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Summary: Physical injury or compression of the root, dorsal
root ganglion, or peripheral sensory axon leads to well-
defined changes in biology and function. Behaviorally, hu-
mans report ongoing painful dysesthesias and aberrations in
function, such that an otherwise innocuous stimulus will
yield a pain report. These behavioral reports are believed to
reflect the underlying changes in nerve function after injury,
wherein increased spontaneous activity arises from the neu-
roma and dorsal root ganglion and spinal changes increase
the response of spinal projection neurons. These pain states
are distinct from those associated with tissue injury and pose

particular problems in management. To provide for devel-
oping an understanding of the underlying mechanisms of
these pain states and to promote development of therapeutic
agents, preclinical models involving section, compression,
and constriction of the peripheral nerve or compression of
the dorsal root ganglion have been developed. These models
give rise to behaviors, which parallel those observed in the
human after nerve injury. The present review considers these
models and their application. Key Words: Tactile allodynia,
spontaneous pain, dorsal root ganglion, nerve compression,
autotomy.

INTRODUCTION

Classic observations in humans emphasize that nerve
section can lead to sensory experiences that reflect the
neural organization that originally subserved the body
region innervated by the sectioned nerve. Frequently this
“phantom” is reported as painful.' Incomplete injury to a
nerve trunk, as generated by blunt trauma or chronic
compression, will lead to well characterized ongoing
sensations (dysesthesias) and exaggerated sensitivity to
otherwise innocuous stimuli (e.g., allodynia).> Current
thinking suggests that mechanical allodynia represents
activity in low threshold afferents.? The functional mech-
anisms underlying these pain states are presumed to re-
sult from post-injury changes. At a systems level, nerve
injury results in increases in ectopic activity from the
nerve at the site of injury (e.g., the neuroma) and/or at the
dorsal root ganglion (DRG) of the injured axons.* Injury
produces alterations in dorsal horn excitability, leading to
lowered thresholds in dorsal horn neurons and increases in
their receptive field size.” Several mechanisms have been
identified that are believed to underlie these changes.
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Three points should be made: 1) Although understand-
ing the biology of nerve injury can be approached
through morphological and biochemical assessments, the
role played by those mechanisms in the nociceptor, pro-
duced by nerve injury, requires a behavioral correlate
reflecting the “pain” state of the organism; 2) when a
mechanism is proposed that is believed to underlie neu-
ropathic pain, drugs targeting that mechanism must have
corollary effects on the behavior of the animal; and 3)
meaningful validation of the preclinical model depends
on demonstration of a parallel pharmacology (when pos-
sible) with that observed in the human condition. A
variety of drug classes have indeed been shown to have
efficacy. These include certain anticonvulsants (such as
gabapentin),® sodium channel blockers (such as lido-
caine),7 and various amine uptake inhibitors, notably
those which block norepinephrine and serotonin trans-
porters (such as amitriptilline).® Opiates are also used
and have reported efficacy.”'® In the past several years,
many other targets/agents have been implicated, but as-
sertions of their efficacy must be considered, dependent
on the still evolving data sets.

The importance of behavioral paradigms in devising
targets and specific drugs to act on them in neuropathic
pain regulation has led to an increased implementation of
behavioral models. In general, the types of nerve injury
models can be broadly divided into those that produce a
complete or partial physical injury to a component of the
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FIG. 1. Schematic summary of several surgical injuries to the peripheral nerve (above) and injuries to the dorsal root ganglion (DRG) and
dorsal root (below), which resulted in pathological pain states. CCl = chronic constriction injury; Peroneal n. = peroneal nerves; Sciatic

n. = sciatic nerve; SNI = spared nerve injury; Sural n. = sural nerve;

peripheral sensory nerve DRG or root. The injury may be
induced by mechanical (i.e., section, crush, or compres-
sion), chemical, metabolic, or immunological insult di-
rected at some or all of the aforementioned anatomic
elements. Because of the breadth of the material, we
have limited our focus to those injuries that are generally
considered to be peripheral to the spinal cord. It should
also be noted that the aim of the present commentary is
to consider those reports that seek to establish the treat-
ment as a model. Thus, many interventions have been
reported, but at the least, for such a treatment to be
considered a model, there should be effort to characterize
time course, and, where relevant, elements that impact
the expression of the behavioral phenotype. Unfortu-
nately, this is not always appreciated. The impact of a
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SNL = sciatic nerve ligation; Tibial n. = tibial nerve.

variety of animal (genetic, gender), environmental (stres-
sors, housing, diurnal cyclicity, or presence of investiga-
tor), and treatment (diet) variables on the expression of a
neuropathic pain phenotype have been extensively re-
viewed elsewhere.!' ™' In the following sections, we re-
view representative injuries specifically generated by
physical trauma to the peripheral nerve. A summary of
these interventions is presented in FIG. 1.

NERVE SECTION

In the course of studying regenerating nerves, it was
observed that complete lesion of the sciatic nerve during
a period of days to weeks would lead to self-injury to the
digits and distal extremities, formerly innervated by the
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sectioned nerve. Such autotomy has been observed after
complete sciatic section,'* crush,'” or cryolesions (tran-
sient freezing).'® Trunk lesions have been observed to
produce such autotomy in several species. This model
was proposed by Wall et al.'* to be a model of anesthesia
dolorosa in man. Complete trunk lesions have been re-
ported to yield other aberrant behaviors targeted at the
denervated limb in several species, including the mouse,
rat, rabbit, and primate.17 Importantly, lesions limited to
nerve trunk branches, such as the saphenous'® or the
tibial/common peroneal'®*° fail to produce autotomy.
The principle concern from the outset has been the con-
troversy as to whether this self-mutilation is an index of
a painful experience or an abnormal sensation (or even a
lack of sensation). Although controversial, considerable
evidence supports the conclusion that deafferentation
yields behaviors that are an index of the degree of dys-
esthesia that results from limb deafferentation, as re-
ported in humans.?'+*?

Several variables have been shown to influence auto-
tomy after nerve section, including gender (incidence of
autotomy is greater in males than in females),” strain®*
(autotomy is a single-gene recessive trait?®), and method
of section. Systematic comparison revealed that the low-
est incidence of autotomy after sciatic neurectomy was
noted after injury with a CO, laser, tight ligation, or
severance with scissors; comparatively, cryoneurolysis
and electrocautery yielded higher autotomy scores.?®

NERVE LIGATIONS

Currently, the most intensely investigated of the trau-
matic animal neuropathic pain models are those involv-
ing a surgical trauma/ligation of the sciatic, spinal, or
peripheral nerves. Axotomy and nerve crush were first
used to investigate effects of denervation and neuroma
development, but have been gradually superceded by
injuries, which only partially denervate the tissue and
involve the sympathetic nervous system to some extent.
The following sections will discuss the ligation models.
An interesting article to be considered is one by Dowdall
et al*’ who undertake a concurrent assessment in the
same laboratory of several of the models discussed be-
low using a variety of end points.

Chronic loose ligation

The Bennett or chronic constriction injury (CCI)
model was the first of these models.?® Surgical prepara-
tion involves placement of loose ligatures located 1 mm
apart on the mid-sciatic nerve. Ligatures are tied such
that flow through superficial epineural vasculature is re-
duced, but not eliminated. This procedure results in sci-
atic nerve swelling, a substantial loss of axons distal to
the ligatures and neuroma formation at the level of the
ligatures. Nerve swelling and pain behavior are enhanced

if the ligatures are chromic gut, as they contribute to the
immune component of the neuropathy.?® There is a ma-
jor loss of myelinated fibers followed by unmyelinated
fibers.**~*? Loss of myelinated fibers is usually reported
to outnumber that of unmyelinated fibers, although both
inspection of histology and examination of conduction
velocity may have confused demyelinated A fibers with
C fibers and thus, inflated their number. Growth cones
are present at the level of the ligatures and signs of
remyelination and fiber regeneration distal to the liga-
tures have been reported. In all cases, macrophage infil-
tration®” is believed to play a major role in the etiology
of the nociception. Variations of the procedure are per-
formed on branches of the trigeminal nerve.>*—® Pain
behavior and electrophysiological changes resulting
from CCI have been reported in rats, mice,?” and sub-
human primates.*®

Thermal hyperalgesia is the predominant presentation
of pain behavior, although both mechanical hyperalgesia
and cold allodynia are frequent. Bilateral CCI has been
used to model cold hyperalgesia.’® Pain behaviors last
between 2 weeks to 3 months, depending on the labora-
tory,”®4%4! and was first reported to be exclusively ipsi-
lateral.*> However, there are now reports of bilateral
pathological pain after CCI,*>** although initial reports
indicated only ipsilateral thermal hyperalgesia. Motor
deficits parallel loss of peripheral axons,** and motor
disturbances and damage to motor axons may extend to
the contralateral “noninjured” nerve.*® CCI clearly inter-
rupts local vasculature and blood flow is reduced be-
tween the ligatures; thus, CCI also has an ischemic com-
ponent.*” Nerve fiber abnormalities due to ischemia are
present within 8.5 h.*® Femoral artery ligation or strip-
ping of the epineural vasculature alone also results in
thermal hyperalgesia.*’

Several days after ligature placement, sympathetic ef-
ferent fibers grow into the DRG,* and their terminals
surround some neuronal somata in a basket-like struc-
ture.> This occurs prior to development of pain behavior.*’
Wallerian degeneration and macrophage infiltration are
necessary for sympathetic in-growth; manipulations that
either block or delay degeneration also reduce both sympa-
thetic sprouting and pain behavior,”' although this has
some modality specificity. Guanethidine treatment re-
duced cold allodynia and thermal sensitivity, and, to a
much smaller extent, mechanical hyperalgesia.’>>> Pain
behavior was first reported to not be influenced by gen-
der,?® but others have seen evidence of longer lasting
thermal, but not mechanical, hyperalgesia in females and
castrated males than in intact males rats.>*

After CCI, there is an early ipsilateral increase in
p-opioid binding in laminae I to II of the dorsal horn and
a bilateral increase in laminae V and X. All changes are
resolved within 10 days postinjury except for the in-
crease in lamina X. Delta and k-opioid binding show a
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progressive bilateral postinjury decrease compared to
basal.>> Backonja et al.’® reported that systemic mor-
phine dose dependently reversed thermal hyperalgesia in
this model for a 7-day period. This anti-hyperalgesic
effect of systemic morphine has been confirmed for cold
responses*’ and paw pressure.’’ Systemic administration
of u, 8, and k opiates is associated with reduction of
mechanical hyperalgesia.”’ Interestingly, both w and «
opiates exert a significant amount of their effects through
the peripheral tissue, as injection of receptor specific
antagonists into the paw reversed the antihyperalgesia.®
Notably, touch-evoked allodynia is insensitive to intra-
venously administered morphine.” In parallel, intrave-
nously administered morphine does not reduce light
touch-evoked Fos, but does reduce heat activated Fos in
the dorsal horn in CCI rats.’” Intrathecal administration
of morphine and oxycodone (k2b) produce a reversal of
tactile allodynia.®® Intrathecal morphine and DPDPE
([p-Pen?, 5-Pen’]-Enkephalin, a & opiate agonist), and to
a lesser extent U-50 (k agonist), reversed both thermal
hyperalgesia and mechanical allodynia.®’-*

Pre-emptive treatment of the nerve with lidocaine to
block the early injury induced discharge reduces both the
duration and magnitude of thermal hyperalgesia.®*** De-
pot placement of bupivacaine around the sciatic nerve
prior to injury, such that development of ectopic activity
is blocked for several days, totally prevented the devel-
opment of the pain behavior.®® Low-dose systemic lido-
caine, which achieves plasma levels too low to block
nerve conduction, reduces ectopic discharge from pe-
ripheral neuroma, DRG, and dorsal horn neurons after
CCI.°%°7 Systemic lidocaine effectively reduces cold al-
lodynia and thermal hyperalgesia after CCI, as does its
quaternary metabolite, CX-314.40-°®% Systemic admin-
istration of amiodarone, a longer acting sodium channel
blocker, was also effective in blocking mechanical, ther-
mal, and cold allodynia.’”® Spinal lidocaine, at doses that
work in a variety of other pain models, has been reported
to be without effect.”! However, Tian et al.””> have dem-
onstrated efficacy with higher doses, and thermal sensi-
tivity was more sensitive to lidocaine reversal than was
mechanical allodynia. In addition to changes in sodium
channel sensitivity, the injured nerve develops a P2-
receptor mediated sensitivity to ATP.”?

After CCI in mice, descending noradrenergic innerva-
tion of the spinal cord increases.’* Systemic clonidine is
highly efficacious in blocking cold allodynia in this mo-
del.*° Intrathecal tizanidine and other o2 adrenergic ago-
nists”> are effective in reversing cold and mechanical
hyperalgesia’® and thermal hyperalgesia.®? Pre-emptive
systemic clonidine blocks development of mechanical
hyperalgesia,”’ and post-treatment reverses thermal hy-
peralgesia.”®

Pre- and post-treatment with systemic nonsedating
doses of the dual norpinepherine/serotonin uptake in-
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hibitor venlafaxine respectively blocks or reverses the
development of thermal hyperalgesia.”® Intrathecal
milnacipran, a newer reuptake inhibitor, was anti-
allodynic.®*® Comparatively high doses of amitriptyline
block mechanical hyperalgesia.®' Intrathecal administra-
tion of a chi-conopeptide, Xen2174, reversed mechano-
allodynia through a related mechanism as it blocked the
norepinephrine transporter.®> The maximum effect was
better than that achieved with morphine.

Partial sciatic ligation

The Seltzer or partial sciatic nerve ligation model of
neuropathic pain is achieved by tight ligation of approx-
imately one third to one half of the sciatic nerve at the
level of the upper thigh, proximal to the sciatic notch.®?
Variations involving branches of the trigeminal nerve
have been successfully developed,®® and the tradi-
tional sciatic version is frequently used in mice.*® The
plantar surface of the ipsilateral foot develops guarding
behavior, whereas bilaterally there is an increased re-
sponse to repeated Von Frey hair stimulation, heat, and
pin prick, suggesting mirror image pain and a strong
sympathetic component. Pain behavior is more intense
on the side ipsilateral to the injury,®” and is said to last
for months.®® Levels of thermal hyperalgesia are quite
variable across different strains of rats (e.g., Lewis rats
develop disturbances only in mechanical sensitivity,*
whereas Fischer 344 rats develop only thermal allodynia
and hyperalgesia®®). Large myelinated fibers are believed
to mediate mechanical sensitivity, whereas C fibers me-
diate the thermal component.”’ Accordingly, both extra-
cellular signal-related kinase and Jun N-terminal kinase
MAP kinase phosphorylation in astrocytes has been
demonstrated in the terminal projection areas of both of
these fiber types (i.e., spinal dorsal horn and gracile
nucleus).”? Gender differences play a large role in this
model, and female rats have a significantly higher prob-
ability of developing pain behavior than males; this pro-
pensity is reversed with ovariectomy.’® The location at
which estrogen interacts to cause this enhancement is
unknown.

Sympathetic fiber sprouting occurs in both the DRG
and, to a greater extent, in the gracile nucleus. In the
DRG, basket-like structures encircle neurons with both
injured and uninjured axons.”* Chemical sympathectomy
eliminates the mechanical hyperalgesia and a2 antago-
nists relieve it.”

Pre-emptive treatment of the ligation site with lido-
caine is ineffective in blocking development of the ther-
mal hyperalgesia.®® Systemic lidocaine has no effect,”®
but equivalent doses of spinal lidocaine are reported to
be effective and greatly outlast effects in the sciatic nerve
ligation (SNL) model by days.”® Intrathecal clonidine is
highly effective both as a pre- and post-treatment in
relieving tactile hypersensitivity; interestingly, sub-ef-
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fective doses of clonidine are combined with spinal cord
stimulation to achieve anti-allodynia with a better side
effect profile.”’ Perineural clonidine at the nerve injury
site prevents upregulation of cytokines, particularly
tumor necrosis factor along the length of the neuraxis,
and mitigates the mechanical allodynia.”®*° Tricyclic
antidepressants (imiprimine and reuptake inhibitors
[paroxetine and milnacipran]) reduce both thermal and
mechanical hyperalgesia.®*'° Amitriptyline is also
effective as a post-treatment against thermal hyperal-
gesia.'!

Sciatic nerve ligation

The third surgical model of neuropathic pain is the
SNL model.'®* The L5 and L6 spinal nerves are tightly
ligated just distal to their respective ganglia. Common
variations include ligation of only L5, and combining
ligation with transection distal to the ligature. All varia-
tions are frequently referred to as SNL. The model was
first described as having an ipsilateral thermal hyperal-
gesia lasting more than 1 month and a much longer
lasting mechanical allodynia. Guarding behavior devel-
ops, which may be indicative of spontaneous pain. Oth-
ers have described an ipsilateral cold allodynia. More
recent articles document a contralateral mechanical and
cold allodynia that are delayed and of lesser magnitude
than that seen on the ipsilateral side.'®* Ligation of the
spinal nerves is more effective in producing allodynia
and guarding behavior in young rats than in old or ma-
ture animals.'® Transection of the spinal nerves, in ad-
dition to ligation, increases the pain behavior in the older
animals.'®®> Mechanisms responsible for generation of
the causalgia have been debated. One school of thought
is that the pain is caused by the intermingling of the
injured L5 and L6 fibers, with the intact fibers of the L4
spinal nerve within the sciatic nerve.'’'°” The idea is
that macrophage infiltration and local Schwann cell ac-
tivation release injury factors that are transported retro-
gradely to the cell bodies of the L4 ganglia. Certainly,
the SNL injury results in MAP kinase activation in the
L4 DRG, and chemical sensitization and ectopic activa-
tion of L4 neurons.'*® "' Transection of the L5 ventral
root, which results in Wallerian degeneration of large
myelinated axons within the sciatic nerve, also causes
allodynia of several weeks duration.''!'!?

Pain behavior resulting from SNL is reported to be
sympathetically maintained as surgical sympathectomy
permanently and sympathetic block by adrenergic antag-
onists reversibly causes a cessation of mechanical and
cold allodynia.'"*''* In addition, SNL induces sympa-
thetic sprouting into the dorsal root ganglia.''> However,
the sympathetic component of the model has been dis-
puted,''® and the belief now is that the sympathetic com-
ponent is influenced by not only the strain, but also,
perhaps, by the vendor-dependent substrain.'!” Variables

affecting ligation-evoked changes in pain thresholds
have included gender. In this respect, autotomy differs
from partial nerve ligation-induced neuropathy, because
the incidence of allodynia after spinal nerve ligation is
higher in female than male rats.''® However, this obser-
vation may be influenced by strain, because female
Sprague-Dawley but not Holtzman rats are reported to
develop greater mechanical allodynia than their male
counterparts. 1o

Systemic, but not local, lidocaine works effectively to
reverse tactile allodynia arising from SNL.'*° Systemic
administration of fluphenazine, an anti-psychotic that
also blocks Na+ channels, reduces ectopic activity in
afferent fibers and reverses mechanical allodynia.'?' Stri-
chartz reports that intravenously administered lidocaine
produces a partial but permanent reversal (plasma levels,
2.1 ug/mL plasma) of ipsilateral allodynia, whereas
lower plasma levels resulted in a temporary reversal
only. Contralateral allodynia, in this model, is reversed
only acutely by intravenously administered lidocaine at
even the highest plasma levels.®” In contrast to the lack
of efficacy of spinal lidocaine on SNL-induced allodynia,
reported by Chaplan, spinal mexiletene reduces Ad and
C fiber and von Frey hair-evoked responses in SNL, but
not sham animals,'** and anti-allodynia of spinal lido-
caine is reported by others.”® Interestingly, continuous
systemic lidocaine started before the lesion reduces sym-
pathetic sprouting into the L5 DRG.'?* This effect lasted
more than a week after cessation of treatment.

Systemic (intraperitoneal) and intracerebroventricular
morphine completely reverse mechanical allodynia gen-
erated by SNL.'?*!?° This has been shown to be specific
for the static component of allodynia (maintained appli-
cation of von Frey filaments) and not for withdrawal
evoked by a more dynamic stimulus (stroking with a
cotton applicator).'? In contrast, Kontinen et al.'?” has
reported no effect of systemic morphine, administered
either pre-emptively or as a continuous post-treatment,
on either mechanical or cold allodynia. Intrathecal ad-
ministration of w, 8, and k agonists are reported to be
without effect on rnechanoallodynia.125 However, in
electrophysiological studies, systemic morphine was less
effective than morphine administered via direct spinal
application in the inhibition of C-fiber, heat, and me-
chanical stimulation-evoked activity in dorsal horn neu-
rons'?® and intrathecal administration of morphine has
been shown to be effective in reversing mechanical al-
lodynia.'?

Intrathecal o2 agonists reverse SNL-induced mechan-
ical allodynia."*® This is substantiated by recent work
indicating that intrathecal a2 agonists exacerbate thermal
hyperalgesia after SNL."*! Chronic treatment with the
tricyclic antidepressants (desipramine and milnacipran)
attenuate mechanical and thermal allodynia.'**'?* Acute
treatment with milnacipran is effective in reversing ther-
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mal, but not mechanical sensitization.'3> Spinal admin-
istration of Xen2174 produces similar results to CCL

The spared nerve injury'® model is a lesion of the tibial
and common peroneal nerves, but spares the sural nerve.
This permits testing of skin containing no injured or
degenerating fibers. Thus, it does not result in close
proximity of injured and degenerating fibers with intact
axons in the periphery, although mixing does occur more
proximally in the sciatic nerve. The spared nerve injury
model produces an increased ipsilateral response to me-
chanical (both low- and high-threshold) and thermal (hot
and cold) stimuli within the sural distribution, and to a
lesser extent within the saphenous veins, which lasts
more than 6 months.'® The mechanical allodynia is more
prominent in hairy skin.'? Strain differences influence
the extent of the pain behavior (Lewis rats are least
affected), but all strains exhibit mechanical sensiti-
vity.'** Late sprouting of sympathetic fibers into the
DRG is documented at 8§ weeks post-injury, resulting
in basket structures around the neuronal stomata.”*'?
Surgical sympathectomy has no effect on either me-
chanical allodynia or hyperalgesia,'*>'* but greatly
attenuates the cold allodynia.'?®

Systemic morphine dose dependently reduces mechan-
ical allodynia and hyperalgesia, as well as cold allo-
dynia.'?*'3*137 Spinal morphine is also effective in
blocking mechanical allodynia.'**"'** However, De-
costerd et al.'*® found that systemic morphine, amitrip-
tyline, and carbamazepine produced only modest rever-
sal of mechanical and cold allodynia.

Early and sustained blockade of peripheral nerve ac-
tivity with bupivacaine for 1 week or more does not
block development of spared nerve injury; this points to
an initiating mechanism other than an afferent barrage of
neural activity.'*” In rats, systemic administration of lido-
caine and lamotrigine, as well as moderate doses of tocain-
ide (50 mg/kg), has no effect of mechanical or cold allo-
dynia or mechanical hyperalgesia; however, higher doses of
tocainide (75 mg/kg) and mexiletine (37.5 mg/kg) success-
fully reverse sensitivity to both mechanical and cold allo-
dynia.'**'*! Lamotrigine (30 and 60 mg/kg) and tocainide
(50 and 75 mg/kg) are both able to reverse mechanical
hyperalgesia.'*' Systemic fluphenazine attenuates tactile al-
lodynia and blocks ectopic discharge in primary afferent
fibers, presumably through its ability to block Na* chan-
nels.'*!

PLEXUS AVULSION

Plexus avulsions are surprisingly common after upper
torso injuries and typically result in severe pain states.'**
Unilateral avulsion of the brachial plexus in male Wistar
rats produced a long-lasting (through 90 days) bilateral
cold and mechanical allodynia with no change in loco-
motor activity.'*® In subsequent work, this group re-
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ported that systemic morphine, clonidine, ketamine, or
gabapentin reduced both mechanical and cold allodynia.
Celecoxib blocked mechanical allodynia, but not cold
allodynia, whereas lidocaine attenuated only cold allo-
dynia. Diclofenac, dexamethasone, or imipramine had no
effect.'*?

Nerve ischemia models

There are several models of nerve ischemia generally
performed on the sciatic nerve. Wiesenfeld-Hallin and col-
leagues developed an interesting version of photochemi-
cally induced ischemia on the rat'**~'*® and mouse'*’ that
involves intravenous injection of erythrosine B, a photosen-
sitizing dye, followed by exposure of a length of the sciatic
nerve and irradiating it with an argon ion laser for a pro-
scribed period of time. This results in long-lasting (up to
28 days for some modalities) bilateral mechanical and
cold allodynia and unilateral thermal hyperalgesia. In
general, ipsilateral pathological pain behavior was of
greater magnitude than contralateral, and the onset was
faster. Approximately 95% of the animals develop patho-
logical pain. Rats, but not mice, display signs of spon-
taneous pain.'*®*'*” Damage to myelinated axons and
Wallerian degeneration in ipsilateral nerve is extensive,
accompanied by macrophage infiltration and phagocyto-
sis of Schwann cells. Normal Remak bundles of unmy-
elinated axons are disturbed with only isolated axons
remaining. The contralateral nerve displays no axonal
injury or immune cell infiltrate. Despite the fact that the
extent of sciatic nerve damage is the same after focal
ischemia in several strains of rat, genetic strain greatly
affects development of pain behavior.'*® Extent of nerve
injury and behavioral abnormalities are dependent on the
duration of exposure to the laser.'*® After resolution of
pain behavior, all fiber types regenerate.'*® Spinal mor-
phine dose dependently inhibits mechanical and cold
allodynia, and spinal clonidine reverses hypersensitivity
to cold but not mechanical stimulation.'*

A major variation of sciatic nerve ischemia is hindpaw
ischemia and reperfusion. This induces long-lasting bi-
lateral mechanical allodynia and hyperalgesia, as well as
sensitivity to cold.'>® Mechanical allodynia in this model
within a few days of the injury can be reversed by
systemic administration of sympathetic antagonists, such
as guanethidine, phentolamine, clonidine, and prazo-
sin.’>! These treatments become ineffective several days
after the insult.

INJURY TO THE DRG

In humans, herniated discs or spinal stenoses, which
compress the adjacent root and DRG, can evoke pares-
thesias and leg pain.'>*> Mechanisms underlying this pain
state are complex, but reflect the mechanical and chem-
ical sensitivity of the DRG. Thus, the DRG, unlike the
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peripheral axon, has the ability to respond in a graded
fashion to mechanical distortion and to display persistent
activation secondary to the local release or application of
a variety of pro-inflammatory chemicals, such as prosta-
glandins, kinins, amines and cytokines. Compression in-
jury of the DRG leads to ongoing ectopic activity.'3*~'
Similarly, avulsion of the disc can lead to the local
release of disc products from the injured disc. Applica-
tion of nucleus pulposus products will initiate discharge
in the DRG. Furthermore, studies specifically examining
delivery of a pro-inflammatory product to the previously
compressed DRG yield an enhanced electrophysiological
response in DRG neurons.'>®

Compression of the DRG/root

Metal rods placed into the intervertebral foramen at L4
and/or L5 produced a thermal hyperalgesia and cold and
tactile allodynia during an extended 35-day postopera-
tive period. The tactile allodynia corresponds with the
ability of a cotton wisp to evoke a reflex withdrawal of
the hind paw. Sham surgeries were without persisting
effects.'>”-'>® Both unilateral and bilateral effects have
been reported. An alternate method is to use an epidural
catheter and a nylon rod." The spontaneous activity of
injured DRG cells is blocked by gabapentin without in-
terrupting spike transmission.

LAMINECTORY

After laminectomy, pain of the lower back along with
sciatica is frequently noted. In rats, a lumbar laminec-
tomy resulted in 8 weeks of paraspinous muscle spasm,
tail contracture, pain behavior, and tactile allodynia.
These observations correlated with epidural and nerve
root scarring, and nerve root adherence to the associated
disc and adjacent pedicle.'®

DISC INJURY

Annular tears in an intervertebral disc have been found
to correlate with low back pain in human patients.'®!-'¢
The mechanism of this pain state is not certain. Annular
injury may reflect activation of local sensory receptors in
the annulus or the sprouting of sensory axons into the
disc. Puncture of the L4 to LS discs resulted in increases
in defined pain behaviors, including “grooming” and
“wet-dog shakes.”'®*'®* Consistent with the role of ac-
tive factors arising from the ruptured disc, a behavioral
model has been developed wherein autologous nucleus
pulposus is placed onto the L5 DRG exposed by unilat-
eral facetectomy. This treatment resulted in marked am-
bulatory asymmetry and a preference to bear weight on
the contralateral limb at extended intervals after treat-
ment.'®

CONCLUSION

In the past 30 years, it has become increasingly ap-
preciated that mechanisms underlying pain states associ-
ated with nerve injury (e.g., painful neuropathies) may
well mediate a variety of pain states arising from a wide
variety of stimulus/treatment conditions. Thus, it is ap-
preciated that frank nerve injury will lead to a variety of
changes in the biology of the dorsal root ganglion cells of
the injured axon, such as, for example, an increase in the
expression of DRG activation transcription factor-3.'%°
In this regard, changes in DRG activation transcription
factor-3 expression have been observed not only after
nerve section and compression, but after chemical stim-
uli (paclitaxel'*”), in diabetes,'®” and even in some pe-
ripheral chronic inflammatory syndromes as diverse as
equine laminitis.'®® It is thus reasonable to expect that
many of these chronic states may lead to changes in
nerve function that lead to the encoding of a nociceptive
signal.
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