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Abstract

Objective—Regionalization may improve critical care delivery, yet stakeholders cite concerns 

about its feasibility. We sought to determine the operational effects of prehospital regionalization 

of non-trauma, non-arrest critical illness.

Design—Discrete event simulation study
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Patients and setting—All 2006 hospital discharge data from King County, Washington, linked 

to all adult, eligible patients transported by county EMS agencies.

Methods—We simulated active triage of high-risk patients to designated referral centers using a 

validated prehospital risk score; we studied three regionalization scenarios: (1) up triage, (2) up & 

down triage, (3) up & down triage after reducing intensive care unit (ICU) beds by 25%. We 

determined the effect on patient routing, ICU occupancy at referral and non-referral hospitals, and 

EMS transport times.

Measurements and Main Results—119,117 patients were hospitalized at 11 non-referral 

centers and 76,817 patients were hospitalized at three referral centers. Among 20,835 EMS 

patients, 7,817 (43%) patients were eligible for up triage and 10,242 (57%) patients were eligible 

for down triage. At baseline mean daily ICU bed occupancy was 61% referral and 47% at non-

referral hospitals. Up-triage increased referral ICU occupancy to 68%, up and down triage to 64%, 

and up and down triage with bed reduction to 74%. Mean daily non-referral ICU occupancy did 

not exceed 60%. Total EMS transport time increased by less than 3% with up and down triage.

Conclusions—Regionalization based on prehospital triage of the critically ill can allocate high-

risk patients to referral hospitals without adversely affecting ICU occupancy or prehospital travel 

time.
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Under a regionalized system of critical care, selected high-risk patients would be 

systematically triaged and transferred to specialized referral hospitals capable of caring for a 

broad range of critically ill patients. As outlined by the Institute of Medicine report and the 

major United States (US) critical care professional societies, the implementation of 

regionalized critical care may better match patient needs with resources.(1, 2) These 

stakeholders cite volume-outcome relationships in the intensive care unit (ICU), economies 

of scale, and variability in critical care across hospitals as rationales for regionalization.(3-8)

Despite regionalization's potential benefits, key gaps remain in our understanding of how it 

will impact the delivery of critical care in emergency departments, hospitals, and emergency 

medical services (EMS) agencies. The implementation of regionalized critical care has the 

potential to substantially disrupt EMS transport times, EMS provider availability for other 

calls, hospital census, lengths of stay, and frequency of ICU-related procedures at both 

referring and referral hospitals. Indeed, physicians cite the potential to overwhelm large 

hospitals and decrease clinical experience at small hospitals as critical barriers to 

regionalization.(5) These key barriers to feasibility require investigation prior to widespread 

implementation of a regionalized system of care.

Our goal was to estimate the effect of tiered prehospital regionalization of the critically ill on 

patients, hospitals, and EMS. We used discrete-event simulation in a county-level cohort of 

all hospitalizations linked to EMS transports. We chose county-level EMS transports as our 

starting point since future implementation of regionalization may occur within these policy 

relevant regions by EMS personnel.(9, 10) Discrete event simulation is an in silico method 

Seymour et al. Page 2

Crit Care Med. Author manuscript; available in PMC 2016 October 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



of estimating the effects of system-level health care changes, particularly when 

demonstration projects and clinical trials are infeasible or impractical.(11) By examining a 

variety of different possible regionalization scenarios, we sought to provide policymakers 

and clinicians with objective data on routing of patients, hospital census, procedural volume 

at large and small hospitals, and EMS travel times.

Methods

Model overview

We created a discrete-event simulation model to understand the potential impact of 

regionalization on critical care delivery. Discrete event simulation is a valuable modeling 

strategy because, unlike Markov or state transition models, it allows patients to interact and 

can predict system-level effects resulting from individual-level interactions. We used discrete 

event simulation to model the experience of adult, non-injured, non-cardiac arrest patients 

seen by King County Emergency Medical Services (EMS) ground ambulance within the 

context of all hospitalizations in King County, Washington, both in the observed system and 

under several regionalization scenarios. We did not explicitly model the regionalization of 

trauma or cardiac arrest patients as these systems are already exist or are under study in this 

region.(12, 13) We built the simulation model using Simio (Simio LLC, Sewickley, 

Pennsylvania).

Data sources

We used a cohort of all acute care hospitalizations in King County, Washington in 2006.(14) 

First, we linked Washington state hospital discharge records in the Comprehensive Hospital 

Abstract Reporting System (CHARS) database to patient-level data from the King County 

EMS administrative database.(14) King County EMS is the primary first response for all 

medical 9-1-1 calls. King County employs a two-tier system. Emergency medical 

technicians and fire fighters trained in basic life support provide the first tier, responding to 

all medical calls. Paramedics trained in advanced life support provide the second tier, 

responding to selected patients who are more severely ill, based on assessments by both 

emergency medical dispatchers and first responders. Incident EMS calls were linked at the 

patient level to 2006 geographic and population data in the US Census, and at the hospital 

level to the 2006 American Hospital Association Annual Survey (AHA). We used the AHA 

to define the number of available intensive care unit and ward beds at each hospital.

Model inputs

The discrete event simulation model consisted of both patient-level and hospital-level inputs. 

For EMS patients, patient-level inputs were prehospital scene arrival date and time, 

estimated travel time from scene to hospital in minutes, date of hospital admission if 

applicable, a prehospital critical illness risk score, the identity of the receiving hospital, ward 

admission (yes/no), ICU admission (yes/no), use of mechanical ventilation during the 

hospitalization (yes/no), use of hemodialysis during the hospitalization (yes/no), length of 

stay in ICU and/or ward in days, and hospital mortality (yes/no). For patients admitted to the 

hospital through means other than EMS, patient-level inputs included all of the above 

variables except the prehospital risk score and travel time estimates.
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We calculated the prehospital risk by using a validated model incorporating age and acute 

physiology. Specifically, this risk tool use age, gender, and prehospital heart rate, respiratory 

rate, systolic blood pressure, Glasgow Coma Scale score in categorized variables to populate 

a score ranging from 0 to 8.(14) First developed in King County EMS, the prehospital risk 

score is further tested in Southwestern Pennsylvania EMS agencies.(15) We calculated travel 

time by geolocating each EMS incident and estimating transport intervals using Google 

Maps and ArcGIS to route paths to destination hospitals.(16) These methods are robust to 

changes in travel time estimates corresponding to traffic/rush hour.(16) We defined ICU 

admission using ICU-specific revenue codes.(17) We defined mechanical ventilation and 

hemodialysis using validated International Classification of Diseases, version 9—clinical 

modification procedure codes.(18)

Hospital-level inputs included geographic coordinates (geocoded by street address), number 

of ward beds, number of ICU beds, and referral status (either “referral”, i.e., would act as a 

destination for high-risk patients under a regionalized system; or “non-referral”, i.e., would 

not act as a destination for high-risk patients). We categorized hospitals as referral and non-

referral by examining a hospital-level plot of ICU and ward beds, selecting hospitals in the 

greatest quartile of intensive care and ward beds as referral, and designating the remaining 

hospitals as non-referral.

Model outputs, calibration, and validation

Based on these inputs, the model produced outputs for all patients in the system, including 

destination hospital, length of stay and procedural requirements. The model also produced 

estimated outputs for EMS agencies, including total travel time in minutes during the year. 

After developing the model we calibrated it against observed data by running it for 365 days 

(January 1, 2006 to December 31, 2006). During calibration, we modified the model to 

include a one-month warm-up phase prior to January 1, 2006 so that the model outputs 

would best approximate the observed data on January 1, 2006. We then verified the model 

using key model outputs. Specifically, we validated the model against true allocation of 

patients in observed data, mean length of stay, mortality, ward, and intensive care use across 

hospitals.

Regionalization scenarios

To evaluate the health system impacts of regionalization we created several rules for 

prehospital triage. These rules were based on: (1) the prehospital critical illness risk score, 

(2) the estimated travel time to each hospital in the system, and (3) each hospital's census at 

the time of triage (Figure 1). Patients with a critical illness risk score above a specified 

threshold were triaged to the nearest referral hospital with an available bed (i.e., “up triage”), 

and patients with a critical illness score below a certain threshold were triaged to the nearest 

non-referral hospital with an available bed (i.e. “down-triage”). If the nearest hospital was 

full, the patient was sent to the next nearest hospital.

Once admitted to a hospital, we assumed that patients’ treatment, ICU admission status, and 

outcomes were similar to their baseline hospital. For example, if a patient was admitted to a 

ward bed at baseline, the patient was assigned a ward bed at the new hospital. Similarly, 
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observed length of stay, modeled length of stay, mortality, and procedural utilization were 

not influenced by simulations. We made these assumptions to focus our model on operations 

and throughput, rather than outcomes, since assessments of the impact on patient outcomes 

is a secondary concern if the strategy is not feasible. We assumed that the non-EMS patients 

were admitted to their original hospitals, and we did not limit admissions of non-EMS 

patients if bed occupancy was high. They still were assigned to their baseline hospital. We 

did not include interhospital transfers in the simulation, as our goal was to test only tiered 

regionalization via EMS.

We examined three regionalization scenarios. First, we simulated the up-triage of EMS 

patients with prehospital risk score ≥ 2 to the nearest referral center without the down-triage 

of any other EMS patients (“up-triage only”). Second, we simulated both up-triage of EMS 

patients with risk score ≥ 2 to the nearest referral center and down-triage of patients with 

score 0 or 1 to the nearest non-referral center (“up and down triage”). Third, we simulated 

up and down-triage after reducing the number of ICU beds at each hospital by 25%, 

considering that King County, Washington has ICU bed availability (37.5 per 100,000 

capita) that exceeds most US regions which average 20 to 25 ICU beds per 100,000 capita 

(“up and down triage with ICU bed reduction”).(19)

In a sensitivity analysis, we randomly selected 5% of EMS transports to “decline” up or 

down triage, so as to model variable patient preferences towards changing destinations and 

travel times. These patients were assigned to their baseline hospital in all scenarios, 

irrespective of the prehospital risk score. All regionalization scenarios were tested in this 

sensitivity analysis.

Analysis

We describe patient and hospital characteristics of referral and non-referral hospitals using 

mean and standard deviation (SD) for continuous data, median and interquartile range for 

non-normal data, and proportions for categorical data. We tested differences between referral 

hospitals and non-referral hospitals using Fisher's exact test and Wilcoxon rank sum-test, as 

appropriate.

We analyzed the model outputs at baseline and under each regionalization scenario along 

five domains: patient destinations, hospital admissions and occupancy, resource utilization, 

procedural volume, and EMS travel time. To analyze hospital destinations, we calculated the 

number of EMS patients transported to referral and non-referral centers. To analyze hospital 

admissions and occupancy, we estimated total admissions, ward-only admissions (i.e., the 

patient was admitted to the ward but not the ICU), ICU admissions, and the daily proportion 

of occupied beds. We also calculated the days at each hospital when the ward or ICU was 

over 90% capacity – an extreme threshold above the typical observed range of ICU 

occupancy.(20) To analyze resource utilization, we calculated the mean ICU and length of 

stay for referral and non-referral hospitals. To analyze procedural volume, we calculated the 

observed cases of mechanical ventilation and hemodialysis at each hospital. We chose 

mechanical ventilation and hemodialysis to illustrate advanced procedures for which a 

minimum number may be required for clinical competence. Finally, we calculated total EMS 

travel time (min), the proportion of patients who increased and decreased travel time, and the 
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magnitude of change (min). We also illustrated how regionalization scenarios modified EMS 

catchment areas by calculating the geographic perimeter around EMS transports for each 

referral and non-referral hospital. This geographic area corresponds to the furthest distance 

EMS transported patients for those hospital(s), and is summarized as the area in square 

miles.

We compared simulation model outputs across scenarios using mean and standard deviation 

(SD) for normally distributed continuous data, median and interquartile range for non-

normal continuous data, and proportions for categorical data. Given the large sample sizes, 

we evaluated clinical significance of model outputs and trends rather than statistical 

significance with p values.

Simulation outputs were analyzed using STATA 11.0 SE (Stata Corp, College Station, 

Texas) and ArcGIS (Redlands, California). The project was approved by the Washington 

State Department of Health and King County Public Health Review Committees.

Results

Hospitals and patients

We studied a region of 1.9 million people that included 119,117 patients hospitalized at 11 

non-referral hospitals and 76,817 hospitalizations at three referral hospitals over the study 

period (Table 1). At baseline, adult, non-trauma, non-arrest ground EMS patients accounted 

for 10.4% (N=20,395) of hospitalizations. Of these, 27% (n=5,571) of EMS patients were 

taken to referral hospitals and 73% (n=14,824) were taken to non-referral hospitals. Adult, 

non-trauma, non-arrest ground EMS patients comprised 20% of all ICU hospitalizations 

(6,376 of 30,779). Subjects at referral hospitals were more likely to be male, receive 

mechanical ventilation, and intensive care. Hospital length of stay, ICU length of stay, and 

hospital mortality were similar between referral and non-referral hospitals.

Patient destinations

Patient destinations at baseline and after each regionalization scenario are shown in Table 2. 

At baseline, of the 7,817 EMS patients with a prehospital risk score ≥ 2, 29% (N=2,271) 

were taken to a referral hospital (13% (N=1,041) to the nearest and 16% (N=1,230) to the 

non-nearest). 71% (N=5,546) were taken to a non-referral hospital (48% (N=3,738) to the 

nearest and 23% (N=1,808) to the non-nearest). Of the 10,242 EMS patients with risk score 

<2, 30% (N=3,167) were taken to a referral hospital (13% to the nearest and 17% to the non-

nearest) and 70% (N=7,705) were taken to a non-referral hospital (46% to the nearest and 

23% to the non-nearest).

In the up-triage only scenario, all high-risk patients were triaged to a referral hospital. Of 

these, 12% remained at the same referral hospital, 16% changed referral hospital because of 

proximity, and 66% were newly triaged to a referral hospital. In the up and down triage 

scenario, all high-risk patients were successfully triaged to a referral hospital in roughly the 

same distribution. Among low risk patients, 44% were taken to their original non-referral 

hospital and 55% were taken to a new, non-referral hospital. The results were similar in the 

up and down triage with bed reduction scenario.
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Hospital admissions and occupancy

Hospital admissions and occupancy at baseline and after regionalization are shown in Figure 
2. At baseline, mean ICU bed occupancy was 61% at referral hospitals and 47% at non-

referral hospitals. Referral hospital ICU occupancy increased to 68% after up-triage, 64% 

with up and down triage, and 74% under up and down triage with bed reduction. Non-

referral hospital ICU occupancy decreased to 41% after up-triage, 45% with up and down 

triage, and increased to 60% under up and down triage with bed reduction. The percentage 

of referral ICU days at over 90% capacity was less than 40% in all scenarios. Daily ICU 

census displayed substantial seasonal and weekday/weekend variability, with most time over 

90% capacity on weekdays during the winter months (see Figure E1 in the Supplementary 

Digital Content).

Hospital resource utilization

At baseline, the mean length of stay at referral ICUs was 4.3 days (SD 7.2 days) and non-

referral ICUs was 3.1 (SD 4.2 days). ICU length of stay at referral hospitals was unchanged 

after up-triage (4.2 days, SD 7.0 days), and remained the same for up and down triage or 

with ICU bed reduction. Non-referral hospital ICU length of stay was also unchanged with 

regionalization scenarios.

Hospital procedural volume

At total of 5,625 patients underwent mechanical ventilation and 2,710 received hemodialysis 

during the study period. The up triage scenario moved 12% (N=697) ventilated patients and 

7.2% (N=196) dialyzed patients away from non-referral to referral hospitals. Up-and-down 

triage moved 10% (N=575) ventilated patients and 3.7% (N=101) dialyzed patients from 

non-referral to referral hospitals.

EMS travel times

Total EMS travel times increased by 13% with up triage, 2.0% with up and down triage, and 

2.9% with up and down triage with bed reduction (Table 3). The latter corresponds to an 

average change of 19 minutes of EMS travel time per day for the entire County. The 

absolute changes (either increase or decrease) in EMS travel times were smaller than 12 

minutes in the majority of transports. Regionalization concentrated EMS travel distances for 

non-referral and referral hospitals across the county (Figure 3). Compared to an average 

EMS catchment of 831 squares miles at baseline, the average EMS catchment per non-

referral hospital decreased by 441 sq. miles with up and down triage, while referral hospital 

catchments would decrease on average by 205 sq. miles.

Sensitivity analysis

When a proportion of EMS patients (5%) were randomly selected to decline up or down 

triage in regionalization scenarios, we observed no relevant changes in output. In particular, 

the proportion of ICU days at >90% occupancy in referral and non-referral hospitals 

behaved similar to our primary analysis (Figure e2).
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Discussion

Compared to current practice, prehospital regionalization of the critically ill at the county 

level would reallocate a large proportion of high-risk patients from non-referral to referral 

hospitals with little change in hospital census in the ICU or ward, procedural volume at 

smaller hospitals, or EMS transport times. The down triage of lower risk patients to non-

referral hospitals also had little impact on daily hospital census in the ICU or ward.

These results provide conceptual support for the regionalization of critical care, suggesting 

that re-routing of non-arrest, non-trauma critically ill patients is feasible for EMS agencies 

and hospitals. Except under the most conservative scenario in which we simultaneously 

altered triage patterns and reduced the number of ICU beds, regionalized care did not lead to 

substantial hospital strain. Although data conflict,(21) some evidence exists that ICU 

capacity constraint can increase mortality in critical illness.(22-24) There is a perception 

among many intensivists that there is little room to increase their patient load.(25) Our 

results should reassure stakeholders that, under most scenarios, referral hospitals could 

accept 20% more ICU admissions via EMS transport. Current ICU bed supply and daily 

occupancy in this County would not be a barrier to the planning of implementation studies 

and demonstration projects.

We also found that regionalization had only a minor impact on procedural volume at small 

hospitals. Stakeholders cite the potential reduction in procedures requiring technical skill as 

a potential barrier to regionalization,(5, 26) expressing concerns that regionalization might 

actually worsen outcomes at small hospitals, offsetting other gains. However, we show that 

procedural volume changes at small hospitals may not be as large as anticipated. Previous 

reports of volume-outcome relationships in mechanical ventilation suggest that such small 

changes in caseload may not impact the odds of death.(4, 27)

Regionalization of critically ill patients also requires participation by EMS agencies to 

transport higher risk patients to referral centers. These personnel already participate in triage 

of trauma patients, which may change prehospital intervals.(28) We show that beyond 

current practice, re-routing of higher risk, non-trauma patients has minimal impact on 

average, daily EMS transport times across the County, and may even decrease total EMS 

transport time. In fact, fewer than one in twenty EMS transports increased time by more than 

12 minutes. Although studies suggest that prehospital transport intervals are not associated 

with outcome in trauma or cardiac arrest,(29, 30) it is unknown how modest changes to 

prehospital transport intervals could independently impact outcomes of the non-trauma 

critically ill - or whether increases in transport time are specific to certain triage paths (e.g. 

non-nearest non-referral hospital to nearest non-referral hospital, etc). Similarly, we do not 

yet know how patient preferences for referral center treatment in critical illness will balance 

against these potential trade-offs.

This study also demonstrates that additional ICU beds are not required as the critical care 

system evolves, at least in the US. The overall number of US ICU beds and the ratio of ICU 

beds to hospital beds are increasing,(8) yet most ICUs do not face external bed pressure.(20) 

Such was the case in our simulation, where daily ICU occupancy was often less than 60%. 
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Even more, our ICU bed count was conservative, and did not include “flexible” ICU beds in 

the operating room, intermediate care, emergency department, or post-acute care units. Such 

data further supports calls to limit the addition of ICU beds to an already inefficient system.

(31, 32)

This study also demonstrates how discrete event simulation can be a valuable tool for health 

system planning. Many policy changes for the critically ill will span across health systems, 

payers, regions, and patients – whereby demonstration projects or randomized clinical trials 

are infeasible or too costly. By leveraging real patient data, discrete event simulation models 

can predict the impact of various system-level changes – providing key preliminary data for 

stakeholders.

Our study has several limitations. We modeled single geographic region, which may not 

generalize to more urban or rural areas, with data from 2006. Yet, King County is one of the 

20 most populous counties in the US and is a policy relevant region where regionalization 

strategies could be implemented.(9, 33) King County does have more ICU beds per capital 

than most other counties in the US, and our results may underestimate the impact in regions 

with fewer ICU beds per capita.(34) We did not have data on the emergency room census, 

availability, throughput, or the presence of intermediate care beds. These data and real-time 

measures of “divert” status would add greater fidelity to our models – particularly for 

quantifying overflow beds in times of bed pressure. Our definition of referral centers was 

empiric and informed by prior studies on volume-outcome relationships in critical care.(27) 

They may not, in fact, be the highest-performing critical care hospitals. At present there are 

few agreed-upon metrics for defining critical care referral centers using organizational 

characteristics, and case-mix adjustment is not yet advanced enough to allow valid 

identification of critical care centers of excellence. We also defined ICU bed strain using bed 

occupancy, and acknowledge that other metrics based upon case mix severity, patient flow, 

clinical staffing, fixed resource availability (e.g. mechanical ventilators) or queuing theory 

may return different conclusions.(35) We also built a regionalization model that did not alter 

the destinations of ICU patients who are already regionalized (e.g. trauma) or who do not 

use prehospital care (e.g. interhospital transfers, direct admissions). The inclusion of EMS 

data from interhospital transfers, which occur commonly by private ambulances, could add 

to the scope of the critical care system impacted by regionalization. Finally, we acknowledge 

that this study focused on the feasibility of regionalization scenarios, and did not address 

patient-centered outcomes for these system-level changes. By incorporating detailed case-

mix adjustment, measures of illness severity derived from electronic health records, and ICU 

structural and organizational characteristics, future models could more accurately simulate 

the relationship between system changes and outcome.

Conclusions

This simulation study provides important new insight suggesting that selective prehospital 

triage can feasibly allocate non-trauma, critically ill patients to referral hospitals without 

compromising ICU census, procedural volume at smaller hospitals, or EMS travel times. 

Future work should explore these findings through more complex models that incorporate 

larger regions and the entire trajectory of critical illness.
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Refer to Web version on PubMed Central for supplementary material.
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At a glance commentary

Scientific knowledge on the subject

Redesign of the critical care system using tiered regionalization may improve patient 

outcomes, but stakeholders cite major barriers in feasibility and implementation.

What this study adds to the field

In a discrete event simulation, most high-risk, non-trauma critically ill patients 

transported by EMS can be triaged to referral hospitals, with little impact on ICU 

occupancy, procedural volume at non-referral hospitals, and prehospital transport times.
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Figure 1. 
Prehospital triage algorithm in simulated regionalization scenarios.
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Figure 2. 
Outcomes for each of four simulation scenarios, including total admissions (Fig 2A), mean 

daily bed occupancy (Fig 2B), and proportion of days over 90% bed occupied (Fig 2C). 
Grey bars represent non-referral hospitals, black bars represent referral hospitals. ICU data 

shown in top row and Ward data shown in lower row.
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Figure 3. 
Examples of EMS catchment areas for one referral (blue) and three non-referral hospitals 

(black). Panel A shows the baseline data, Panel B shows up and down triage with bed 

reduction. Catchment areas derived from the EMS transport networks of patients traveling 

from scene to the hospitals, respectively.

Seymour et al. Page 15

Crit Care Med. Author manuscript; available in PMC 2016 October 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Seymour et al. Page 16

Table 1

Hospital and patient characteristics at baseline. Values are N (%) unless otherwise indicated.

Variable Non-referral hospitals Referral hospitals P-value

Hospital characteristic, No. 11 3

    Total beds

        <200 6 (55) 1 (33) 0.06

        200 to 400 5 (46) 2 (66)

        > 400 0 (0) 0 (0)

    Total ICU beds

        <10 2 (18) 0 (0) 0.35

        10 to 20 3 (27) 0 (0)

        >20 6 (55) 3 (100)

    Total admissions, median [IQR] 9,362 [7471 – 14437] 18,375 [18,806 – 34,791] 0.01

    Total inpatient days, median [IQR] 42,161 [25,562-49,168] 125,189 [118,455 – 155,386] 0.01

    Total operations, median [IQR] 8,295 [5,327 – 11,445] 14,692 [12,131-26,962] 0.06

    Resident FTEs, median [IQR] 4 [0 – 33] 225 [51 – 433] 0.02

    Critical access hospital 2 (18) 0 (0) 1.0

Patient characteristic, No. 119,117 76,817

    Age, median [IQR], years 52 [28 – 72] 44 [27 – 62] <0.01

    Male gender 46,435 (39) 33,524 (44) <0.01

    Received eligible prehospital care
* 14,824 (12.4) 5,571 (7.3) <0.01

    Mechanical ventilation 2,517 (2.1) 3,108 (4.1) <0.01

    Hemodialysis 1,710 (1.4) 1,000 (1.3) 0.01

    Intensive care 16,850 (14) 13,929 (18) <0.01

    Hospital length of stay, median [IQR], days 2 [1 – 4] 3 [1 - 5] <0.01

    ICU length of stay, median [IQR], days 2 [1 - 3] 2 [1 - 4] <0.01

    In-hospital mortality 2,229 (1.9) 1,693 (2.2) <0.01

    In-hospital mortality among ICU patients 1,235 (7.3) 1,256 (9.0) <0.01

Abbreviations: FTE = full time equivalent, ICU = intensive care unit , QR = interquartile range

*
Includes only prehospital transports of age>=18 years, non-cardiac arrest, non-trauma, in whom three or more vital signs were documented.
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Table 2

Destinations for EMS patients, stratified by prehospital critical illness risk score. Data are presented for both 

the baseline system and the three regionalization scenarios. Dashes represent destinations that were either not 

possible (in the baseline data) or not allowed (in the simulation); zeros represent destinations that were 

allowed but did not occur. Values are N (%).

Prehospital critical illness 
score

Destination Baseline

Regionalization scenario

Up-triage only Up and down 
triage

Up and down 
triage with bed 

reduction

Score ≥ 2 (N=7,817)

Referral hospital (any) 2,271 (29) 7,817 (100) 7,817 (100) 7,817 (100)

Non-referral (any) 5,546 (71) 0 (0) 0 (0) 0 (0)

Referral hospital by type

    Nearest, same as observed 1,041 (13) 909 (12) 920 (12) 781 (10)

    Nearest, different than observed -- 6,741 (86) 6,785 (87) 6,115 (78)

    Non-nearest, same as observed 1,230 (16) 27 (<1) 22 (<1) 151 (2)

    Non-nearest, different than obs. -- 140 (2) 90 (1) 770 (10)

Non-referral hospital, by type

    Nearest, same as observed 3,738 (43) 0 (0) 0 (0) 0 (0)

    Nearest, different as observed -- 0 (0) 0 (0) 0 (0)

    Non-nearest, same as observed 1,808 (23) 0 (0) 0 (0) 0 (0)

    Non-nearest, different than obs. -- 0 (0) 0 (0) 0 (0)

Score < 2 (N=10.242)

Referral hospital (any) 3,167 (30) 3,167 (30) 0 (0) 0 (0)

Non-referral (any) 7,075 (70) 7,075 (70) 10,242 (100) 10,242 (100)

Referral hospital by type

    Nearest, same as observed 1,381 (13) 1,381 (13) 0 (0) 0 (0)

    Nearest, different than observed -- -- 0 (0) 0 (0)

    Non-nearest, same as observed 1,786 (17) 1,786 (17) 0 (0) 0 (0)

    Non-nearest, different than obs. -- -- 0 (0) 0 (0)

Non-referral hospital, by type

    Nearest, same as observed 4,728 (46) 4,728 (46) 4,548 (44) 4,466 (44)

    Nearest, different as observed -- -- 5,646 (55) 5,504 (54)

    Non-nearest, same as observed 2,347 (23) 2,347 (23) 21 (<1) 40 (<1)

    Non-nearest, different than obs. -- -- 27 (<1) 232 (2)
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Table 3

EMS travel time under different regionalization scenarios.

Transport characteristic Up-triage only Up and down triage Up and down triage with bed reduction

Total travel time, min. 271,582 245,137 247,134

Percentage increase in total travel time, %
* 13.0 2.0 2.9

Different hospital destination from observed, no. (%) 6,888 (38) 12,555 (70) 12,628 (70)

Direction of time change, no. (%)
^

    Increase 4,137 (60) 4,918 (39) 5,175 (41)

    Decrease 2,512 (36) 6,871 (55) 6,663 (53)

    No change 239 (3) 766 (6) 790 (6)

Magnitude of time increase, % of patients
a

    < 6 minutes 1,034 (25.0) 1,753 (35.6) 1,900 (36.7)

    6 to 12 minutes 1,987 (48.0) 2,049 (41.7) 2,120 (41.0)

    > 12 minutes 1,116 (27.0) 1,116 (22.7) 1,155 (22.3)

Magnitude of time decrease, % of patients
b

    < 6 minutes 2,217 (88.3) 4,571 (66.5) 4,390 (65.9)

    6 to 12 minutes 278 (11.1) 1,750 (25.5) 1,724 (25.9)

    > 12 minutes 17 (0.7) 550 (8.0) 549 (8.2)

*
Compared to baseline total travel time of 240,278 minutes

^
Only among those who changed destination from observed data

a
Only among those with increased travel time

b
Only among those with decreased travel time
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