribution of vascular endothelial signaling to neuronal 

events thought to contribute to migraine.

2.1 Hypothalamus

The location of origin of migraines within the nervous system is unknown but many have 

speculated that this complex brain disorder may be driven by the hypothalamus. The 

hypothalamus, located at the base of the brain with widespread connections throughout the 

central nervous system, is involved in maintenance of homeostasis by controlling the 

endocrine system and coordinating activity within the autonomic nervous system. It 

regulates many physiological functions including food intake, energy balance, responses to 

stress, and circadian rhythms. Additionally, the hypothalamus is involved in the processing 

of trigeminal nociceptive signaling (Malick et al., 2000; Holland and Goadsby, 2007), a type 

of afferent sensory input critical for the pain phase of migraine (reviewed below). Many 

migraine patients experience premonitory symptoms related to dysfunction of the 

aforementioned systems including sleep disturbances, changes in wakefulness, mood, 

appetite and/or thirst. Additionally, functional imaging studies using positron emission 

tomography (PET) and functional magnetic resonance imaging (fMRI) showed 

hypothalamic activation during spontaneous migraine (Afridi et al., 2005; Denuelle et al., 

2007). Moreover, Goadsby and colleagues found increased activity in the posterolateral 

hypothalamus among other brain areas during the premonitory phase of NTG-triggered 

migraines (Maniyar et al., 2014). These data suggest that the hypothalamus plays a central 

role in the initiation/progression of migraine.

Hypothalamic regulation of hormonal cycles in women may contribute to the cyclic nature 

of migraine. As previously mentioned, migraine headache is three times more prevalent in 

females compared to males after puberty (Lipton et al., 2014). An explanation for the sexual 

dimorphism of migraine may be attributed to, among other events, estrogen regulation of 

hypothalamic networks that control the menstrual cycle (Brandes, 2006). During the 
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follicular phase of the menstrual cycle, the amount of estrogens (e.g. estradiol) secreted by 

the growing follicle dramatically increase and act as a positive stimulus for hypothalamic-

pituitary-mediated surges in polypeptides involved the progression of the menstrual cycle 

(Kelly et al., 2005). Evidence suggests that estradiol-mediated activation of estrogen 

receptors expressed by endothelial cells (Venkov et al., 1996) augments endothelial nitric 

oxide synthase (eNOS) activity (Caulin-Glaser et al., 1997; Simoncini and Genazzani, 2000; 

Martin and Behbehani, 2006) resulting in the rapid increase in NO release in human female 

endothelial cells, an effect that was antagonized by the 17β-estradiol antagonist, ICI 164, 

384 (Caulin-Glaser et al., 1997). Moreover, there is a positive correlation between the 

incidence of migraine and expression of biomarkers of endothelial cell activation in women 

(Tiejen, GE et al., 2009). These data suggest that the increased incidence of migraine in 

women may be due in part to the effects of hypothalamic regulation of female hormones 

such as estradiol on endothelial cells.

Given the multitude of factors known to cause migraine, stress being the most common 

(Kelman, 2007), autonomic related symptoms may reflect normal hypothalamic responses to 

environmental triggers. During stress, the PVN of the hypothalamus releases hormones 

including vasopressin, oxytocin and corticotrophin–releasing hormone, altering the balance 

between parasympathetic and sympathetic tone. Importantly, hypothalamic neurons can 

regulate parasympathetic preganglionic neurons in the superior salivatory nucleus (SSN) and 

sympathetic preganglionic neurons in the spinal intermediolateral nucleus (Moulton et al., 

2014). Although data assessing the role of the autonomic nervous system in migraine is 

conflicting, a majority of studies report sympathetic hypofunction and enhanced cranial 

parasympathetic tone in migraineurs between attacks (Shechter et al., 2002; Peroutka, 2004; 

Avnon et al., 2003). Activation of the SSN stimulates the release of acetylcholine, VIP, 

PACAP, and NO from postganglionic parasympathetic neurons in the sphenopalatine 

ganglion (SPG) (Uddman et al., 1999; Edvinsson et al., 2001) resulting in the local release 

of inflammatory mediators that can activate meningeal nociceptors (Burstein and 

Jakubowski, 2005, Csati et al., 2012a, Csati et al., 2012b). Therefore, the interaction 

between parasympathetic and trigeminal sensory systems following hypothalamic activation 

of the SSN may facilitate the progression of migraine.

PACAP, VIP and NO activate a variety of alternative signaling pathways in vessels 

independent of vasodilation that may contribute to migraine pathophysiology. The 

vasoactive intestinal peptide/pituitary adenylate cyclase activating polypeptide-receptor-1 

(VPAC1R) and VPAC2 receptors are expressed in various cell types throughout the body 

(Wei and Mojsov, 1996) including endothelial cells (Steinhoff et al., 1999; Borsani et al., 

2013) and show equal affinity for VIP and PACAP (Zhou et al., 2002). In a model of 

ischemia, VIP increased the expression and secretion of VEGF in endothelial cells (Yang et 

al., 2009, Yang et al., 2013) leading to increased angiogenesis (Potente et al., 2011). 

Considering the mediators of angiogenesis are thought to contribute to the development of 

chronic inflammation (Ribatti et al., 2007), angiogenic signaling may also contribute to 

inflammatory pain. During angiogenesis, VEGF recruits immune cells such as macrophages 

and neutrophils to the site of tissue injury where they produce various inflammatory 

cytokines including interleukins and chemokines thought to be involved in the pathology of 

pain (Miller et al., 2009; Kiguchi et al., 2012; Selvaraj et al., 2015). The release of the highly 
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permeable gaseous molecule NO may also contribute to nociceptive neurotransmission. 

Under inflammatory conditions, vessel and nociceptor eNOS and VEGF 

immunofluorescence increases (Borsani E et al., 2013). Moreover, an eNOS inhibitor, L-

N(5)-(1-iminoethyl)ornithine (L-NIO), was found to attenuate inflammatory hyperalgesia 

(Borsani et al., 2013). In addition, PACAP not only leads to de novo formation of new blood 

vessels, but also plasma protein extravasation (neurogenic inflammation) in human skin 

(Seeliger et al., 2010). Taken together these data suggest that hypothalamic regulation of 

parasympathetic tone may activate vascular endothelial cell signaling pathways known to 

contribute to inflammatory pain. Therefore, it is possible that the hypothalamus contributes 

to migraine via endothelial cell-dependent signaling pathways independent of vasodilation. 

How this leads to the specific set of symptoms characteristic of migraine, and not other pain 

states, is unclear.

3.1 Cortical Spreading Depression

Cortical Spreading Depression (CSD) is the widespread depolarization of neuronal and glial 

membranes due to sudden loss of membrane resistance and ionic gradients. Characterized as 

a brief burst of activity in the cortex that leads to the inhibition of all spontaneous and 

evoked synaptic activity within cerebral grey matter (for review see (Eikermann-Haerter and 

Ayata, 2010; Pietrobon and Moskowitz, 2014), CSD is thought to cause massive K+ 

(Grafstein, 1956) and glutamate (Van Harreveld, 1959) efflux which contributes to the 

depolarization of adjacent brain tissue. The signal propagates as a wave at a velocity of 

about 2-5 mm/min across the cortical surface (Leao, 1945; Grafstein, 1956; Ochs, 1962; 

Aitken et al., 1998; Smith et al., 2006) and is associated with numerous physiological 

changes in the cortex including alterations in intra and extracellular ion concentrations, 

neurotransmitter release and changes in blood flow and oxygen levels (Somjen, 2001; 

Pietrobon and Moskowitz, 2014).

CSD may contribute to the pathophysiology of several diseases including migraine (Bolay 

and Moskowitz, 2005; Charles and Baca, 2013). It has been proposed that since the rate of 

aura spread across the surface of the primary visual cortex during migraine corresponds to 

the propagation velocity of CSD (Lashley, 1941; Leao, 1945; Milner, 1959), that the wave of 

neuronal excitation/inhibition may contribute to reported migraine symptoms (i.e. aura). 

Moreover, imaging studies show patterns of changes in blood flow in the cortex of human 

migraine patients corresponds to the mean cortical velocity of perceived aura across the 

visual field (Hansen et al., 2013; Charles and Baca, 2013).

Although CSD is thought to be the underlying basis of aura, whether it contributes to 

headache is less clear. Headache classically follows aura across the phases of migraine but 

headache is thought to be mediated by nociceptive trigeminal afferents innervating the 

meninges (discussed below) and not due to direct cortical events. While Leao first proposed 

that CSD could evoke pain neurotransmission via activation of trigeminal afferents (Leao, 

1944), later studies found that CSD can activate meningeal nociceptors (Moskowitz and 

Macfarlane, 1993; Zhang et al., 2010) as well as second-order neurons in the spinal 

trigeminal nucleus, a brainstem region that processes nociceptive information (Moskowitz et 

al., 1993; Zhang et al., 2011a). Moskowitz and colleagues have shown expression of the 
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neuronal marker c-fos in the trigeminal nucleus caudalis in a rat model of CSD. They also 

found that sumatriptan inhibited c-fos expression in this region, but did not alter the 

induction of CSD (Moskowitz et al., 1993). Taken together, these data suggest that CSD 

does not likely cause headache directly, rather it may contribute to headache via activation/

sensitization of meningeal afferents of the trigeminal nerve by substances released as a result 

of CSD.

During CSD, the demand for energy increases dramatically and in order to restore ionic 

gradients and neuronal function, cerebral blood flow (CBF) also increases (Shinohara et al., 

1979). In agreement with this observation, others have reported that after the depolarization 

wave, CBF and oxygen levels transiently increase (Lukyanova and Bures, 1967; Piilgaard 

and Lauritzen, 2009). This increase in CBF is followed by a persistent decrease in blood 

flow (Lambert and Michalicek, 1994; Ayata et al., 2004) and oxygen levels (Piilgaard and 

Lauritzen, 2009) leading to a period of tissue hypoxia (Lukyanova and Bures, 1967; 

Lacombe et al., 1992; Otori et al., 2003; Takano et al., 2007). Therefore, in order to restore 

metabolic balance, cortical neurons including interneurons and astroglia are thought to 

release of a variety of neurotransmitters including NO, carbon monoxide, adenosine, 

hydrogen ions, potassium ions, and lipoxygenase products known to alter cerebral vascular 

tone (Cauli et al., 2004; Vaucher et al., 2000; Zonta et al., 2003; Filosa et al., 2006; Koehler 

et al., 2006; Busija et al., 2008). Independent of vascular tone, these signaling molecules 

also directly affect endothelial cell signaling pathways (De Caterina et al., 1995; Jozkowicz 

et al., 2003; Erlinge and Burnstock, 2008; Dalvi et al., 2015; Mark et al., 2001). Moreover, 

the close association between cerebral blood vessels and neurons (Hawkins and Davis, 2005) 

facilitates 2-way communication between cortical neurons and endothelial cells comprising 

the blood vessels. Just as endothelial cells respond to substances released by neurons, 

neurons can respond to substances released by endothelial cells. For example, arterial 

endothelial cells synthesize and store peptides such as CGRP (Cai, et al., 1993; Doi et al., 

2001; Luo et al., 2008). Endothelial cell release of CGRP may contribute to increased 

neuronal excitability within the cortex (Tozzi et al., 2012) in a similar manner as has been 

reported for astrocyte-mediated release of glutamate (Seidel et al., 2016). Ayata and 

colleagues have suggested that neuronal hyperexcitability due to neurovascular dysfunction 

enhances susceptibility to ischemic CSD-like depolarizations during mild changes in 

metabolic demand (Eikermann-Haerter et al., 2012; von Bornstadt et al., 2015). Thus, due to 

neurovascular mechanisms that contribute to neuronal hyperexcitability (e.g. endothelial cell 

release of CGRP), sensory stimulation in a specific cortical region that would otherwise go 

undetected in non-migraine patients (e.g. somatosensory events) may trigger a CSD event 

and aura in migraineurs.

4.1 Meningeal afferents

As previously mentioned, the pain phase of migraine likely requires activation of trigeminal 

nociceptors innervating the cranial meninges (Burstein et al., 2015). Trigeminal nociceptors 

are pain-sensing neurons that bifurcate from the cell body located in the trigeminal ganglion 

(TG), sending an axon branch to innervate intracranial and extracranial tissue and another 

axon branch to synapse on second order neurons in the trigeminal nucleus caudalis (TNC) or 

trigeminocervial complex (TCC) (Strassman et al., 1994; Hoskin et al., 1999). Stimulation 
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of dura mater near blood vessels and sinuses has been shown to produce pain in humans that 

closely mirrors the sites of pain commonly reported during migraine (e.g. behind the eye) 

(Penfield, 1940; Ray, 1940). Although, numerous studies have reported that dural afferents 

are sensitive to noxious mechanical (Kaube et al., 1992; Strassman et al., 1996; Levy and 

Strassman, 2002) and chemical (Sarchielli et al., 2001; Perini et al., 2005) stimuli, it is still 

unclear how these neurons are activated during migraine. Meningeal arteries and veins 

including their extensive capillary network supply blood to the dura (Fricke B et al., 2001). 

Considering the close association between trigeminal afferents and cerebral/dural 

vasculature (Mayberg et al., 1981, Mayberg et al., 1984) it is possible that cells comprising 

blood vessels can sensitize and/or directly activate meningeal afferents leading to headache.

During migraine, intracranial and circulating levels of various inflammatory mediators, 

which are known to sensitize primary afferent nociceptors are elevated (Sarchielli et al., 

2001; Perini et al., 2005). Thought to be a consequence of neurogenic inflammation in the 

meninges, immune cells including dural mast calls and macrophages release a host of 

proflammatory mediators including 5-HT, histamine, prostaglandins, and cytokines (Mekori 

and Metcalfe, 2000; Levy, 2009; Reuter et al., 2001), which are known to sensitize 

meningeal nociceptors (Levy et al., 2007; Zhang et al., 2007, Zhang et al., 2011b, Zhang et 

al., 2012, Yan et al., 2012). Neuronal receptors are thought to mediate the sensitizing actions 

of inflammatory cytokines (Yan et al., 2012; Nicol et al., 1997; Czeschik et al., 2008), 

however other non-neuronal cell types may also be involved as ablation of neuronal TNF 

receptors in the ganglia does not inhibit peripheral sensitization (Parada et al., 2003). Levy 

and colleagues have shown that local application of TNF-α to the meninges evokes TNF 

receptor-mediated activation of p38 MAP kinase in dural blood vessels, and that the p38 

antagonist SB203580 inhibits TNF-α-mediated meningeal afferent sensitization (Zhang et 

al., 2011b). Other factors released by endothelial cells may also contribute to meningeal 

afferent sensitization as Levine and colleagues have recently reported that endothelial cell-

mediated release of endothelin-1 (ET-1), a potent vasodilator and mediator elevated in 

human plasma at the onset of migraine attacks (Kallela et al., 1998), sensitizes nociceptors 

to mechanical-stimuli via endothelial cell-mediated release of ATP leading to hyperalgesia 

(Joseph et al., 2011, Joseph et al., 2014, Joseph et al., 2015). Further, sumatriptan and a β-

adrenergic receptor antagonist, ICI118551, inhibited ET-1-induced hyperalgesia (Joseph and 

Levine, 2013). Although, the vasoconstrictive properties of ET-1 mediated primarily by ETA 

receptors are not associated with changes in cerebral blood flow during CSD (Goadsby et 

al., 1996), others have reported that ET-1 mediates neurogenic inflammation in rat dura 

mater via ETB receptors (Brandli et al., 1996) and that gene variants encoding both ET 

receptor subtypes are associated with migraine in humans (Tzourio et al., 2001; Lemos et 

al., 2011; Tikka-Kleemola et al., 2009). While promising, results from a clinical trial 

indicate that the mixed ETA/ETB antagonist, Bosentan, was not efficacious for aborting 

migraine attacks and therefore, it is unclear what role ET release from endothelial cells may 

have in migraine pathophysiology (May et al., 1996). In addition, c-type natriuretic peptide 

(CNP), an endothelium-derived hyperpolarizing factor (EDHF) which is secreted from 

endothelial cells (Lumsden et al., 2010; Moyes et al., 2014) induces thermal hyperalgesia in 

mice (Loo et al., 2012). This CNP-induced thermal hypersensitivity is mediated by PKC 

phosphorylation-dependent potentiation of TRPV1 via the natriuretic peptide receptor 
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(NPR)-C on peripheral sensory neurons (Loo, L et al., 2013). These new data suggest that 

cells comprising blood vessels (e.g. endothelial cells) can contribute to afferent sensitization 

via the release of factors such as ET-1 and CNP. Admittedly, these studies have been 

conducted in tissues outside of the head and are thus not directly relevant to migraine but 

they could provide important information on mechanisms that may similarly occur within 

the brain and meninges. It is also possible that during a migraine attack, changes in 

metabolic demand or other stimuli such as mechanical stimulation (Bodin and Burnstock, 

2001) can cause neurons and other vascular cell types to release ATP. Activation of 

purinergic receptors located on endothelial cells causes endothelial cell-mediated release of 

NO, which diffuses readily to smooth muscle cells and leads to subsequent vasodilation 

(Burnstock, 2015). In addition to NO-mediated vasodilation however, NO released from 

endothelial cells may also mediate meningeal afferent sensitization, as NO donors that are 

known to cause headache in migraineurs (Olesen and Jansen-Olesen, 2000) have recently 

been shown to promote delayed meningeal nociceptor sensitization as well as ERK 

phosphorylation in meningeal arteries (Zhang et al., 2013). This latter study also showed that 

blockade of ERK phosphorylation inhibited NTG-mediated afferent sensitization. Further, 

new data from Levine and colleagues implicate a role for mast cells and endothelial cells in 

NTG-induced hyperalgesia (Ferrari et al., 2016). The activation of purinergic receptors on 

endothelial cells also stimulates proflammatory pathways (Erlinge and Burnstock, 2008) 

including the release of interleukins (Seiffert et al., 2006) known to sensitize meningeal 

afferents (Zhang et al., 201; Yan et al., 2012). Purinergic receptors have been shown to 

mediate increases in endothelial cell surface expression of intercellular adhesion molecule-1 

(ICAM-1) (Seiffert et al., 2006) and vascular cell adhesion molecule-1 (VCAM-1) (Seye et 

al., 2004), which are important for the recruitment of immune cells such as neutrophils 

(Dawicki et al., 1995) and monocytes (Seye et al., 2003) to endothelial cells. The release of 

proflammatory mediators by the recruited immune cells further amplifies meningeal afferent 

sensitization. Taken together, vasodilation may be an epiphenomena that has previously 

overshadowed concurrent endothelial cell-mediated signaling pathways contributing to 

sensitization of meningeal afferents and migraine pain.

Just as endothelial cell-mediated signaling influences primary afferent nociceptors, 

nociceptor-mediated signaling can also influence blood vessels (see figure 2). The release of 

vasoactive neuropeptides such as substance P and CGRP from meningeal afferents 

(Edvinsson et al., 1983; Ebersberger et al., 1999; Harrison and Geppetti, 2001) causes 

vasodilation (Brain and Grant, 2004; Smillie and Brain, 2011) and plasma protein 

extravasation (PPE) in the dura (Markowitz et al., 1987; O'Shaughnessy and Connor, 1994; 

Moussaoui et al., 1993), the latter due to alterations in blood vessel permeability. Enhanced 

blood flow and leakage of plasma constituents protects the brain and meninges by quickly 

diluting and clearing out noxious stimuli. However, the increase in vascular permeability 

may also allow for cytokines and other proflammatory mediators secreted and recruited by 

the endothelial cells to readily move through the vessel and potentiate meningeal nociceptor 

activation (Figure 2). In addition to sensory neurons, sympathetic neurons originating from 

the superior cervical ganglion (SCG) also innervate the meninges (Keller, JT et al., 1989; 

Andres, KH et al., 1987). The release of sympathetic neurotransmitters such as neuropeptide 

Y and norepinephrine from sympathetic fibers can directly act on vessels in the meninges 
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(Edvinsson and Uddman, 1981; Edvinsson et al., 1983; Edvinsson, 1985; Keller, JT and 

Marfurt, CF, 1991). For example, NPY has been shown to contribute to ET-1 release in 

human endothelial cells (Abdel-Samad, et al., 2012) as well as increased adhesion of 

leukocytes to endothelial cells (Sung et al., 1991). Additionally, norepinephrine has been 

shown to induce endothelial cell IL-6 production (Stohl et al., 2012; Gornikiewicz et al., 

2000). Thus, bi-directional communication between meningeal nerve fibers (sensory and 

sympathetic) and endothelial cells comprising the associated vasculature may facilitate the 

headache phase of migraine, further suggesting that endothelial cells play a central role in 

the pathology of migraine.

Meningeal afferents express numerous ion channels including transient receptor potential 

(TRP) channels, acid-sensing ion channels (ASICS), glutamate-gated channels, ATP-gated 

channel, and K+ channels that when activated may contribute to the pain of migraine (for 

revew see Yan and Dussor, 2014). Among the stimuli capable of activating or sensitizing 

dural afferents are capsaicin (via TRPV1), mustard oil (via TRPA1), hypotonic solutions 

(via TRPV4), or an inflammatory soup (Strassman et al., 1996; Bove and Moskowitz, 1997; 

Wei et al., 2011; Edelmayer et al., 2012). Vascular endothelial cells also express a number of 

channels including the recently identified mechano-sensing channel, Piezo2 (Ferrari et al., 

2015), sodium channels such as Nav1.7 (Rice et al., 2015), and various TRP channels 

including TRPA1 (Earley, 2012) and TRPV4 (Yao and Garland, 2005). Therefore, just as 

nociceptors detect numerous noxious stimuli including changes in temperature, pH, and 

pressure, recent reports suggest that endothelial cells express the machinery to detect similar 

noxious stimuli. Of late, Levine and colleagues demonstrated that Piezo2 channels expressed 

on endothelial cells mediate inflammatory hyperalgesia (Ferrari et al., 2015). It is possible 

that Piezo2 channels located on endothelial cells are able to detect mechanical forces such as 

shear stress within the vessel leading to the release of substances capable of activating 

meningeal afferents. Additionally, a situation could exist for example where activators of 

TRPA1 including environmental irritants (e.g. cigarette smoke, chlorine gas) which are well-

known migraine triggers (for review see Dussor et al., 2014) are released into the blood and 

initiate signaling between meningeal nociceptors and endothelial cells. The full extent to 

which different ion channels expressed on endothelial cells contribute to processes 

culminating in nociceptor sensitization is currently unknown. However, bidirectional 

signaling between meningeal nociceptors and endothelial cells could further amplify an 

inflammatory process leading to a positive feedback loop potentiating nociceptive signals to 

the CNS and causing headache.

5.1 Conclusions

Before the migraine field abandons the theory of a vascular contribution to the disorder, it is 

important to consider that the cells comprising the blood vessel may contribute to the 

initiation and progression of migraine attacks independent of vasodilation. The strong 

positive correlation between the effects of migraine triggers (e.g. NO, PACAP-38, and 

CGRP) and migraine therapies (e.g. ergotamine, triptans) on changes in blood vessel 

diameter have contributed greatly to the idea that vasodilation plays a critical role in 

migraine. However, recent reports indicate that during spontaneous migraine there is little to 

no dilation of vessels. And importantly, the reverse is also true; blood vessel dilation does 
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not always produce a migraine. But the unclear role of blood vessel dilation during migraine 

attacks is not evidence of a lack of communication between vessels and surrounding 

neuronal structures, it may simply be evidence of a lack of vasodilation in migraine 

pathophysiology. Alternatively, blood vessel dilation may be an epiphenomenon masking a 

chain of events leading to the development of migraine hours later. Although there may be 

no vasodilation during the migraine attack, vessels may dilate at time points well before the 

attack and this may leave a series of signaling events within the vessel in its wake. Of 

particular interest, CNP a potent vasodilator released by endothelial cells was recently 

reported to cause no change in the diameter of cerebral arteries in guinea pigs and humans 

(Gus, et al., 2015), but produced a pain phenotype via potentiation of TRPV1 on peripheral 

sensory neurons (Loo et al., 2012). Although, CNP did not produce migraine in healthy 

volunteers (Gus, et al., 2015), it has yet to be tested in migraineurs (this is especially 

relevant since NO/CGRP do not produce migraines in healthy volunteers, but do in 

migraineurs). These recent developments point to the possibility that signaling events within/

between vascular cells, not the presence of vasodilation, may be critical to the progression of 

the attack. Ultimately, whether CNP and other known headache agents cause cerebral 

vasodilation may be irrelevant. Blood vessels are more than just a conduit for blood that can 

contract and dilate; they are comprised of a variety of cell types that generate numerous 

molecules and mediators important for intra- and intercellular processes. Endothelial cells 

mediate immune cell recruitment and downstream inflammatory signaling pathways, which 

may be critical to the pathophysiology of migraine. They also express a variety of channels 

and receptors (e.g. TRP channels and purinergic receptors) thought to be involved in the 

detection of noxious stimuli, and along with neurons, endothelial cells may potentiate the 

responses to noxious stimuli. Any of these processes may be critical for the development of 

a migraine attack regardless of whether vasodilation is present.

In order to further determine whether vessels play a role in migraine, several important 

questions should be answered. First, it is important to determine whether vasodilation occurs 

at any time point before the onset of migraine e.g. during the interictal phase leading up to 

an attack or during the premonitory phase. Prior reports assessing changes in vessel diameter 

were performed after the onset of migraine or at time points immediately following 

administration of the trigger (where there is clearly vasodilation from NO or CGRP). As 

mentioned above, there may be no vasodilation at the peak of a migraine attack, but prior 

vasodilation may contribute to a cascade of signaling events that long outlasts the changes in 

vessel diameter. Determining whether or not vasodilation is present even at very early time 

points, or whether the signaling cascade is the only relevant component, is important to 

know before the dilation hypothesis is discounted. Second, migraine triggers that may not 

produce cerebral vasodilation (e.g. sildenafil, Kruuse et al., 2003) should be examined more 

closely to better understand their mechanisms. If indeed these triggers act independently of 

dilation at any time point, this would provide clear evidence that vasodilation is not 

necessary and the more relevant mechanisms downstream of these triggers can be identified. 

Finally, mediators like CNP produce hypersensitivity in preclinical models but may not 

cause cerebral vasodilation in humans. This peptide should be examined more closely for its 

ability to trigger attacks in migraineurs. CNP may represent an important, endothelial-

derived molecule that is capable of triggering attacks independent of vasodilation. 
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Understanding how CNP and potentially other vessel-derived mediators promote attacks 

may provide important insights into dilation-independent vascular contributions to migraine. 

Ultimately, there are many connections between vessels and migraine and many potential 

mechanisms by which they can contribute to the disorder. While it may be reasonable at this 

point to discard vasodilation as a direct cause of migraine, it seems far too premature to 

completely eliminate vessels from the list of factors contributing to the pathophysiology of 

migraine.
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Highlights

• Migraine is the 3rd most common and 8th most disabling disease on 

earth.

• Neuronal mechanisms play a key role in migraine pathophysiology.

• Human studies have lead to increased scrutiny of the vascular theory of 

migraine.

• Vasodilation may not be necessary or sufficient for migraine.

• Vascular endothelial cells may contribute to migraine without 

vasodilation.

Jacobs and Dussor Page 27

Neuroscience. Author manuscript; available in PMC 2017 December 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 1. 
Anatomy of a blood vessel. Bloods vessels are comprised of 3 layers: the tunica intima, 

tunica media, and tunica adventitia. The innermost layer, the tunica intima, is comprised of a 

single layer of endothelial cells. The middle layer, the tunica media is predominately 

comprised of smooth muscle cells. The outermost layer, the tunica adventitia, consists of 

nerve fibers, fibroblasts, perivascular adipose tissue and collagen. Compared to smaller 

vessels (as depicted here), large vessels have increased tunica intima/media/adventitia thick- 

ness due to increased numbers of cells in each layer.
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Fig. 2. 
Bidirectional signaling between meningeal nerve fibers, immune cells and cells comprising 

the associated blood vessels. Meningeal sensory afferents originating from the trigeminal 

ganglia innervate the meningeal vasculature and release vasoactive neuropeptides including 

substance P (Sub P) and calcitonin gene- related peptide (CGRP). In addition, sympathetic 

efferents from the superior cervical ganglion release neurotransmitters including neu- 

ropeptide Y (NPY) and norepinephrine (NE) that can act on vessels in the meninges. 

Conversely, cells comprising the blood vessel as well as those in the vascular lumen can 

influence meningeal sensory afferents. Endothelial cells can release c-type natriuretic 

peptide (CNP) and potentiate sensory afferent neuronal firing. During angio- genesis, 

endothelial cells release vascular endothelial cell growth factor (VEGF), which recruits 

immune cells such as macrophages and neutrophils. The recruited immune cells infiltrate the 

nearby tissue and release cytokines known to sensitize sensory afferents. In addition, 

changes in metabolic demand and other stimuli such as shear stress can cause the release of 

adenosine triphosphate (ATP) from multiple cell types within the vessel. Endothelial cell 

purinergic receptor activation causes the release and diffusion of nitric oxide (NO) 

throughout the vessel and surrounding tissue resulting in a wide range of effects including 

sensory afferent sensitization.
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