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Summary: Trophic factors are proteins that support and
protect subpopulations of cells. A number have been re-
ported to act on dopaminergic neurons in vitro and in vivo,
making them potential therapeutic candidates for Parkin-
son’s disease. All of these candidate factors protect dopami-
nergic neurons if given prior to, or with, selective neurotoxins.
Fewer trophic factors, primarily glial-derived neurotrophic fac-
tor (GDNF) and its relative, neurturin (NRTN; also known as
NTN), have been shown to restore function in damaged dopa-
mine neurons after the acute effects of neurotoxins have sub-
sided. A major barrier to clinical translation has been delivery.
GDNF delivered by intracerebroventricular injection in patients
was ineffective, probably because GDNF did not reach the
target, the putamen, and intraputaminal infusion was ineffec-
tive, probably because of limited distribution within the puta-

men. A randomized clinical trial with gene therapy for NRTN
is underway, in an attempt to overcome these problems with
targeting and distribution. Other strategies are available to in-
duce trophic effects in the CNS, but have not yet been the focus
of human research. To date, clinical trials have focused on
restoration of function (i.e., improvement of parkinsonism).
Protection (i.e., slowing or halting disease progression and
functional decline) might be a more robust effect of trophic
agents. Laboratory research points to their effectiveness in
protecting neurons and even restoring dopaminergic function
after a monophasic neurotoxic insult. Utility for such com-
pounds in patients with Parkinson’s disease and ongoing loss of
dopaminergic neurons remains to be proven. Key Words: Par-
kinson’s disease, trophic factors, clinical trials, glial-derived
neurotrophic factors, neurturin.

INTRODUCTION

Trophic factors are proteins that are important for the
survival and function of specific cellular subpopulations.
The full potential of these molecules as therapeutic
agents is illustrated by the successes of erythropoietin in
the treatment of anemia. Erythropoietin is a 35 kDa
glycoprotein whose effects are mediated through the
erythropoietin receptor, initiating a signaling cascade of
events. This includes activation of tyrosine protein ki-
nases and phosphorylation of intracellular proteins to
enhance proliferation, differentiation, and maturation of
erythroid precursors. The importance of erythropoietin is
underscored not only by its ability to treat anemia related
to renal disease, various cancers, and antiviral therapies,
but also by the severe anemia that develops as a conse-
quence of the formation of neutralizing antibodies against
erythropoietin.1

TROPHIC FACTORS IN THE CENTRAL
NERVOUS SYSTEM

Cohen et al.2 discovered the first trophic factor with an
effect on nerve cells; nerve growth factor (NGF), in
1954, when they isolated it from mouse sarcomas. Sub-
sequently, a large number of trophic factors and their
receptors have been identified in the CNS, including
trophic factors from the periphery, such as erythropoietin
and its receptor.3 Because of the therapeutic potential of
trophic factors for neurological disorders, research in this
area has been growing rapidly. A Medline search for
three major neurotrophic factors—NGF, brain-derived
neurotrophic factor (BDNF) and glial-derived neurotro-
phic factor (GDNF)—brings up almost 12,000 articles
published since 1996.
A portion of trophic factors in the CNS can be grouped

into families based on homology of the trophic factors,
receptors, and common transduction pathways. NGF is a
member of the neurotrophin family. Other members of
this family include: BDNF, neurotrophin 3 (NT-3) and
neurotrophin 4/5 (NT-4/5). The neurotrophins are syn-
thesized as large precursor proteins in the range of 30
to 35 kDa and then are cleaved at highly conserved
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regions to generate the mature protein. The mature
proteins have roughly 50% homology, with similar num-
bers of amino acids (118–120) and molecular weights
(�12 kDa). The mature proteins all form dimers and
possess six cysteine residues in highly conserved posi-
tions that form three intrachain sulfide bonds. The vari-
able domains determine the binding affinity of each
member for a two-component receptor complex: the Trk
family of tyrosine kinase receptors and p75, a tumor
necrosis factor receptor (Table 1).4

The transforming growth factor beta (TGF�) super-
family is a trophic factor family with major relevance for
Parkinson’s disease (PD). It includes GDNF, neurturin,
TGF� types 1, 2, and 3, artemin, neublastin, enovin, and
persephin.5,6 Similarly to the neurotrophin family, the
TGF� trophic factors also are synthesized as precursor
proteins, which are cleaved into mature proteins with
seven conserved cysteine residues that form dimers.
There is more heterogeneity among members of the
TGF� superfamily, however, with GDNF having less
than 20% homology with some of the other members
of the family.7

Because of this, GDNF is often considered in its own
family, along with neurturin, artemin, and persephin.
Similarly to the neurotrophin family, the GDNF family
interacts with a two-component receptor complex:
GDNF family receptor alpha (GFR�), which is a glu-
cosylphosphoinositol-linked surface receptor, and RET,
a receptor tyrosine kinase. The four members of the
GDNF family have different receptors (GFR� types
1–4) but the specificity for the receptors is not exclusive;
for example, neurturin can act through the GDNF recep-
tor GFR�1, as well as through GFR�2.8

A new family of trophic factors with particular rele-
vance to PD has been identified. This family currently
has two members: mesencephalic astrocyte-derived neu-
rotrophic factor (MANF) and conserved dopamine neu-
rotrophic factor (CDNF).9,10 These trophic factors con-
tain eight cysteine residues and are predicted to produce

a unique folding structure. They represent a uniquely
conserved protein family.10 The receptors for MANF and
CDNF have not yet been described. The importance of
these trophic factors is that MANF and CDNF appear to
have more selective and potent effects on dopaminergic
neurons than any other trophic factors currently known.9

Trophic factors in other families have trophic effects
on the dopaminergic system, including basic fibroblast
growth factor (bFGF), ciliary neurotrophic factor, epi-
dermal growth factor, and insulin-like growth factor;
these are reviewed elsewhere.11 Of these other factors,
bFGF has received the most attention and has the most
evidence to suggest that it could be effective in vivo.12

MECHANISMS OF ACTION OF TROPHIC
FACTORS

In the late 1940s, Levi-Montalcini, Hamburger, and
Cohen found that innervating neurons were lost after
removal of peripheral target tissue.13 Based on this re-
search, neurotrophic factors were thought to function
primarily through a retrograde mechanism, with the basic
tenants of the hypothesis being that 1) limited quantities
of a neurotrophic factor are produced in a specific target
tissue, 2) responsive neurons projecting to these targets
compete for this limited quantity of trophic factor, 3) the
factor is then bound to cell surface receptors, 4) receptors
and trophic factor are internalized and 5) retrogradely
transported to the neuronal cell nucleus, where they stim-
ulate changes affecting neuronal survival and differenti-
ation.
In the early studies it was found that axon terminals

competed to form synapses with the target tissue, taking
up NGF at nerve endings from the target and transporting
the receptor-bound NGF to the cell body via retrograde
transport. If adequate NGF was obtained from the target
tissue, the connections were maintained and the neuron
survived. Neurons unable to access adequate amounts of
NGF, in contrast, atrophied and died. Green fluorescent

TABLE 1. Trophic Factors of Particular Relevance to Parkinson’s Disease

Superfamily Family Neurotrophic Factor Receptors Affinity

TGF� and Cysteine knot GDNF family GDNF GFR�1 � GFR�2 RET
NRTN GFR�2 � GFR�1 RET
ARTN GFR�3 RET
PSPN GFR�4 RET

Cysteine knot Neurotrophin family NGF TrkA p75
BDNF TrkB p75
NT3 TrkC � TrkA & TrkB p75
NT4/NT5 TrkB p75

? MANF family MANF ? ?
CDNF ? ?

ARTN � artemin; CDNF � conserved dopamine neurotrophic factor; GDNF � glial-derived neurotrophic factor; MANF � mesencephalic
astrocyte-derived neurotrophic factor; NGF � nerve growth factor; NT � neurotrophin; PSPN � persephin; TGF � transforming growth
factor; Trk � tyrosine kinase receptor; ? � unknown.
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protein has been used to visualize the movement of the
NGF receptor, Trk, from the distal axon to the cell bodies
after application NGF distally.14 The Trk receptor trav-
eled in a signaling endosome to the nucleus where it
activated various signal cascades, including MAP ki-
nases, ERK5, and PI3 kinase, to influence gene activa-
tion and protein expression and thereby promote neuro-
nal survival. Retrograde transport of trophic factors is
important in developing proper connections during nor-
mal development and maturation of the nervous system.
There is also anterograde signaling, documented for

BDNF. This may be more important in the nervous sys-
tem response to stressors after maturation, such as neu-
rotoxins or degenerative disorders. As demonstrated with
fluorescently tagged BDNF, the trophic factor traveled in
both an anterograde and retrograde fashions.15 The dis-
tribution of BDNF and its mRNA in the CNS likewise
support anterograde transport.16 BDNF is present in
many regions that lack BDNF mRNA, indicating that
BDNF is synthesized elsewhere. Furthermore, BDNF
concentrations were reduced by blocking selective affer-
ents to the target tissue, which contains BDNF but no
BDNF mRNA. It is likely that some activation with
anterograde mechanisms is through the traditional Trk
receptor for BDNF, but other mechanisms not yet well
elucidated may also play a role.14 Anterograde signal-
ing is likely to be more important in response to cell
damage or other situations that result in a change in
physiological demand.
In addition to neuron–neuron trophic factor exchange,

glia are also a source of neurotrophic factors for neurons.
GDNF and MANF are partially or wholly produced and
released by glia.7,9

NEUROTROPHIC FACTORS IN PARKINSON’S
DISEASE

Potential mechanisms of therapeutic action
There are a number of actions by which trophic factors

could provide important therapeutic effects in PD. The
first and most robust effect in the CNS is to promote
survival of subpopulations of neurons exposed to toxins
and other insults. For PD, neuroprotection is inferred
from reduction of dopamine neuron death induced by the
relatively specific toxins 1-methyl-4-phenyl-1,2,3,6-tet-
rahydropyridine (MPTP) and 6-hydroxydopamine (6-
OHDA), both in vitro and in vivo. If toxin-induced DA
neuron death shares any mechanisms with the pathogen-
esis of PD, this action of trophic factors could slow or
stop neurodegeneration of the dopaminergic system and
functional decline. Neuroprotective effects could be spe-
cific for the dopamine neurons or could be a less specific
effect mediated by dampening the inflammatory re-
sponse.17

A second mechanism resulting in therapeutic benefit
with trophic agents is the restoration of function of neu-
rons that are losing their dopaminergic phenotype (i.e.,
the capacity to synthesize and release dopamine). The
fact that substantia nigra dopamine neurons are better
preserved than is dopamine concentration in the striatum
is evidence that dysfunctional neurons are present in
human PD. These restorative effects are likely mediated
by changes in gene expression and protein synthesis.
A third mechanism of improvement of function is an

immediate stimulatory effect on the dopaminergic sys-
tem. Acute effects on ion channels causing changes in
cell excitability occur with some trophic agents.
Finally, it is possible that loss or disruption of specific

trophic factors, their receptors, or their signal cascades
cause PD. Replacement of the missing trophic factor or
other means of stimulating the transduction pathways
would be specific therapy for PD. The following sections
address the three most studied trophic factors in animal
models of PD: BDNF, GDNF, and neurturin.

BDNF

BDNF is required for the proper number of dopami-
nergic neurons to develop in the substantia nigra.18 It is
expressed by dopamine neurons in both the substantia
nigra and the ventral tegmental area19,20 which suggests
that BDNF may function as an autocrine or paracrine
factor. It is seen in lesser concentrations in the striatum,20

where its actions could be mediated by retrograde or
anterograde transport. In postmortem samples, BDNF
and BDNF mRNA were lower in the substantia nigra of
PD patients than in controls.21,22 This reduction may
represent loss of dopaminergic neurons that contain the
trophic factor.
BDNF protected dopamine neurons in vitro from the

neurotoxic effects of 1-methyl-4-phenylpyridinium ion
(MPP�) and 6-OHDA.23,24 Fibroblasts capable of se-
creting transgenic human BDNF that were implanted
near the substantia nigra of rats prior to striatal MPP�
infusions decreased destruction of dopamine neurons by
86%.25 Intrastriatal injection of BDNF in a rat model
prior to unilateral 6-OHDA lesioning reduced destruc-
tion of dopamine neurons in the substantia nigra and
decreased the apomorphine-induced rotation (a measure
of asymmetrical dopaminergic function).26 Conversely, a
knock down of the BDNF receptor, trkB, and the related
NT-3 receptor, trkC, result in a reduced number of do-
paminergic neurons in the substantia nigra, induced
accumulation of �-synuclein in remaining dopamine
neurons, and reduced tyrosine hydroxylase immunoreac-
tivity in the striatum.27 Furthermore, BDNF genetic vari-
ants have been reported to influence the age of onset of
PD in familial PD.28 Despite the evidence that BDNF is
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neuroprotective in animal models of PD, there are no
studies suggesting that it has a restorative action on the
dopaminergic system in experimental animals.

GDNF

GDNF supports the development of embryonic dopa-
mine neurons relatively specifically7 and is particularly
important for postnatal survival of mesencephalic dopa-
mine neurons.29 It is present in the striatum and despite,
being named glial-derived growth factor, may reside
largely in the striatal medium spiny neurons that receive
dopaminergic input from the substantia nigra.30 GDNF
levels in various parts of the brain are reported to be no
different in parkinsonian than in control patient brains.31

GDNF mRNA expression was increased in the putamen
of PD patients, however, compared with controls,32 and
so there is no evidence that loss of GDNF is responsible
for development of PD.
A variety of experiments in rodent models have shown

that GDNF directly injected into the substantia nigra or
striatum protects dopaminergic neurons from neurotox-
ins.33–36 Elevating GDNF in the striatum by gene therapy
is also protective.37–39 Unlike the case with BDNF, how-
ever, there is also evidence for restoration of function of
injured neurons by GDNF after toxic insults33,36,40—
although restorative actions are generally not as dramatic
as the neuroprotective actions.33 A series of influential
studies from Gash, Gerhardt, and coworkers41–43 have
demonstrated GDNF-induced improvement in bradyki-
nesia, rigidity, and postural instability in monkeys with
stable MPTP-induced hemiparkinsonism. GDNF was ef-
fective when given by bolus or by constant infusion, and
through three routes of administration: intranigral, intra-
striatal, and intracerebroventricular (ICV). These studies,
showing clear improvement in monkeys with established

hemiparkinsonism, stimulated the clinical trials that fol-
lowed.
In addition to neuroprotective and neurorestorative ac-

tions, GDNF also has direct effects on dopamine neu-
rons, modulating excitability via changes in A-type po-
tassium channels.44 This may be a mechanism by which
GDNF acutely increases dopamine release.45

Neurturin
Neurturin (NRTN; also known as NTN) is a naturally

occurring structural and functional analog of GDNF that
binds to the GFR�1 and GFR�2 receptors coupled to
RET.46 Neurturin has been shown to enhance survival of
dopaminergic neurons both in vitro, and in rodent and
monkey models of PD.47–53 Evidence for restoration has
also been found in rodents treated with 6-OHDA52 and in
aged monkeys, in which there is an age-related loss of
dopaminergic phenotype.54 In the later studies, an adeno-
associated type 2 viral vector that encoded for human
NRTN was injected unilaterally into the striatum of the
aged rhesus monkeys. [18F]Fluorodopa uptake was in-
creased in the NRTN vector-treated striatum, compared
with the uninjected side, at 4 and 8 months. Postmortem
examination also revealed an increase in tyrosine hy-
droxylase immunoreactivity in the injected striatum, rel-
ative to the uninjected side.54

A number of other trophic factors have a protective
effect on dopamine neurons in vitro and in vivo. These
other factors are generally less well characterized, but
potentially have clinical implications (Table 2). It is im-
portant to keep in mind in reviewing all these studies that
they all focus on effects on dopamine neurons. Although
dopamine loss is a key factor in PD, the pathology ex-
tends beyond the dopamine neuron and motor function,55

which opens the field to other trophic factors with no
effect on the dopaminergic system.

TABLE 2. Other Trophic Factors with Effects on Dopaminergic Neurons

Factor Symbol

Protective
Actions
(Model)

Restorative
Actions
(Model) Reference

Conserved dopamine
neurotrophic factor

CDNF 6-OHDA rats 6-OHDA rats Lindholm et al.10 (2007)

Erythropoietin EPO 6-OHDA rats MPTP mice Puskovic et al.99 (2006);
Xue et al.100 (2007)

Pituitary adenylate cyclase
activating polypeptide

PACAP 6-OHDA rats Not studied Reglodi et al.101 (2004)

Persephin PSPN 6-OHDA mice Not studied Akerud et al.102 (2002)
Vasoactive intestinal
peptide

VIP MPTP mice Not studied Delgado et al.17 (2003)

Insulin-like growth factor
type 1

IGF1 6-OHDA rats 6-OHDA rats Krishnamurthi et al.103

(2004)
Fibroblast growth factor FGF* 6-OHDA rats MPTP monkey Shults et al.104 (2000);

Fontan et al.12 (2002)

MPTP � 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine; 6-OHDA � 6-hydroxydopamine.
*bFGF for MPTP monkey; FGF2 for 6-OHDA rats.
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MANIPULATING TROPHIC FACTORS FOR
THERAPEUTIC BENEFIT

Major barriers to translating neurotrophic factor re-
search from the bench to the bedside involve the chal-
lenges in delivery to the appropriate cells in the CNS,
generally dopaminergic nerve terminals and cell bodies.
The most important among these barriers, and pervasive
in the treatment of CNS disorders, is penetration of the
blood–brain barrier (BBB). The large size of the trophic
factor proteins and their chemical structure makes entry
into the CNS after peripheral delivery unlikely. Thus, an
emphasis in the field of neurotherapeutics of trophic
factors has been methods of delivery of potential thera-
peutic agents to the brain or spinal cord. When that
problem is resolved, a second concern likely to arise is
the consequence of trophic factor delivery to unintended
CNS structures.
The most obvious means of bypassing the BBB is via

injection into the lumbar or ventricular CSF. The lumbar
CSF has been used to administer trophic agents that
potentially could affect motor neurons in amyotrophic
lateral sclerosis,56 and the ventricular CSF has been used
for diseases affecting the brain stem and hemispheres,
such as Alzheimer’s disease and PD.42,57 Intracerebro-
ventricular injection of GDNF in the monkeys with
MPTP-induced parkinsonism increased the number and
size of dopaminergic neurons in the midbrain, as well as
increasing dopamine levels, in both parkinsonian and
normal monkeys.41,58 This method of delivery of GDNF
was not, however, successful in humans. It is extremely
likely that in humans a protein trophic factor would not
diffuse from ventricular ependyma to the putamen,
which in the much larger human brain lies more than 1
cm away from the ventricles.
Direct infusion of trophic factors or viral vectors into

the parenchyma is another method of delivery to the
intended target. The problem with this technique is that
there is limited movement of proteins through the brain
parenchyma by diffusion. Direct injection of GDNF into
the brain appeared to be effective in a monkeys with
MPTP-induced parkinsonism.59,60

Diffusion is based on a concentration gradient of the
infused agent around the tip of the intraparenchymal
catheter. An alternative method of intraparenchymal in-
fusion is to use hydrostatic pressure to create a pressure
gradient around the catheter tip. The infused agent then
moves by bulk flow.61 This infusion into interstitial
space with pressure, referred to as convection-enhanced
delivery, produces a more widespread delivery of the
agent than does diffusion. Convection-enhanced delivery
has been used with GDNF in monkeys and in hu-
mans.60,62 It has also been used to deliver viral vectors.63

Convection-enhanced delivery raises the question of pos-
sible delivery of proteins or viral vectors to unintended

CNS targets, because agents delivered in this manner
often do not respect the anatomical boundaries of the
nuclei into which they are injected.
Temporarily disrupting the BBB to allow molecules

normally excluded from the CNS to cross is a theoretical
option for delivery of viral vectors with trophic factor
genes. Infusion of a hyperosmotic agent (e.g., mannitol)
will temporarily disrupt the BBB64 and permit delivery
of viral vectors.65 With this technique, targeting is re-
stricted to the vascular distribution of the vessel through
which the hyperosmotic agent is administered. This may
limit targeting of the vector to specific structures.
Another invasive strategy to raise the concentration of

therapeutic trophic factors in a target tissue is implanta-
tion of cells programmed to make and secrete the trophic
factor of interest. A promising approach is to use human
neural progenitor cells isolated from postmortem fetal
brain. These cells have the unique feature of migrating
after intracerebral transplantation, unlike other cells that
have been transplanted into brain. Human neural progen-
itor cells engineered to secrete GDNF and implanted into
the striatum of rats migrated so that they were distributed
throughout most of the of the striatum and increased
dopamine neuron survival and fiber proliferation.66

Although trophic factors generally do not readily pen-
etrate the BBB, there are clever means to link them to an
endogenous peptide or peptidomimetic monoclonal anti-
body that undergoes receptor mediated transcytosis car-
ried into brain.67 BDNF linked to a monoclonal antibody
transported by the transferrin receptor entered the brain
of rats and protected the CA1 hippocampal neurons from
an ischemic insult.68 Another Trojan-horse strategy uses
nanotechnology, whereby the chemical properties of the
trophic factor can be disguised in nanoparticles. These
submicroscopic nanoparticles generally consist of syn-
thetic or natural polymer aggregates that form spheres in
which the drug is encapsulated, attached, dissolved, or
entrapped. By hiding the trophic factor within the nano-
particle, the chemical properties are masked and the tro-
phic factor can cross the BBB along with its nanoparticle
carrier.69

Even if a trophic factor cannot as such cross the BBB,
fragments of it may cross. A large portion of the trophic
factor may not be imperative for initiating the desired
signaling cascade. Smaller, bioactive fragments may be
better able to cross the BBB. One example of this po-
tential approach is glycine–proline–glutamate (GPE),
which is naturally cleaved from insulin-like growth 1
(IGF-1). Intraperitoneally administered GPE reduced
apomorphine rotations in rats unilaterally lesioned with
6-OHDA, compared with controls.70 Along this line,
small peptides have been created that directly activate
the Trk receptor for neurotrophins and initiate neurotro-
phin signaling.71

Small molecules that cross the BBB and directly stim-
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ulate receptors or transduction mechanisms of trophic
factors suggest an alluring strategy to generate trophic
actions in the CNS.8 For example, a small, nonpeptide
quinol can activate the GDNF receptor–RET complex.72

High-throughput screening techniques could be used to
search for candidate drugs that act by this mechanism. A
related but invasive method to bypass the trophic factor
or its receptor is to use viral vectors that carry genes for
the signaling pathways for trophic factors. Insertion of
the gene for the oncoprotein Akt/PKB, which is activated
by GDNF and other trophic factors, into the striatum of
mice not only protected the mice from 6-OHDA but also
promoted regeneration after 6-OHDA.73

Increasing brain levels of neurotrophic factors may
also be feasible by indirect means. Smaller molecules
may upregulate trophic factor expression or release. Ibo-
gaine, an alkaloid extracted from the root of the African
shrub Tabernanthe iboga, and used to treat alcohol ad-
diction, increases the expression of GDNF in the mid-
brain.74 Likewise, antidepressants increase the expres-
sion of BDNF in the rat hippocampus.75

Finally, completely nondrug methods may be used to
increase trophic factor concentrations in certain areas of
the brain. Voluntary exercise increases the concentra-
tions of BDNF in the hippocampus of rats.76 Similarly,
forced use of the forelimb contralateral to a 6-OHDA
lesion (produced by casting the ipsilateral forelimb) re-
duced vulnerability of dopamine neurons in rats.77,78

This protective action of forced use of the limb was
attributed to raised concentrations of GDNF in the le-
sioned striatum 1 and 3 days after casting the ipsilateral
forelimb.

CLINICAL STUDIES WITH GDNF AND
NEURTURIN

Intracerebroventricular administration of GDNF
Preclinical investigations demonstrated the effective-

ness of monthly ICV injections of GDNF in monkeys
with MPTP-induced hemiparkinsonism.41,42 These stud-
ies suggested that ICV administration, an acceptable
route for administering other drugs in monkeys, could be
a method to administer GDNF in patients. On the basis of
the evidence that GDNF was neuroprotective and neu-
rorestorative in rodents and the efficacy in monkeys via
the ICV route, Amgen (Newbury Park, CA) sponsored a
phase I–II multicenter, randomized, double-blind, placebo-
controlled, dose-escalation trial with human recombinant
methionyl GDNF in subjects with advanced PD. The
human recombinant GDNF made with Escherichia coli
was biologically active, but differed from endogenous
GDNF in that it was not glycosylated. This was the same
formulation of GDNF used in the monkey studies. The
sequential cohort study design examined the effects of
placebo, 25, 75, 150, 300, and 500 to 4000 �g of GDNF

administered monthly for up to 28 months through an
implanted subcutaneous port attached to an intraventric-
ular cannula.
GDNF was biologically active by this route at even the

lowest dose, 25 �g.79 A common acute effect of ICV
injection of GDNF was anorexia and nausea, which came
on an hour to a day later and could last for days. Weight
loss was common, even without accompanying anorexia.
At the end of the study, however, subjects regained
weight, which seemed to correlate with an increase in
appetite. Hyponatremia, generally asymptomatic, oc-
curred in half the subjects. Sensory symptoms, fre-
quently described as electric shocks (Lhermitte sign)
were common. There was no improvement of any aspect
of the parkinsonism. Autopsy of the brain in a subject
who died from unrelated causes during the trial showed
minimal penetration of GDNF into the brain parenchyma
and no evidence of enhancement of tyrosine hydroxylase
activity in the putamen.80 This suggests that one expla-
nation for the lack of improvement in parkinsonism in
the trial was that ICV-administered GDNF did not reach
its intended target.

Intraputaminal administration of GDNF
Gill et al.81 took the next step in the effort to deliver

GDNF to the desired target: direct infusion. GDNF was
infused directly into the posterior putamen via implanted
catheters and SynchroMed pumps (Medtronic, Minneap-
olis, MN) in five PD subjects in an open trial in Bristol,
United Kingdom. The infusions were unilateral in one
markedly asymmetrical subject and bilateral in the other
four subjects. A rapid and marked improvement over the
first 3 months was sustained, leading to a 39% improve-
ment in “off” score on the motor portion of the Unified
Parkinson’s Disease Rating Scale (UPDRS) score and a
61% improvement in the activities of daily living (ADL)
portion at 1 year. The improvement was associated with
a minimal increase in levodopa equivalents in three sub-
jects and a substantial decrease in two subjects.82 How-
ever, two of the changes in medications (the addition of
cabergoline in one subject and a switch from entacapone
to tolcapone in another subject) may have had a larger
clinical effect than was captured by levodopa equiva-
lents.82 The improvement in UPDRS motor and ADL
subscores persisted for 2 years.83 Adverse effects of in-
traputaminal infusion were much less than those seen
with intraventricular administration. The anorexia and
nausea were absent, as was the hyponatremia; however,
some subjects experienced the tingling sensations char-
acterized as Lhermitte’s sign. [18F]Fluorodopa PET
scans after 18 months of GDNF putaminal infusion
showed very restricted increase of fluorodopa retention
about the tip of the catheter.81

The observations of Gill et al.81 were the impetus for
a randomized, double-blind, placebo-controlled trial of
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bilateral GDNF infusion in 34 subjects with moderately
advanced PD, sponsored by Amgen Inc. The trial was
designed to replicate the open experience of Gill et al.,
but the randomized trial differed in that the intraputami-
nal catheter had a slightly larger outside diameter. The
infusion rate was 15 �g of GDNF per putamen per day.
Gill et al. used 14 �g per putamen per day for the
majority of the time in their open trial; although the
subjects were exposed to 43 �g per day for 1 to 3 months
during the study before returning to 14 �g per day,
because of a signal in MRI that developed about the
catheter tip with higher concentrations of GDNF.81

The randomized trial did not find a significant clinical
effect of GDNF; there was a 10% decrease in the off
motor UPDRS scores (a decrease represents improve-
ment) in the treatment group and 5% decrease in the
placebo group.84 The results of the [18F]fluorodopa PET
scans were similar to those of Gill et al.: a 23% increase
in [18F]fluorodopa uptake restricted to the immediate
vicinity of the catheter tip in the subjects receiving
GDNF and a 9% decrease in the subjects receiving pla-
cebo infusions. GDNF-binding antibodies appeared in
the serum of approximately half the subjects, and GDNF-
neutralizing antibodies developed in a small subset of
these same subjects.85 Finally, the concurrent 6-month
toxicity studies found a patchy loss of Purkinje cells in
some monkeys on high-dose GDNF (100 �g/day). Al-
though there was no toxicity attributable to GDNF in the
clinical trials, these findings, added to the lack of efficacy
in the randomized clinical trial, led Amgen to discon-
tinue the clinical studies.
A second open trial, published about the same time as

the double-blind trial, described unilateral, convection-
enhanced delivery of GDNF into the midputamen by a
multiport cannula in 10 PD subjects.86,87 The convec-
tion-enhanced delivery of GDNF in brief pulses was
intended to increase bulk flow of the GDNF in the brain.
In addition, the GDNF dose was higher than in the other
clinical trials, up to 30 �g per day. At the end of 1 year,
the “off” motor UPDRS improved 45% and the total
UPDRS improved to a similar extent. Somewhat surpris-
ingly, the unilaterally administered GDNF produced a
relatively symmetrical bilateral improvement in parkin-
sonism.
The differences in the results of these three trials have

led to much controversy, which continues to the present.
A major question relates to the distribution of GDNF in
the putamen by the different infusion techniques. A com-
putational evaluation of the distribution of GDNF by the
catheters used by Gill et al. and in the Amgen trial found
little difference in the estimated distribution of GDNF by
the two catheters.88 The multiport catheter and the use of
convection-enhanced delivery led to a larger volume of
distribution, but it was still “comparable to those attained
in the other two trials.”88 An examination of the distri-

bution of GDNF in monkeys, using a catheter and infu-
sion protocol as in the randomized clinical trial, indicated
that the GDNF concentrations dropped exponentially
with increasing distance from the catheter tip and vol-
umes of distribution were variable, ranging from 90 to
370 cubic mm.89 On the other hand, convection-en-
hanced delivery of GDNF into the putamen of monkeys
led to GDNF as far as 11 mm from the catheter but with
backflow into the cortex, spread along white matter
tracks, and retrograde and anterograde distribution of
GDNF into globus pallidum, caudate, and thalamus.60

One subject in the Bristol trial died from a myocardial
infarct 3 months after stopping intraputaminal GDNF
infusion, which he had received for 43 months. Immu-
nolabeling indicated a marked increase in tyrosine hy-
droxylase about the catheter tip in the putamen, consis-
tent with the PET findings of a focal increase in
[18F]fluorodopa uptake at the catheter tip. In addition,
there was a slight increase in lymphocytes, macrophages,
and class II antigen-positive microglia as well as glial
fibrillary acidic protein within a couple mm of the cath-
eter tip. In sum, these observations suggest that infusion
of GDNF into the putamen of PD subjects may restore
dopaminergic function around the tip of the catheter;
however, it also suggests that one potential reason for the
failure of the randomized clinical trial was the restricted
distribution of GDNF in the putamen.
No toxicity from GDNF infusions has emerged in the

2 years of follow-up of the subjects with and without
neutralizing antibodies in the randomized clinical trial
and the two open trials (a total of 49 subjects). The
multifocal cerebellar Purkinje cell loss reported in four
monkeys receiving GDNF 100 �g/day remains unex-
plained, despite extensive investigation of the postmor-
tem tissues.90 No cerebellar toxicity has been clinically
recognized, and there have been no abnormalities de-
tected in a careful analysis of MRI images of cerebellum
before and after GDNF treatment in patients91 (in the
monkeys, any cerebellar lesions would not have been
evident with MRI). The one subject from the Bristol trial
who came to autopsy had “old, probably ischemic, scar-
ring in the watershed region of the cerebellum and small
neuronal heterotopias in the cerebellar white matter”92

which, superficially at least, sounds as though the cere-
bellar pathology was different from that seen in the high-
dose GDNF monkeys.
The Amgen trial design and the analysis of the results

has been debated in the literature.93,94 A persistent pla-
cebo effect over several years has been deemed unlikely
by some critics, but there was evidence for a prolonged
placebo response in a double-blind trial of embryonic
dopaminergic grafting.95 The Michael J. Fox Foundation
for Parkinson’s Research and the Kinetics Foundation
held a meeting of researchers with expertise in relevant
fields to discuss the issues and uncertainties raised by
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these trials; this discussion, in turn, led to a thoughtful
comparison of the studies and suggestions of how to
move forward the study of trophic factors in PD.96 These
three clinical proof-of-principle studies have raised a
number of questions that require further investigation.
The uncertainties surrounding the trials of intraputaminal
infusion of GDNF should not end the search for thera-
peutic benefit from neurotrophic factors.

Gene therapy with neurturin
The next and ongoing step in bringing trophic factors

into therapy for PD was to use gene therapy to deliver the
neurotrophic factor. Because Amgen held the patent on
GDNF, Ceregene (San Diego, CA) has used NRTN
(neurturin), another member of the GDNF-like family of
trophic factor signaling through the same receptor family
and RET activation.8 Neurturin has been demonstrated to
be neuroprotective in a number of animal models of
parkinsonism. The evidence that it is neurorestorative is
more limited.52,54 The NRTN gene (alias NTN) is deliv-
ered in serotype 2 adeno-associated virus that specifi-
cally targets neurons. The vector is delivered by four
stereotaxic injections into each putamen, with two infu-
sions of vector at the inferior and superior part of the
putamen. This adds up to eight injections per putamen
and a total of 16 infusion sites per subject. A phase I trial
on safety and tolerability of NRTN delivered at two
doses in 12 PD subjects reported good tolerability and no
toxicity. The UPDRS in the practical “off” state was
reported to improve 30–40%, with a few exceptions. It
must be recalled that this is an open and uncontrolled
study, and there are large numbers of placebo responses
in surgical trials.95 Nonetheless, based on these encour-
aging results and good safety and tolerability, a phase II,
randomized, double-blinded, sham-controlled, clinical
trial had, as of writing, just completed enrollment, with
results being expected in a little more than 1 year.

CONCLUSION

Multiple studies in vitro and in animal models of PD
indicate that a number of trophic factors have the poten-
tial to be powerful therapeutic agents to halt or restore
function in the dopaminergic system. This promise for
the dopaminergic system is also a limitation, however. It
is increasingly recognized that much more than just the
dopaminergic system is affected in PD, and that even
restoration of the dopaminergic system is unlikely to
reverse all the motor symptoms, much less the cognitive,
emotional, sleep, and autonomic problems that are part
of the disease.55 The neurotrophic factors that are con-
sidered for use in humans are selected by their effects on
dopamine neurons in in vitro and in vivo laboratory
models. Other trophic factors that do not have a promi-

nent effect on the dopaminergic system may still have
therapeutic potential for PD.
Nevertheless, knowing that the dopaminergic system

is important for motor function, and having trophic fac-
tors that were selected for their action on the dopami-
nergic system narrows down the nuclei that are targets
for delivery of these agents. At present, the major issue
is delivery of trophic factors to appropriate CNS targets,
generally regarded to be the striatum for PD.36 Delivery
has two components: getting the agent to the appropriate
tissue, a probable reason for failure of ICV administra-
tion of GDNF, and distribution within the target tissue, a
possible reason for failure of the randomized clinical trial
with GDNF.
The intraputaminal administration of adeno-associated

viral vectors with the neurturin gene into eight sites of
each putamen is an attempt to solve both of these prob-
lems. All three methods of trophic factor delivery tried to
date are invasive, although associated with little serious
morbidity and no mortality. What the field needs, how-
ever, is proof of principle, and these studies were
planned with this in mind. Proof of principle for neuro-
trophic factors would stimulate research into better meth-
ods of delivery, and there are many possibilities.
Two other issues related to delivery have received less

attention: dose and spread of trophic factor to other areas
of the CNS. The ICV administration of GDNF to pri-
mates with intracarotid MPTP-induced hemiparkinson-
ism produced a dose-responsive antiparkinsonian ef-
fect.42 However, delivery of GDNF gene by lentivirus to
rats resulted in higher levels of expression of GDNF in
striatum than with other vectors for gene delivery.38 This
high level of GDNF expression protected dopaminergic
neurons, but produced no functional recovery as mea-
sured by spontaneous motor behavior. The lack of func-
tional recovery was attributed to downregulation of ty-
rosine hydroxylase and to aberrant sprouting in the
globus pallidus and the substantia nigra. In turn, the
aberrant sprouting was attributed to anterograde trans-
port of GDNF from the striatum to these nuclei.38 The
dose of trophic factor may be one variable influencing
the response.
Convection-enhanced delivery of GDNF to the mon-

key putamen resulted in GDNF diffusing to the putamen,
caudate, globus pallidus, and internal and external cap-
sule.60 GDNF also spread by the external capsule to the
amygdala, by backflow along the catheter track to the
cortex, by the internal capsule and the corticospinal tract
to the spinal cord, and by retrograde transport to the
thalamus. Likewise, convection-enhanced delivery of
adeno-associated virus type 2 with the genes for aromatic
amino acid decarboxylase and for thymidine kinase to
the putamen of primates showed expression for the genes
in approximately 75% of the putamen. However, there
was also spread of the vector and enzyme expression in
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the globus pallidus, subthalamic nucleus, thalamus, and
the substantia nigra. The clinical importance of spread of
trophic factor itself or its gene beyond the striatum is
unknown.
Immunological responses to the trophic factor or to

viral vectors is another area in which we lack information.
Administering antibodies against another endogenous
trophic factor, erythropoietin, produces a severe anemia.1

To date, the antibodies (and, specifically, neutralizing
antibodies) seen in a few subjects in the intraputaminal
GDNF infusion studies have not had any recognized
medical consequences. Adeno-associated viruses have low
immunogenicity and toxicity, but are not completely devoid
of such effects.97 The immunogenicity of adeno-associated
viruses may be amenable to molecular engineering.98

One other point about the design of the clinical trials
with trophic factors should be noted. Trophic factors in
the CNS have been defined as peptides that both protect
and (sometimes) restore function in specific subpopula-
tions of neurons. The studies so far conducted have, by
necessity, focused on restoration of motor function.
These trials have been small, short, and expensive. How-
ever, clinical trials designed for restorative effects may
miss the robust protective actions of trophic factors seen
in animal models of PD. The consequence is that we may
not detect an important effect of trophic factors: slowing
the progression of the disease process and preservation
of motor function. Trials with neuroprotection or delayed
motor deterioration as endpoints will likely require larger
numbers of subjects, longer trials, and probably an ear-
lier stage of PD than have characterized the trials to date.
However, the possibility that the disease process is
slowed in subjects treated with trophic factors should be
considered even in these early clinical trials seeking re-
storative actions.
Despite the intricacies of translating the laboratory

findings with trophic agents into clinical treatments, the
efficacy of trophic factors as neuroprotective and neuro-
restorative therapies in animal models of PD will ensure
continued efforts to bring these agents into therapeutic
trials and eventually clinical practice.
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