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Abstract Testosterone deficiency is commonly associated
with obesity, metabolic syndrome, type 2 diabetes and their
clinical consequences—hepatic steatosis and athero-
sclerosis. The testicular feminised mouse (non-functional
androgen receptor and low testosterone) develops fatty liver
and aortic lipid streaks on a high-fat diet, whereas
androgen-replete XY littermate controls do not. Testoster-
one treatment ameliorates these effects, although the
underlying mechanisms remain unknown. We compared the
influence of testosterone on the expression of regulatory
targets of glucose, cholesterol and lipid metabolism in
muscle, liver, abdominal subcutaneous and visceral adipose
tissue. Testicular feminised mice displayed significantly
reduced GLUT4 in muscle and glycolytic enzymes in muscle,
liver and abdominal subcutaneous but not visceral adipose
tissue. Lipoprotein lipase required for fatty acid uptake was
only reduced in subcutaneous adipose tissue; enzymes of fatty
acid synthesis were increased in liver and subcutaneous tissue.
Stearoyl-CoA desaturase-1 that catalyses oleic acid synthesis
and is associated with insulin resistance was increased in

visceral adipose tissue and cholesterol efflux components
(ABCA1, apoE) were decreased in subcutaneous and liver
tissue. Master regulator nuclear receptors involved in meta-
bolism—Liver X receptor expression was suppressed in all
tissues except visceral adipose tissue, whereas PPARγ was
lower in abdominal subcutaneous and visceral adipose tissue
and PPARα only in abdominal subcutaneous. Testosterone
treatment improved the expression (androgen receptor inde-
pendent) of some targets but not all. These exploratory data
suggest that androgen deficiency may reduce the buffering
capability for glucose uptake and utilisation in abdominal
subcutaneous and muscle and fatty acids in abdominal sub-
cutaneous. This would lead to an overspill and uptake of
excess glucose and triglycerides into visceral adipose tissue,
liver and arterial walls.

Keywords Type 2 diabetes ● Metabolism ● Testosterone ●

Androgen receptor ● Adipose tissue

Introduction

Evidence suggests that testosterone deficiency in men is an
independent cardiovascular risk factor which is associated with
obesity, metabolic syndrome (MetS) and type-2 diabetes
(T2D) [1, 2]. Insulin resistance, which is common to all of
these conditions, results in diminished glucose utilisation and
conversion of the excess glucose into fat. Higher circulating
triglycerides then lead to an overspill of fat into ectopic storage
in liver and arteries as well as increasing the accumulation of
visceral fat. The degree of insulin resistance correlates nega-
tively with serum testosterone [3, 4]. Although the causality of
this relationship is often debated, growing evidence indicates
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testosterone is a metabolic multi-system player [5]. Epide-
miological studies support a bidirectional relationship between
serum testosterone and obesity which may be explained
by the hypogonadal–obesity–adipocytokine hypothesis [6, 7].
Androgen deprivation therapy for the treatment of prostate
cancer in men, whilst reducing tumour growth, also increases
the risk of coronary heart disease, diabetes and cardiovascular
death, indicating that testosterone deficiency may promote
atherosclerosis [8, 9]. Some trials have reported that achieving
a normal physiological testosterone concentration through the
administration of testosterone replacement therapy (TRT)
improves vascular function and risk factors for atherosclerosis,
including reducing central adiposity, percentage body fat, fatty
liver and insulin resistance, and improving lipid profiles
insulin sensitivity and inflammatory profiles [2, 10–15].

A limited number of in vivo and in vitro investigations have
highlighted potential molecular targets of testosterone action in
metabolic regulation, although a detailed analysis of tissue-
specific actions remains absent from the literature [2]. We have
previously reported that low testosterone in the testicular
feminised (Tfm) mouse (which displays very low testosterone
levels and non-functional androgen receptors) is associated
with increased lipid deposition in the aortic root and liver
when mice are fed a high-cholesterol diet [16–18]. Testoster-
one treatment to return levels to those seen in wild-type
counterparts significantly reduced aortic fatty steaks and
hepatic lipid accumulation with an associated reduction in de
novo lipogenesis in the liver in Tfm mice [17].

While a growing body of evidence points towards the
presence of heterogeneity regarding insulin responsiveness and
lipid homeostasis among different tissues [19], the mechan-
isms by which testosterone may impart beneficial actions on
insulin sensitivity and hence the development of MetS, T2D
and cardiovascular risk remain unknown but are likely to be
tissue dependent and involve multiple targets of lipid and
carbohydrate metabolism. In the present exploratory study, we
aim to investigate whether the metabolic protective effects of
testosterone act via modulation of the expression of key targets
involved in lipid and glucose metabolism in muscle, liver and
adipose tissue of cholesterol-fed Tfm mice. Specifically, we
investigate key regulatory enzymes of glycolysis, glycogen
synthesis, pentose phosphate pathway, glucose transporters,
fatty acid synthesis, fatty acid uptake, cholesterol synthesis and
efflux, and master regulators of metabolism (see Table 1).

Materials and methods

Animals

The Tfm mouse was used as a model of testosterone defi-
ciency and androgen receptor (AR) dysfunction as pre-
viously described [16–18]. The loss of 17α-hydroxylase, a

key enzyme necessary for testosterone synthesis, leads to
serum levels of testosterone in the Tfm mouse that are
severely (approximately 10-fold) reduced compared to
normal XY littermate controls [20, 21]. In addition, a nat-
ural mutation in the gene encoding the AR leads to the
formation of a truncated receptor protein which lacks both
DNA-binding and steroid-binding domains, rendering it
non-functional [22, 23]. This model therefore allows
potential AR-dependent and independent effects to be
investigated. All procedures were carried out under the
jurisdiction of a UK Home Office project licence, governed
by the UK Animals Scientific Procedures Act 1986. Mice
were bred as previously described [20]. Animal numbers
were calculated based on our previous investigation [16] for
a significance level of 5 %, and a power of 90 % for the
primary outcome measure of lipid deposition in the aortic
root (see [18]). Where available, preliminary data was used
for calculation of sample numbers of individual variables.

Experimental design and tissue collection

Eight-week-old Tfm and XY littermate mice were fed a high-
fat, high-cholesterol diet, containing 42% butterfat, 1.25%
cholesterol and 0.5% cholate (Special Diet Services, Essex,
UK) ad libitum for a period of 28 weeks. Separate 7-week-old
Tfm mice were first randomly assigned to one of two groups: a
placebo group receiving a once-fortnightly intramuscular
injection of 10 μL of saline (n= 14), or testosterone group
(n= 14) receiving a once-fortnightly intramuscular injection of
10 μL of 100mg/mL testosterone esters (Sustanon100; tes-
tosterone propionate 20mg/mL, testosterone phenylpropionate
40mg/mL and testosterone isocaproate 40mg/mL, Organon
Laboratories Ltd, Cambridge, UK), providing a dose of
50mg/kg, previously shown to replace circulating levels to
those of wild-type littermate mice [16]. XY littermate mice
(n= 14) received placebo injections (10 μL saline). Animals
were caged under standard conditions in a temperature and
humidity-controlled room on a 12-h light:12-h darkness cycle.
Water and food were unrestricted throughout the study.

At the end of the experimental period, which corre-
sponded with the midway point of the fortnightly injec-
tion cycle, whole blood was collected from the thoracic
cavity following mid-line sternotomy and severance of
the thoracic aorta. Following centrifugation, serum sam-
ples were frozen at −80 °C. The liver was removed from
the abdomen, skeletal muscle dissected from the quad-
riceps of the hind legs and fat tissue collected from
subcutaneous and visceral abdominal regions. The heart
with thoracic aorta attached was carefully dissected free
from the adventitia and perfused. Tissues were processed
for both histological and gene and protein expression
analysis and were archived for future analysis. Analyses
were made on individual samples.
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Measurement of total testosterone and 17β-estradiol

Serum quantification of total testosterone (DRG Instruments
GmBH, Marburg, Germany) and 17β-estradiol (Demeditec
Diagnostics, Kiel, Germany) was measured in duplicate via
ELISA (measurement range 0.2–16 ng/mL and 3–200 pg/mL,
respectively).

Quantitative analysis of mRNA

Total RNA was extracted from approximately 100 mg of
snap-frozen tissue, reverse transcribed and cDNA (2 μL)
used for qPCR, using commercial SYBR green reagents

(Qiagen) as described previously [17]. Primers were pur-
chased pre-validated (QuantiTech primer assays; Qiagen),
with specified amplification efficiencies of 100% (±10 %)
(see Table 1). Primers for Β-2 microglobulin (B2m) were
also included and served as an internal reference control,
selected as the most stable gene from a panel of commonly
used reference genes (Gapdh, beta-actin, ribosomal protein
13A). Each reaction was carried out in triplicate with
cycling and detection of fluorescent signal carried out using
an Agilent Mx3000P QPCR System. Results were corrected
for the expression of the house-keeping gene and normal-
ised to the XY littermates as a control. Relative copy
number was expressed as fold change 2-(ddCT).

Table 1 Qiagen qPCR primers

Target Gene Function Product ref.

Fatty acid synthase Fasn Catalyses the formation of long-chain fatty acids in fatty acid synthesis QT00149240

Acetyl coA carboxylase Acaca Essential role in regulating fatty acid synthesis QT01554441

Stearoyl-CoA desaturase 1 Scd1 Catalyses a rate-limiting step in the synthesis of unsaturated fatty acids. Key
enzyme in fatty acid metabolism.

QT00291151

Lipoprotein lipase Lpl Hydrolysis of triglycerides into free fatty acids QT01750469

Hormone sensitive lipase Lipe Hydrolyses stored triglycerides to free fatty acids QT00169057

3-hydroxy-3-methylglutaryl-CoA
reductase

Hmgcr Rate-controlling enzyme of the mevalonate pathway that produces
cholesterol

QT01037848

Sterol regulatory element-binding protein
1

Srebf1 Cholesterol biosynthesis and uptake, and fatty acid biosynthesis QT00167055

Sterol regulatory element-binding protein
2

Srebf2 Cholesterol biosynthesis and uptake, and fatty acid biosynthesis QT01045870

Apolipoprotein E Apoe Lipoprotein metabolism and transport. QT01043889

ATP-binding cassette transporter A1 Abca1 Major regulator of cellular cholesterol efflux and phospholipid homoeostasis QT00165690

ATP-binding cassette transporter G5 Abcg5 Cellular cholesterol efflux, promote biliary excretion of sterols. QT00157752

Insulin receptor substrate 1 Irs1 Transmitting signals from the insulin and insulin-like growth factor-1
(IGF-1) receptors to intracellular pathways in insulin signalling

QT00251657

Hexokinase 2 Hk2 Phosphorylates glucose to glucose 6-phosphate in the glycolytic pathway QT00155582

Hexokinase 4 (Glucokinase) Gck Phosphorylates glucose to glucose 6-phosphate in the glycolytic pathway QT00140007

Phosphofructokinase Pfk Converts fructose-6-phosphate to fructose-1,6-bisphosphate, one of the most
important regulatory enzymes of glycolysis

QT00159754

Carbohydrate-responsive element-
binding protein

Chrebp Activates of several regulatory enzymes of glycolysis and lipogenesis QT00125335

Glucose transporter 4 Glut4 Cellular glucose transport QT01044946

Glucose-6-phosphate dehydrogenase G6pdx Enzyme in the pentose phosphate pathway, often for tissues actively
engaged in biosynthesis of fatty acids

QT01748957

Glycogen synthase Gys Converts glucose to glycogen for storage, regulating glycogen/glucose levels QT00162099

Liver X receptor alpha Nr1h3 Nuclear receptor transcription factor regulating cholesterol, fatty acid, and
glucose homoeostasis

QT00113729

Peroxisome proliferator-activated
receptor alpha

Ppara Transcription factor and major regulator of lipid metabolism QT00137984

Peroxisome proliferator-activated
receptor gamma

Pparg Regulates fatty acid storage and glucose metabolism QT00100296

Beta 2 microglobulin B2m Reference gene QT01149547

Glyceraldehyde 3-phosphate
dehydrogenase

Gapdh Reference gene QT01658692
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Western immunoblotting

In this exploratory study we selected targets that were sig-
nificantly altered at the gene expression level for analysis by
western blotting. Due to low concentrations of protein
ascertainable from limited availability of adipose tissue,
western blotting was unable to be carried out on sub-
cutaneous and visceral samples. Protein was extracted from
200 mg of mouse liver or muscle tissue as previously
described [17]. In brief, 50 µg of total isolated protein was
separated by electrophoresis and transferred to nitrocellu-
lose membranes (BioRad, Hertfordshire, UK). Membranes
were blocked for 1 h in 5 % dried semi-skimmed milk
diluted in tris/glycine (TG) buffer containing 0.05 % Tween
20 (TGT; BioRad, UK). Primary antibodies were incubated
overnight at 4 °C diluted in either 5% bovine serum albu-
min/TGT, 5 % milk/TGT or 2.5 % milk/BSA (see Table 2).
Immunoreactive proteins were detected using anti-rabbit
IgG HRP-linked secondary antibody (1:500, Cell Signal-
ling) for polyclonal antibody detection or anti-mouse IgG
HRP-linked secondary antibody (1:500, Cell Signalling)
followed by a chemiluminescence peroxidase substrate kit
(Roche, Sussex, UK). Band intensities were quantified
using Genetools software (Syngene, Cambridge, UK) rela-
tive to the house-keeping protein GAPDH or Calnexin.

Statistical analysis

Results are presented as mean± SEM. Differences between
groups with normally distributed data were compared using
unpaired t tests without assuming consistent standard
deviations of groups. Mann–Whitney U tests were used
where data did not follow a normal distribution. Correc-
tions for multiple comparisons were made using the

Sidak-Bonferroni post hoc test. Significance was accepted
at p≤ 0.05.

Results

Serum testosterone levels were greatly reduced in Tfm mice
(2.2 ± 1.2 nM, p= 0.03) compared to wild-type equivalents
(16.5 ± 4.3 nM).1 Testosterone treatment of Tfm mice
increased serum levels of testosterone comparable to wild-
type levels (14.7 ± 5.2 nM, p= 0.98). 17-β estradiol levels
were similar between all groups, Tfm mice (94.2±15.5
pmol) compared to wild-type (106.0 ± 33.9 pmol, p= 0.17)
and testosterone-treated Tfm mice (135.2 ± 28.7 pmol, p=
0.99). Animal weights and weight gain did not significantly
differ between groups over the duration of the 28 week
feeding period but there was a trend towards Tfm mice
gaining more weight compared to littermates by the end of
the study period (p= 0.066, n= 14; Fig. 1).

Carbohydrate metabolism

Gene expression of the glycolytic regulatory gateway
enzymes hexokinase (Hk2, Gck) and Pfk was significantly
lower in muscle (p= 0.012, p= 0.032), liver (p= 0.002,
p= 0.04) and SAT (p= 0.009, p= 0.03) but not in VAT of
Tfm-placebo mice compared to XY littermates (Table 3).
Testosterone administration increased Gck expression
(p= 0.015) in the liver of Tfm mice but these enzymes were
not significantly altered in other tissues by treatment. Glut4
was similarly decreased in muscle (p= 0.015) and SAT
(p= 0.014) of Tfm mice versus wild-type mice, with no effect
of testosterone treatment. Hepatic G6pdx was elevated in Tfm
mice compared to XY mice (p< 0.001) and testosterone
treatment showed a trend to reducing this expression in Tfm
mice (p= 0.056). All other gene targets were not altered
between experimental groups in the tissues investigated.

Protein expression of PFK in the liver of experimental
animals matched gene expression data with reduced levels
in Tfm placebo mice compared to wild-type (p= 0.005) and
no effect of treatment with testosterone (Fig. 2). Muscle
protein expression of PFK was reduced in Tfm mice
(p= 0.018) with a significant increase in expression fol-
lowing treatment (p= 0.01). Hepatic GCK protein was also
reduced in Tfm mice receiving placebo (p= 0.001) as
demonstrated at the gene level; however, testosterone
administration had no effect showing discrepancy between
gene and protein expression. HK2 in muscle was also
reduced at the protein level in Tfm mice (p= 0.024), but
there was no effect due to treatment. Muscle GLUT4 was
decreased in Tfm mice compared to wildtype (p= 0.037)

Table 2 Antibody parameters

Antibody Concentration Diluent Supplier

FASN 1:500 2.5 % milk bsa in tbs CST

ACACA 1:500 2.5 % milk bsa in tbs CST

ABCA1 1:250 2.5 % milk bsa in tbs abcam

APOE 1:250 5 % milk in tbs abcam

GCK 1:500 5 % milk in tbs abcam

PFK 1:250 0.01 % milk bsa in tbs Proteintech

GLUT4 1:500 2.5 % milk bsa in tbs CST

HK2 1:500 2.5 % milk bsa in tbs CST

LXR 1:500 1 % milk bsa in tbs abcam

G6PD 1:500 0.01 % milk bsa in tbs Sigma

GAPDH 1:5000 2.5 % milk bsa in tbs abcam

Calnexin 1:1000 5 % milk in tbs CST

bsa bovine serum albumin, tbs tris-buffered saline, CST cell signalling
technologies

1As previously published [16, 18, 20].
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and testosterone administration demonstrated a trend
towards increasing this expression (p= 0.053). We were
unable to detect G6PD protein expression in the liver of
experimental animals.

Lipid metabolism

Cholesterol metabolism

Expression of cholesterol transporters, Apoe and Abca1,
were reduced in the liver of Tfm mice compared to litter-
mates (p= 0.009, p= 0.002). Treatment with testosterone

significantly increased this expression (p= 0.027, p= 0.02),
similar to wild-type levels (Table 3). Similarly, Apoe was
decreased in SAT of Tfm mice (p= 0.01), an effect that was
abolished by testosterone administration (p= 0.015 versus
Tfm P). Srebf1 and Srebf2 expression was significantly
lower in the SAT of Tfm mice versus XY littermates (p=
0.002, p= 0.003). Treatment with testosterone elevated
these expression levels of Srebf1 (p= 0.015) similar to
those demonstrated in wild-type mice although not sig-
nificantly so for Srebf2 with only a trend towards increased
expression observed (p= 0.053). In support of gene
expression data, ABCA1 protein was significantly reduced

Fig. 1 Animal weights and
weight gain. Tfm mice receiving
either placebo (Tfm P) or
testosterone (Tfm T) and wild-
type XY littermates receiving
placebo (XY P) had total body
weight (a) measured at
weekly intervals from the
commencement of high-
cholesterol diet feeding at week
8 through to the end of the study
at week 36. Weight gain (b) was
calculated from starting weights
of individual animals. No
significant differences were
noted between groups
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in livers of Tfm mice compared to littermates and testos-
terone treated Tfms (Fig. 2). Hepatic APOE protein
expression matched gene expression data with significantly
lower levels in placebo-treated Tfm mice compared to XY
littermates and testosterone-treated Tfm mice (p= 0.011,
p= 0.007, respectively).

Fatty acid metabolism

Visceral adipose Scd1 expression was significantly higher
in Tfm mice receiving placebo than in XY littermates also
receiving placebo injections (p = 0.034, Table 3). Testos-
terone treatment of Tfm mice returned expression levels to
those of XY mice with a significant reduction compared to
placebo-treated Tfm mice (p = 0.027). t test analysis
similarly revealed an increase in hepatic Scd1 expression
in Tfm placebo mice although not statistically significant
(p = 0.08). Decreased Lpl expression was observed in SAT
from Tfm mice compared to wildtype (p = 0.016) although
testosterone administration to Tfm animals had no effect
on this. Hepatic gene expression of Fasn and Acaca, the
key regulatory enzymes in de novo lipogenesis, were
significantly increased in Tfm mice receiving placebo
injections compared to wild-type littermates (p = 0.049, p
= 0.042, respectively).2 Testosterone treatment decreased
this expression but not significantly. Gene expression of
all other lipid metabolism targets in liver and adipose
tissue were not significantly different between animal
groups. Western blotting showed hepatic protein expres-
sion of FASN and ACACA to be increased in Tfm mice
confirming gene expression findings.2 Testosterone treat-
ment significantly reduced the protein expression of these
enzymes versus placebo treated Tfm mice to similar levels
as XY littermates.

No targets of fat metabolism and cholesterol homeostasis
displayed altered gene expression in muscle tissue from the
different experimental groups.

Master regulators

Gene expression of Lxr was significantly reduced in Tfm
placebo mice in all tissues other than visceral adipose
(muscle p= 0.032, liver p< 0.001, SAT p= 0.003), and
testosterone administration increased expression significantly
and back to wild-type levels in these tissues (muscle p=
0.008, liver p= 0.024, SAT p= 0.03). Ppara and Pparg
were significantly reduced in SAT of Tfm mice receiving
placebo versus XY littermate controls (p= 0.01, p= 0.02,
respectively). Pparg was also reduced in visceral adipose
tissue of Tfm mice (p= 0.001). Testosterone treatment had
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no effect on the altered expression of Ppars when compared
to placebo treated Tfm mice (see Table 3).

LXR protein expression in liver and muscle demon-
strated the same pattern indicated by gene expression ana-
lysis with a reduction in Tfm placebo mice compared to
wild-type littermates (p= 0.001, p= 0.01). Treatment with
testosterone elevated LXR levels significantly in liver and
muscle (p= 0.024, p= 0.022), to similar levels seen in
placebo-treated Tfm mice (Fig. 2).

Discussion

Exploratory evidence from this study suggests that testos-
terone has tissue-specific metabolic effects in the regulation
of gene targets which control glucose utilisation in liver,
SAT and skeletal muscle, and lipid metabolism in liver and
SAT. Some of these effects are, at least in part, androgen
receptor-independent and may potentially explain some of
the observed clinical benefit of testosterone in men with
T2D and MetS.

Testosterone effects on expression of targets of glucose
metabolism

GLUT4 expression is known to correlate positively with
insulin responsiveness and defects in expression of GLUT4
have been observed in patients with T2D [24]. We have

shown that there is decreased expression of GLUT4 in
muscle and SAT in the testosterone deficient Tfm mouse.
Testosterone has previously been shown to increase the
expression of GLUT4 in cultured skeletal muscle cells,
hepatocytes and adipocytes [25–27] as well as augment-
ing membrane translocation and promoting glucose
uptake in adipose and skeletal muscle tissue [27]. Key
enzymes involved in glycolysis, PFK and HK, were sig-
nificantly reduced in muscle, liver and SAT of Tfm mice.
This supports previous studies which have demonstrated
an increase in the activity of PFK and HK in cultured rat
skeletal muscle cells and increased hexokinase activity in
muscle tissue of castrated rats following testosterone
treatment thus diminishing the raised blood levels of
glucose seen in untreated control rats [27–29]. Improved
glucose utilisation in muscle, liver and SAT by testos-
terone may reduce the conversion of glucose to fat in
times of excess and improve insulin sensitivity thus
reducing lipid accumulation in these and other tissues.
This clinically would be very important in muscle as this
tissue accounts for approximately 75 % of whole-body
insulin-stimulated glucose uptake [30, 31].

We have also demonstrated in this study that the mRNA
expression of Glucose-6-phosphate dehydrogenase (G6pd),
the gateway enzyme in the pentose phosphate shunt path-
way, is elevated in the liver of Tfm mice suggesting that
glucose may also be utilised down this route during tes-
tosterone deficiency. NADPH is produced by G6PD in the

Fig. 2 Protein expression of selected targets of lipid and glucose
regulation in muscle and liver of Tfm mice. Semi quantitative western
blot analysis in (a) muscle and (b) liver of Tfm mice receiving either
placebo or testosterone and wild-type XY littermates receiving placebo

at the end of the study period. Data are presented as densitometry
arbitrary units and representative blot images. N= 6. *p< 0.05 versus
XY placebo, †p< 0.05 versus Tfm placebo
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pentose phosphate pathway supplying reducing power to
contribute to fatty acid synthesis [32]. An aberrant increase
of G6PD expression is present in obese and diabetic sub-
jects, and overexpression of G6PD alters lipid metabolism,
impairs insulin signalling and suppresses insulin-dependent
glucose uptake in mouse adipocytes [32]. However, the
exact role of hepatic G6PD in metabolic function is
unknown.

Testosterone effects on expression of targets of lipid
metabolism

In the present study we demonstrate that testosterone defi-
ciency negatively alters the expression of targets of lipid
metabolism primarily in liver and SAT but had little effect
in VAT. Decreased Lpl in Tfm mice with low testosterone
may limit the hydrolysis of lipoproteins and the subsequent
uptake of FFA into SAT. A previous study, however, has
shown the expression of hormone sensitive lipase and LPL
to be elevated in SAT of male mice with a selective adi-
pocyte AR knockdown (fARKO) [33]. These mice were fed
a normal chow diet and therefore LPL increase in the
absence of testosterone activated AR signalling may reflect
elevated subcutaneous lipid storage and decreased trigly-
ceride usage as an energy source in other tissues in times of
low fat intake. Treatment of hypogonadal men with TRT for
9 months resulted in a marked decrease in both LPL activity
and triglyceride uptake in abdominal adipose tissue [34].
Following further investigation, although LPL expression or
activity was not reported, the inhibition of lipid uptake after
testosterone administration was apparent in visceral
(omental plus mesenteric) and retroperitoneal but increased
in abdominal SAT suggesting that inhibition of triglyceride
assimilation may direct lipid to subcutaneous fat in TRT-
treated men and may therefore involve altered lipase
activity or expression in specific tissues [35], as suggested
in the present study.

Human SCD1 is a critical control point of lipid parti-
tioning with high SCD activity favouring fat storage and
suppression of the enzyme activating metabolic pathways
that promote the burning of fat and decrease lipid synthesis
[36]. Mice with a targeted disruption of the Scd1 gene have
very low levels of VLDL and impaired triglyceride and
cholesterol ester biosynthesis, as well as markedly reduced
adiposity and decreased hepatic steatosis on both lean and
ob / ob background despite higher food intake [37, 38]. In
the present study we demonstrate significantly increased
Scd1 expression in VAT of Tfm mice and a trend towards
increased expression in the liver. Beyond its role in fatty
acid biosynthesis, SCD1 is an important factor in the
pathogenesis of lipid-induced insulin resistance with SCD1
deficiency up-regulating insulin-signalling components and
glycogen metabolism in insulin-sensitive tissues [38]. This

suggests that testosterone has the potential to improve both
lipid and glucose metabolism via reducing Scd1 expression
in VAT and the liver of Tfm mice.

Lower subcutaneous Apoe expression in testosterone defi-
cient Tfm mice may be indicative of decreased reverse cho-
lesterol transport delivery of lipoproteins and cholesterol from
SAT to the liver for clearance. This difference was not
apparent in VAT supporting an important depot-specific role
of APOE in adipose tissue substrate flux and accumulation of
triglyceride in these depots [39]. Additionally, in the present
study we demonstrate that mRNA expression of Srebf1 and
Srebf2, key transcription factors and master regulators of
lipogenesis [40], were significantly decreased in SAT of Tfm
mice compared to testosterone treated animals and wild-type
controls. Similarly, orchidectomy significantly reduced hepatic
SREBP-1 expression in mice fed a high fat diet or normal
chow, an effect that was ameliorated by testosterone treatment
in high fat diet conditions [41]. As SREBPs are known to
directly induce transcription of many genes needed for uptake
and synthesis of cholesterol, fatty acids, triglycerides and
phospholipids [42]; taken together, these data lead us to
hypothesise that testosterone deficiency may diminish SAT
metabolic function and reduce lipid storage capacity.

Increased liver fat in Tfm mice from the present study is
considered partly due to increased de novo lipogenesis and
the expression of FASN and ACACA [17], which supported
earlier studies indicating that a lack of testosterone action
results in hepatic lipid accumulation [41–43]. The present
study additionally indicates that ABCA1 and APOE,
involved in cholesterol and lipoprotein efflux, are reduced
in the testosterone-deficient state in the liver of Tfm mice.
The overexpression of hepatic Abca1 in transgenic mice
results in a marked increase in HDL release, decreased LDL
and significantly reduced atherosclerosis when compared
with control mice [44]. Furthermore, increased hepatic
cholesterol content was reported in these mice as the level
of expression of the ABCA1 transporter decreased [45].
Indeed, Tfm mice from the present study have elevated total
cholesterol and LDL compared to wild-type mice [18].
Therefore, the increased hepatic lipid accumulation in our
Tfm mice may additionally result from absence of beneficial
testosterone effects on lipid transport.

Testosterone effects on master regulators of lipid and
glucose metabolism

Testosterone altered the expression of master metabolic reg-
ulators as a potential signalling mode of action to influence
lipid and glucose regulation. Reduced expression of the
nuclear receptor, liver X receptor (LXR), in muscle, liver and
SAT of Tfm mice compared to testosterone-replete animals
whether with or without AR function leads to the hypothesis
that testosterone may increase LXR signalling to exert some of
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its protective metabolic effects. LXRs are key transcriptional
regulators of lipid and carbohydrate metabolism known to
control molecular pathways including cholesterol efflux, glu-
cose regulation, fatty acid synthesis and inflammation [46]. In
parallel with testosterone-associated changes in LXR expres-
sion in the present study, we saw alterations in known LXR
target genes: Fasn, Apoe, Abca1, Lpl, Srebpf1. Rather than
inducing hepatic steatosis as with many LXR agonists, tes-
tosterone additionally protects against diet-induced hepatic
lipid accumulation in this model [17]. Tfm mice also had
reduced SAT and VAT expression of Pparg mRNA, indi-
cating a potential mechanism by which testosterone deficiency
may lead to metabolic dysregulation and adverse fat dis-
tribution. Additionally, Tfm mice displayed lower SAT Ppara
(a master regulator of fatty acid oxidation) expression, sug-
gesting that testosterone deficiency may further inhibit lipid
regulation.

The present study indicates that testosterone may sig-
nal, at least in part, beyond its classical nuclear AR to
modulate targets of lipid and glucose metabolism and that
these actions are further differentially dependent on the
target tissue. Whether the AR-independent effects in this
study are via conversion to estradiol and subsequent
activation of the oestrogen receptor (ER) was not
addressed. We have previously shown, however, that
testosterone has additional actions on hepatic and aortic
lipid accumulation in Tfm mice even with aromatase
inhibition and ER blockade [16, 17]. Further investigation
is required to elucidate the AR-independent signalling
mechanisms of testosterone action.

Limitations

The present exploratory study is limited to target expression
data, and while it indicates potential metabolic effects of tes-
tosterone it does not directly assess metabolic function. Lack
of tissue prevented protein analysis of SAT and VAT due to
the reduced amounts of protein recoverable from available
adipose tissue. In addition, the Tfm mouse is a model of global
AR dysfunction and severely reduced testosterone levels from
birth, therefore we cannot rule out any developmental effects
of these factors on tissues which may influence the patho-
genesis of metabolic disorders. Whilst the testosterone injec-
tions produce levels within the normal range, diurnal patterns
are absent and supraphysiological levels in the first few days
are apparent with near-infraphysiologic levels towards the end
of the interval [16]. Such administration may explain the
influence of testosterone treatment on gene expression above
and beyond that observed in wild-type controls. An additional
orchidectomised XY littermate group receiving testosterone
treatment would also allow us to control for pharmacological
and dosing effects in animals with fully functional AR. These
issues should be addressed in future studies.

Conclusion

We present exploratory evidence that suggests testosterone
is a metabolic hormone that differentially regulates the
expression of key targets of lipid and glucose metabolism
in a tissue-specific manner to potentially reduce fat deposi-
tion in pathologically relevant locations such as liver and the
arterial tree. Indeed, as regional differences in the action of
testosterone on subcutaneous and visceral adipose function
are apparent, we hypothesise that low testosterone in the Tfm
mouse leads to decreased lipid uptake and glucose utilisation
in SAT resulting in its reduced capacity to act as a physio-
logical ‘buffer’ in times of positive energy balance. This
decreased ability to store excess lipid may then result in
spillover into other tissues. Tfm mice have increased lipid
accumulation in the aortic root and liver as early manifesta-
tions of atherosclerosis and hepatic steatosis. These effects
are significantly reduced by testosterone replacement [17].
While this study adds support to the literature implicating
testosterone as a metabolic hormone, by combining expres-
sional data from multiple metabolic tissues with pathological
evidence that testosterone protects against the development
of hepatic steatosis and atherosclerosis, we now suggest a
system-wide androgenic action to offer new mechanistic
insight to the observed clinical benefit of testosterone in men
with T2D and MetS.

Acknowledgments The authors would like to thank Jonathan
Brooke and David McLaren for their laboratory assistance.

Funding This research was supported by Barnsley Hospital
Research Fund NHS Foundation Trust, the Cardiology Research Fund
Sheffield NHS Foundation Trust, the Biomedical Research Centre,
Sheffield Hallam University and Bayer Healthcare AG.

Compliance with ethical standards

Conflict of interest DMK has received funding to attend con-
ferences from Bayer Pharma AG and Novo Nordisk. THJ has received
research grants from Bayer Pharma AG and Besins Healthcare, con-
sultancy fees from Clarus, Merck, honoraria for educational lectures
and advisory boards, and travel grants from Bayer Pharma AG, Besin
Healthcare and Prostrakan. SA, DJS, VM and KSC have no conflict of
interest that could be perceived as prejudicing the impartiality of the
research reported.

Ethical approval All applicable international, national, and/or
institutional guidelines for the care and use of animals were followed.

Open Access This article is distributed under the terms of the
Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrest-
ricted use, distribution, and reproduction in any medium, provided you
give appropriate credit to the original author(s) and the source, provide
a link to the Creative Commons license, and indicate if changes were
made.

Endocrine (2016) 54:504–515 513



References

1. T.H. Jones, Testosterone deficiency: a risk factor for cardiovas-
cular disease? Trends Endocrinol. Metab. 21, 496–503 (2010)

2. D.M. Kelly, T.H. Jones, Testosterone: a metabolic hormone in
health and disease. J. Endocrinol. 217, R25–R45 (2013)

3. P. Mårin, S. Holmäng, L. Jönsson, L. Sjöström, H. Kvist,
G. Holm, G. Lindstedt, P. Björntorp, The effects of testosterone
treatment on body composition and metabolism in middle-aged
obese men. Int. J. Obes. 16, 991–997 (1992)

4. N. Pitteloud, V.K. Mootha, A.A. Dwyer, M. Hardin, H. Lee, K.F.
Eriksson, D. Tripathy, M. Yialamas, L. Groop, D. Elahi,
F.J. Hayes, Relationship between testosterone levels, insulin
sensitivity, and mitochondrial function in men.. Diabetes Care 28,
1636–1642 (2005)

5. F. Saad, The emancipation of testosterone from niche hormone to
multi-system player. Asian J. Androl. 17, 58–60 (2015)

6. R.D. Stanworth, T.H. Jones, Testosterone for the aging male;
current evidence and recommended practice. Clin. Interv. Aging
3, 25–44 (2008)

7. C. Wang, G. Jackson, T.H. Jones, A.M. Matsumoto, A. Nehra,
M.A. Perelman, R.S. Swerdloff, A. Traish, M. Zitzmann,
G. Cunningham, Low testosterone associated with obesity and
the metabolic syndrome contributes to sexual dysfunction and
cardiovascular disease risk in men with type 2. Diabetes 34,
1669–1675 (2011)

8. T.H. Jones, Cardiovascular risk during androgen deprivation
therapy for prostate cancer. Br. Med. J. 342, d3105 (2011)

9. Levine, G.N., D’Amico, A.V., Berger, P., Clark, P.E., Eckel,
R.H., Keating, N.L., Milani, R.V., Sagalowsky, A.I., Smith, M.R.,
Zakai, N., American Heart Association Council on Clinical Car-
diology and Council on Epidemiology and Prevention, the
American Cancer Society, and the American Urological Asso-
ciation: Androgen-deprivation therapy in prostate cancer and
cardiovascular risk: a science advisory from the American Heart
Association, American Cancer Society, and American Urological
Association: endorsed by the American Society for Radiation
Oncology 121, 833–840 (2010)

10. C.J. Malkin, P.J. Pugh, R.D. Jones, D. Kapoor, K.S. Channer,
T.H. Jones, The effect of testosterone replacement on endogenous
inflammatory cytokines and lipid profiles in hypogonadal men.
J. Clin. Endocrinol. Metab. 89, 3313–3318 (2004)

11. D. Kapoor, E. Goodwin, K.S. Channer, T.H. Jones, Testosterone
replacement therapy improves insulin resistance, glycaemic con-
trol, visceral adiposity and hypercholesterolaemia in hypogonadal
men with type 2 diabetes. Eur. J. Endocrinol. 154, 899–906
(2006)

12. S.Y. Kalinchenko, Y.A. Tishova, G.J. Mskhalaya, L.J. Gooren,
E.J. Giltay, F. Saad, Effects of testosterone supplementation on
markers of the metabolic syndrome and inflammation in hypo-
gonadal men with the metabolic syndrome: the double-blinded
placebo-controlled Moscow study. Clin. Endocrinol. 73, 602–612
(2010)

13. T.H. Jones, S. Arver, H.M. Behre, J. Buvat, E. Meuleman,
I. Moncada, A.M. Morales, M. Volterrani, A. Yellowlees, J.D.
Howell, K.S. Channer, T. Investigators, Testosterone replacement
in hypogonadal men with type 2 diabetes and/or metabolic
syndrome (the TIMES2 study). Diabetes Care 34, 828–837
(2011)

14. D.M. Kelly, T.H. Jones, Testosterone: a vascular hormone in
health and disease. J. Endocrinol. 217, R47–R71 (2013)

15. S. Dhindsa, H. Ghanim, M. Batra, N.D. Kuhadiya, S. Abuaysheh,
S. Sandhu, K. Green, A. Makdissi, J. Hejna, A. Chaudhuri,
M. Punyanitya, P. Dandona, Insulin resistance and inflammation
in hypogonadotropic hypogonadism and their reduction after

testosterone replacement in men with type 2 diabetes. Diabetes
Care. 39, 82–91 (2016)

16. J.E. Nettleship, T.H. Jones, K.S. Channer, R.D. Jones, Physiolo-
gical testosterone replacement therapy attenuates fatty streak for-
mation and improves high-density lipoprotein cholesterol in the
Tfm mouse: an effect that is independent of the classic androgen
receptor. Circulation 116, 2427–2434 (2007)

17. D.M. Kelly, J.E. Nettleship, S. Akhtar, V. Muraleedharan, D.J.
Sellers, J.C. Brooke, D.S. McLaren, K.S. Channer, T.H. Jones, Tes-
tosterone suppresses the expression of regulatory enzymes of fatty
acid synthesis and protects against hepatic steatosis in cholesterol-fed
androgen deficient mice. Life Sci. 109, 95–103 (2014)

18. D.M. Kelly, D.J. Sellers, M.N. Woodroofe, T.H. Jones, K.S.
Channer, Effect of testosterone on inflammatory markers in the
development of early atherogenePlease provide the maintitle,
volume number and page range in reference number 18.sis in the
testicular-feminized mouse model. Endocr. Res. (2012)

19. C. Rask-Madsen, C.R. Kahn, Tissue-specific insulin signaling,
metabolic syndrome, and cardiovascular disease. Arterioscler.
Thromb. Vasc. Biol. 32, 2052–2059 (2012)

20. R.D. Jones, P.J. Pugh, J. Hall, K.S. Channer, T.H. Jones, Altered
circulating hormone levels, endothelial function and vascular
reactivity in the testicular feminised mouse. Eur. J. Endocrinol.
148, 111–120 (2003)

21. L. Murphy, P.J. O’Shaughnessy, Testicular steroidogenesis in the
testicular feminized (Tfm) mouse: loss of 17 alpha-hydroxylase
activity. J. Endocrinol. 131, 443–449 (1991)

22. N.J. Charest, Z.X. Zhou, D.B. Lubahn, K.L. Olsen, E.M. Wilson,
F.S. French, A frameshift mutation destabilizes androgen receptor
messenger RNA in the Tfm mouse. Mol. Endocrinol. 5, 573–581
(1991)

23. W.W. He, M.V. Kumar, D.J. Tindall, A frame-shift mutation in
the androgen receptor gene causes complete androgen insensi-
tivity in the testicular-feminized mouse. J. Endocrinol. 19,
2373–2378 (1991)

24. J.E. Pessin, A.R. Saltiel, Signaling pathways in insulin action:
molecular targets of insulin resistance. J. Clin. Invest. 106,
165–169 (2000)

25. X. Chen, X. Li, H.Y. Huang, J.F. Lin, [Effects of testosterone on
insulin receptor substrate-1 and glucose transporter 4 expression
in cells sensitive to insulin]. Zhonghua Yi Xue Za Zhi 86,
1474–1477 (2006). [in Chinese]

26. T. Muthusamy, P. Murugesan, K. Balasubramanian, Sex steroids
deficiency impairs glucose transporter 4 expression and its trans-
location through defective Akt phosphorylation in target tissues of
adult male rat. Toxicology 58, 1581–1592 (2009)

27. K. Sato, M. Iemitsu, K. Aizawa, R. Ajisaka, Testosterone and
DHEA activate the glucose metabolism-related signaling pathway
in skeletal muscle. Am. J. Physiol. 294, E961–E968 (2008)

28. E. Bergamini, G. Bombara, C. Pellegrino, The effect of testos-
terone on glycogen metabolism in rat levator ani muscle. Biochim.
Biophys. Acta 177, 220–234 (1969)

29. A. Ramamani, M.M. Aruldhas, P. Govindarajulu, Differential
response of rat skeletal muscle glycogen metabolism to testosterone
and estradiol. Can. J. Physiol. Pharmacol. 77, 300–304 (1999)

30. R.A. DeFronzo, E. Jacot, E. Jequier, E. Maeder, J. Wahren, J.P.
Felber, The effect of insulin on the disposal of intravenous glu-
cose: results from indirect calorimetry and hepatic and femoral
venous catheterization. Diabetes 30, 1000–1007 (1981)

31. G.I. Shulman, D.L. Rothman, T. Jue, P. Stein, R.A. DeFronzo,
R.G. Shulman, Quantitation of muscle glycogen synthesis in
normal subjects and subjects with non-insulin-dependent diabetes
by 13C nuclear magnetic resonance spectroscopy. N. Engl.
J. Med. 322, 223–228 (1990)

32. J. Park, H.K. Rho, K.H. Kim, S.S. Choe, Y.S. Lee, J.B. Kim,
Overexpression of glucose-6-phosphate dehydrogenase is

514 Endocrine (2016) 54:504–515



associated with lipid dysregulation and insulin resistance in obe-
sity. Mol. Cell Biol. 25, 5146–5157 (2005)

33. K.J. McInnes, L.B. Smith, N.I. Hunger, P.T. Saunders,
R. Andrew, B.R. Walker, Deletion of the androgen receptor in
adipose tissue in male mice elevates retinol binding protein 4 and
reveals independent effects on visceral fat mass and on glucose
homeostasis. Diabetes 61, 1072–1081 (2012)

34. P. Mårin, B. Odén, P. Björntorp, Assimilation and mobilization of
triglycerides in subcutaneous abdominal and femoral adipose tis-
sue in vivo in men: effects of androgens. J. Clin. Endocrinol.
Metab. 80, 239–243 (1995)

35. P. Mårin, L. Lönn, B. Andersson, B. Odén, L. Olbe, B.A.
Bengtsson, P. Björntorp, Assimilation of triglycerides in sub-
cutaneous and intraabdominal adipose tissues in vivo in men: effects
of testosterone. J. Clin. Endocrinol. Metab. 81, 1018–1022 (1996)

36. P. Dobrzyn, M. Jazurek, A. Dobrzyn, Stearoyl-CoA desaturase
and insulin signaling–what is the molecular switch?. Biochem.
Biophys. Acta 1797, 1189–1194 (2010)

37. A.D. Attie, R.M. Krauss, M.P. Gray-Keller, A. Brownlie,
M. Miyazaki, J.J. Kastelein, A.J. Lusis, A.F. Stalenhoef, J.P.
Stoehr, M.R. Hayden, J.M. Ntambi, Relationship between stearoyl-
CoA desaturase activity and plasma triglycerides in human and
mouse hypertriglyceridemia. J. Lipid Res. 43, 1899–1907 (2002)

38. P. Cohen, J.M. Ntambi, J.M. Friedman, Stearoyl-CoA desaturase-
1 and the metabolic syndrome. Curr. Drug Targets Immune
Endocr. Metabol. Disord. 3, 271–280 (2003)

39. Z.H. Huang, D.J. Espiritu, A. Uy, A.X. Holterman, J. Vitello,
T. Mazzone, Adipose tissue depot-specific differences in adipo-
cyte apolipoprotein E expression. Metabolism 60, 1692–1701
(2011)

40. Z. Xie, H. Li, K. Wang, J. Lin, Q. Wang, G. Zhao, W. Jia,
Q. Zhang, Analysis of transcriptome and metabolome profiles

alterations in fatty liver induced by high-fat diet in rat. Metabolism
59, 554–560 (2010)

41. T. Senmaru, M. Fukui, H. Okada, Y. Mineoka, M. Yamazaki,
M. Tsujikawa, G. Hasegawa, J. Kitawaki, H. Obayashi,
N. Nakamura, Testosterone deficiency induces markedly
decreased serum triglycerides, increased small dense LDL, and
hepatic steatosis mediated by dysregulation of lipid assembly and
secretion in mice fed a high-fat diet. Metabolism 62, 851–860 (2013)

42. J.D. Horton, I. Shimomura, S. Ikemoto, Y. Bashmakov, R.E.
Hammer, Overexpression of sterol regulatory element-binding
protein-1a in mouse adipose tissue produces adipocyte hyper-
trophy, increased fatty acid secretion, and fatty liver. J. Biol.
Chem. 278, 36652–36660 (2003)

43. H.Y. Lin, I.C. Yu, R.S. Wang, Y.T. Chen, N.C. Liu, S. Altuwaijri,
C.L. Hsu, W.L. Ma, J. Jokinen, J.D. Sparks, S. Yeh, C. Chang,
Increased hepatic steatosis and insulin resistance in mice lacking
hepatic androgen receptor. Hepatology 47, 1924–1935 (2008)

44. C.W. Joyce, M.J. Amar, G. Lambert, B.L. Vaisman, B. Paigen,
J. Najib-Fruchart, R.F. Hoyt, E.D. Neufeld, A.T. Remaley, D.S.
Fredrickson, H.B. Brewer, S. Santamarina-Fojo, The ATP
binding cassette transporter A1 (ABCA1) modulates the
development of aortic atherosclerosis in C57BL/6 and apoE-
knockout mice. Proc. Natl. Acad. Sci. USA 99, 407–412
(2002)

45. F. Basso, L. Freeman, C.L. Knapper, A. Remaley, J. Stonik, E.B.
Neufeld, T. Tansey, M.J. Amar, J. Fruchart-Najib, N. Duverger,
S. Santamarina-Fojo, H.B. Brewer, Role of the hepatic ABCA1
transporter in modulating intrahepatic cholesterol and plasma
HDL cholesterol concentrations. J. Lipid Res. 44, 296–302 (2003)

46. C. Hong, P. Tontonoz, Liver X receptors in lipid metabolism:
opportunities for drug discovery. Nat. Rev. Drug Discov. 13,
433–444 (2014)

Endocrine (2016) 54:504–515 515


	Testosterone differentially regulates targets of lipid and glucose metabolism in liver, muscle and adipose tissues of the testicular feminised mouse
	Abstract
	Introduction
	Materials and methods
	Animals
	Experimental design and tissue collection
	Measurement of total testosterone and 17&#x003B2;-estradiol
	Quantitative analysis of mRNA
	Western immunoblotting
	Statistical analysis

	Results
	Carbohydrate metabolism
	Lipid metabolism
	Cholesterol metabolism
	Fatty acid metabolism
	Master regulators

	Discussion
	Testosterone effects on expression of targets of glucose metabolism
	Testosterone effects on expression of targets of lipid metabolism
	Testosterone effects on master regulators of lipid and glucose metabolism
	Limitations

	Conclusion
	ACKNOWLEDGMENTS
	References




