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Summary: Microglial activation is an early response to brain
ischemia and many other stressors. Microglia continuously mon-
itor and respond to changes in brain homeostasis and to specific
signaling molecules expressed or released by neighboring cells.
These signaling molecules, including ATP, glutamate, cytokines,
prostaglandins, zinc, reactive oxygen species, and HSP60, may
induce microglial proliferation and migration to the sites of injury.
They also induce a nonspecific innate immune response that may
exacerbate acute ischemic injury. This innate immune response
includes release of reactive oxygen species, cytokines, and pro-
teases. Microglial activation requires hours to days to fully de-
velop, and thus presents a target for therapeutic intervention with

a much longer window of opportunity than acute neuroprotection.
Effective agents are now available for blocking both microglial
receptor activation and the microglia effector responses that drive
the inflammatory response after stroke. Effective agents are also
available for targeting the signal transduction mechanisms link-
ing these events. However, the innate immune response can
have beneficial as well deleterious effects on outcome after
stoke, and a challenge will be to find ways to selectively
suppress the deleterious effects of microglial activation after
stroke without compromising neurovascular repair and remod-
eling. Key Words: NF-�B, AP-1, PARP-1, minocycline, in-
flammation, ischemia, TREM2.

INTRODUCTION

Stroke is a frequent cause of death and disability
worldwide. In ischemic stroke, cessation of blood flow
through a cerebral artery leads to energy depletion and
subsequent death of cells in the ischemic territory. Both
the ischemia per se and resulting cell death can induce an
inflammatory response, which can in turn injure other-
wise viable cells. 1,2 The inflammatory response can also
impair neurogenesis and other postischemic changes that
are thought to contribute to functional recovery after
stroke.3–5 Several interventions have been shown to re-
duce acute ischemic cell death in animal models of
stroke,6 but these are generally ineffective if not initiated
very soon after onset of ischemia. These interventions
have consequently been difficult to put into clinical prac-
tice, because the vast majority of stroke patients do not
present for medical care until many hours after symptom
onset. By contrast, brain inflammation develops over a
much slower time course, and is thus more amenable to
therapeutic intervention.
The innate immune response is a triggered by a variety

of signals that, unlike the adaptive immune response, do
not require antibody recognition. Microglia are the resi-
dent macrophages in brain, and they play a critical role in
the innate immune response.7–9 Microglia normally dis-
play an extremely ramified appearance, but when acti-
vated assume a more amoeboid morphology and express
surface markers that make them virtually indistinguish-
able from macrophages and circulating monocytes. Mi-
croglial activation is the initial step in the CNS inflam-
matory response; depending on the stimulus, this step
may be followed by infiltration of circulating monocytes,
neutrophils, and T-cells, and by reactive astrocytosis.10

Microglial activation is not, however, a univalent state,
and the morphological and gene expression changes as-
sociated with microglial activation vary enormously with
the nature, strength, and duration of the stimulus.11

Moreover, evidence suggests that microglia populations
in the brain are heterogeneous, and that these populations
may respond differently to similar stimuli.12

This review focuses specifically on aspects of mic-
roglia that contribute to ischemic injury. It is important,
however, to place this approach in context. Although
there is now strong evidence that the inflammatory re-
sponse can exacerbate ischemic injury,13–18 there is also
evidence that some aspects of the inflammatory response
are important for tissue repair. These aspects include
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phagocytosis of cell debris, remodeling of the extracel-
lular matrix, and the release of cytokines and trophic
factors.5,19,20 These beneficial aspects of the microglial
response are beyond the scope of the present review, but
they must be considered in contemplating the net effect
of manipulations that influence microglial activation.
Temporal factors may be particularly crucial in this re-
spect, because some evidence suggests that the cytotoxic
aspects of inflammation are most important in the first
few days after stroke, and that the salutary effects be-
come more important later on.5,20 An additional caveat is
that microglia do not act in isolation, but rather in concert
with infiltrating immune cells from the blood stream,
astrocytes, and other cells of the brain parenchyma.

Thus, our focus here on microglia is primarily an orga-
nizational approach.
Factors influencing microglial contribution to isch-

emic injury may be divided into three components, in
analogy to a reflex loop (FIG. 1). The first of these is an
afferent limb, whereby microglia detect ischemic cell
injury and related alterations in brain homeostasis; the
second is a signal transduction limb, in which these
signals are integrated and transduced into genomic or
other signals; and the third is an effector limb, whereby
microglia directly or indirectly contribute to bystander
cell death. In this review we consider these components
in reverse order, beginning with the efferent, cytotoxic
limb.

FIG. 1. Microglial responses to cerebral ischemia can be conceptualized in terms of three components: a sensory component, involving
detection of extracellular signals by an array of cell-surface and intracellular receptors; a signal transduction component, whereby these
signals influence gene expression in ways that are dependent on the intensity, duration, and types of signals detected; and an effector
component, whereby numerous proinflammatory responses can be activated. For simplicity, many additional factors and interactions
between factors are omitted here. AP-1 � transcription factor AP-1 (activator protein 1); COX2 � cyclooxygenase 2;
Cx32 � connexin-32 (gap junction beta-1 protein); CX3R1 � fractalkine receptor; EAAT � excitatory amino acid transporter; EP2 �
prostaglandin E2 receptor; ERK � extracellular signal-regulated kinase; HMGB1 � high-mobility group box 1; HSP � heat shock
protein; iGluR � ionotropic glutamate receptor; IFN� � interferon �; IL � interleukin; iNOS � inducible nitric oxide synthase; JNK �
c-Jun N-terminal kinase; MAPK � mitogen-activated protein kinase; MIP � microtubule interacting protein; MMP � matrix metallo-
proteinase; mGluR � metabotropic glutamate receptor; NF-
B � nuclear factor 
B; NO � nitric oxide; NOX � NADPH oxidase;
P2X7 � P2X purinoreceptor 7; PARP-1 � poly(ADP-ribose) polymerase 1; PGE2 � prostaglandin E2; PKC � protein kinase C; PLC �
phospholipase C; PPAR� � peroxisome proliferator activated receptor �; TLR4 � Toll-like receptor 4; TNF	 � tumor necrosis factor 	;
TNFR � tumor necrosis factor receptor; TREM2 � triggering receptor expressed on myeloid cells 2.
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MECHANISMS OF MICROGLIAL
CYTOTOXICITY IN ISCHEMIA

Microglia, like macrophages, have a repertoire of re-
sponses that facilitate rapid sequestration and killing of
invading microorganisms and limit the effects of trauma
and cell necrosis.11 These responses include rapid mi-
gration, proliferation, and the release of superoxide, ni-
tric oxide (NO), proteases, and cytokines. Some of these
responses may be counterproductive after stroke and thus
provide potential therapeutic targets.

Superoxide production
Superoxide is produced by the partial reduction of

molecular oxygen to form O2
�. Superoxide in turn reacts

with other molecules to produce more highly reactive
oxygen species, such as peroxynitrite, hypochlorous
acid, carbonyl radical, and hydroxyl radical, all of which
are directly cytotoxic to neurons and other cells. Super-
oxide and these other reactive species also promote mi-
croglial activation in a feed-forward manner.21,22 The
production of superoxide by microglia occurs primarily
by NADPH oxidase (NOX), of which several isoforms
have been characterized.23,24 Of note, glucose availabil-
ity can be rate-limiting for NADPH production, and thus
for superoxide production, and this provides a mecha-
nism by which hyperglycemia can exacerbate injury dur-
ing ischemia or inflammation.25,26

Recent work has shown that microglia can potentiate
injury to blood–brain barrier constituents (astrocytes and
endothelial cells) via NOX-mediated superoxide in cell
culture models of ischemia.13 In addition, several groups
have shown that mice deficient in the gp91 subunit of
NOX2 have smaller infarcts than do wild-type mice,27–29

and that outcomes from experimental cerebral ischemia–
reperfusion are improved with early administration of the
pharmacological NOX inhibitors apocynin29–33 and
honokiol.34,35 These results identify NOX as a promising
target for therapeutic intervention, but it is possible that
the efficacy of these treatment strategies may be due
largely or in part to inhibition of NOX in cell types other
than microglia.25 There are as yet no published studies
addressing the efficacy of NOX inhibitors administered
at delayed time points after ischemia, in a manner selec-
tively targeting the inflammatory response.

Nitric oxide
Activated microglia produce NO by upregulating the

expression of inducible nitric oxide synthase (iNOS).
Brain ischemia causes an upregulation of iNOS and in-
creased NO production.36,37 The cytotoxicity of NO is
thought to be due primarily to its reactive metabolite,
peroxynitrite, which is formed by reaction with superox-
ide.38 Pharmacological inhibition of iNOS with amino-
guanidine reduces infarct volume in mice,37 and iNOS-
null mice have smaller infarcts and better neurologic

outcomes than wild-type control animals.39 Hypothermia
after ischemia likewise reduces microglial iNOS expres-
sion and NO production.40 As with NOX inhibitors,
however, iNOS inhibitors have not yet been evaluated
for use at delayed time points after ischemia in a manner
that would provide sustained suppression of inflamma-
tion-induced NO production.

Matrix metalloproteinases
Matrix metalloproteinases (MMPs) are proteases that

can break down extracellular proteins, such as collagen,
and are involved in extracellular matrix remodeling. Nor-
mally found in the cytosol in an inactivated state, MMPs
are cleaved by proteases such as plasmin or other MMPs
to their active state.41 Some MMPs, notably MMP-9,
also have direct cytotoxic effects and can disrupt the
blood–brain barrier.42 Microglia are the major source of
MMP release following ischemia, especially MMP-3 and
MMP-9.43,44

In experimental stroke models, acute MMP inhibition
reduces infarct size, brain edema, and recombinant tissue
plasminogen activator–induced hemorrhage,45 and mice
deficient in MMP-9 or MMP-3 have reduced ischemic
injury relative to wild-type controls.46,47 However, pro-
longed inhibition of MMPs after ischemia may have
deleterious effects on functional recovery, because these
proteases are important in neurovascular remodeling af-
ter stroke.20 Minocycline protects against permanent ce-
rebral ischemia in wild-type but not in MMP-9–deficient
mice, suggesting this as a mechanism by which minocy-
cline exerts its neuroprotective effect.48 Doxycycline
also suppresses postischemic MMP-9 activity,49 and
both direct and indirect pathways for MMP-9 inhibi-
tion by minocycline and doxycycline have been de-
scribed.50,51

Glutamate
Microglia can release glutamate through hemichan-

nels, by reversal of glutamate uptake, and by upregulat-
ing glutaminase.52 This release can produce neuronal
death in culture and in ex vivo slice preparations.52,53

Glutamate release from microglia might thus contribute
to ischemic brain injury,54 but the effect of glutamate
release from microglia is likely to be small relative to the
effects of neuronal glutamate release and failure of as-
trocyte glutamate reuptake that occur during brain isch-
emia. Nonetheless, glutamate release from chronically
activated microglia in the postischemic period could con-
tribute to delayed neuronal death at infarct margins or
after transient ischemia. Microglia can also take up glu-
tamate,55 but the net effect of this uptake relative to
rapid, high-capacity astrocyte uptake is unknown.

Chemokines, cytokines, and trophic factors
Resting microglia release a variety of chemokines and

cytokines, and the pattern of this release is dramatically
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altered after ischemia.56 These factors function primarily
as intercellular signaling molecules, and many have feed-
forward effects in driving the inflammatory response.
Some, such as tumor necrosis factor � (TNF�), can also
have direct cytotoxic effects57 and promote disruption of
the blood–brain barrier.58 Microglia also release a num-
ber of neurotrophic factors, and there is evidence that
trophic factors released from microglia are important in
maintaining neuronal integrity after an ischemic in-
sult.59–61 These observations highlight the complexity of
the microglial innate immune response and the potential
problems inherent in unselective inhibition of this re-
sponse.

SIGNALING PATHWAYS DRIVING
MICROGLIAL ACTIVATION IN ISCHEMIA

Microglia continuously monitor the extracellular
space and adjacent cell surfaces for evidence of homeo-
static perturbations. Almost any change in these is capa-
ble of inducing microglial activation, but certain factors
appear to be of salient importance in ischemia and have
discrete signaling pathways.

Purinergic receptors
Purinergic receptors have emerged as key sensors of

brain injury. Of the numerous purinergic receptors iden-
tified, P2X7 and P2Y12 have been best characterized in
this respect, but P2X4 and adenosine receptors also con-
tribute.62 The P2X7 receptors are expressed by resting
microglia, and this expression is upregulated after brain
injury.63 Activation of P2X7 receptors triggers microglia
proliferation,64,65 superoxide production,66 release of in-
terleukin 1� (IL-1�),67,68 and release of TNF�.64,69

However, microglia also exhibit reduced phagocytosis
during P2X7 receptor stimulation.

70 Activation of micro-
glial P2Y12 receptors leads to process extension and
subsequent microglia migration toward the stimulus
source through interactions with integrin-�1.71,72

Both P2X7 and P2X12 receptors respond to ATP as an
endogenous agonist. It has been postulated that ATP is
released into the extracellular space as a result of tissue
injury, but it is unlikely that this occurs simply as a
passive result of membrane disruption. Ischemic injury,
for example, produces energy failure and ATP depletion,
and ATP released into brain extracellular space is
quickly degraded by exonucleases.73 Thus, an active,
ongoing release of ATP is more likely to be the stimulus
source acting on microglial purinergic receptors. A feed-
forward, ATP-induced release of ATP from astrocytes is
one possible mechanism.74

Experimental studies have shown that P2X7 antago-
nists reduce injury and postinjury inflammation when
administered acutely after spinal cord injury75 or
stroke.76 However, there is also report of stroke exacer-

bation by P2X7 antagonists.
77 These studies are intrigu-

ing, but their interpretation is complicated because these
antagonists may also affect other purinergic receptors at
the concentrations achieved in vivo, and cell types other
than microglia express P2X7 and other purinergic recep-
tors.

Toll-like receptors and high-mobility group
box 1 protein
Innate immune responses are frequently mediated by

Toll-like receptors (TLRs), a family of transmembrane
proteins involved in the recognition of and defense of
microbials. Toll-like receptors are found on a several cell
types in the CNS, including microglia. Microglia are
activated following stimulation of TLR4, which in turn
leads to the upregulation of several proinflammatory
genes. Work in neonatal mice suggests that TLR4 is
necessary for microglial activation following hypoxia/
ischemia,14 and several groups that have shown that
TLR4-deficient mice have better neurological outcomes
following experimental stroke.78–81

How TLRs are activated in stroke is not precisely
known, but endogenous ligands include hyaluronic acid,
fibronectin, heat shock proteins (HSP), and heparin sul-
fate. In stroke models, HSP60 has been shown to activate
TLR4 and contribute to brain injury.82 Toll-like recep-
tors have also been implicated in the phenomenon of
tolerance, whereby stimulation of one or more of these
receptors with ligands such as lipopolysaccharide
(TLR4) or CpG (TLR9) led to protection from subse-
quent lethal insults.83–86 Mice lacking these receptors
failed to achieve tolerance,83 but the role for microglia in
this process remains to be established.
The high-mobility group box 1 (HMGB1) protein is

another endogenous agonist at TLR2 and TLR4 recep-
tors. HMGB1 is normally localized to the nucleus in all
cells, where it functions as a nuclear protein involved in
enhancing transcription.87 However, necrotic cell death
induces active release of HMGB1,88,89 and antibody to
HMGB1 reduces injury in experimental stroke.90

Chemokine and cytokine receptors
Chemokines are a family of regulatory polypeptides

with roles in cellular communication and inflammatory
cell recruitment. Fractalkine, a neuronally expressed che-
mokine, acts through its G-protein-coupled receptor
CX3C. Following ischemia, its expression has been lo-
calized to viable neurons in the infarct periphery as well
as some endothelial cells.91 Fractalkine is constitutively
expressed in the CNS, mainly by neurons, and is upregu-
lated and released in response to proinflammatory stim-
uli.92 Expression of the fractalkine receptor, CX3CR1, is
observed only on microglia and macrophages, suggesting
that fractalkine is involved in neuron–microglial signal-
ing.91 Mice deficient in fractalkine93 or its microglial
receptor94 have smaller infarct sizes and better functional
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outcomes. CX3CR1 antagonists are currently under de-
velopment.95,96

Prostaglandin receptors and nonsteroidal
anti-inflammatory drugs
Prostaglandins (PGs) are potent autocrine and para-

crine oxygenated lipid molecules. Prostaglandins, espe-
cially PGE2, contribute to cell injury in ischemia and in
some neurodegenerative diseases. PGE2 signaling is me-
diated by interactions with four distinct G protein-cou-
pled receptors, EP1–EP4, which are differentially ex-
pressed on neuronal and glial cells throughout the CNS.
Activation of EP2 has been shown to mediate microglia-
induced paracrine neurotoxicity.97 There are currently no
selective EP2 antagonists available, but the production of
PGE2 can be inhibited by a variety of compounds such
as aspirin and indomethacin, which are termed nonste-
roidal anti-inflammatory drugs (NSAIDs).98 NSAIDs
have been shown to suppress the effector molecules pro-
duced by lipopolysaccharide activation of microglia pri-
mary cultures. In addition, primary microglia cell cul-
tures prepared from EP2�/� mice exhibit reduced
secretion of proinflammatory cytokines and chemo-
kines.99 Thus, EP2 antagonists appear to be an attractive
target for suppressing deleterious effects of inflammation
after stroke. A complicating factor, however, is that an-
tagonists at neuronal EP2 receptors can impair neuronal
survival.98

Glutamate receptors
Microglia in culture express several subtypes of glu-

tamate receptors, including subunits of the AMPA recep-
tor, kainate receptor, and NMDA receptor.100–104 They
also express all three groups of metabotropic receptors:
group I (mGluR5),105 group II (mGluR2 and 3),106,107

and group III (mGluR4, 6, and 8).106,108 Stimulation with
either glutamate or with ionotropic glutamate receptor
agonists induces microglial proliferation, morphological
changes characteristic of microglial activation, and re-
lease of IL-1�, TNF�, NO, and ATP.100,101,104,109 Con-
versely, activation of most mGluR types inhibits mic-
roglial inflammatory responses,107,110–112 with the ex-
ception that mGluR2 activation promotes microglial
neurotoxicity.106,107

Microglia expression of glutamate receptor subtypes in
vivo has not been extensively characterized, but protein
expression of mGluR1, mGLuR2/3, and mGluR8 has
been reported in microglia surrounding human multiple
sclerosis lesions,113 and expression of ionotropic gluta-
mate receptors has been detected in reactive microglia in
damaged areas of the hippocampus following isch-
emia.114 The acute administration of an mGluR5 agonist
after experimental stroke or spinal cord injury is neuro-
protective,115,116 and an mGluR5 agonist was also shown
to reduce microglial activation in the spinal cord injury
study,116 suggesting that the neuroprotective effect of

these agents may be attributable to the suppression of
microglial activation.

TREM2
TREM2 is a newly identified molecule involved in

innate immunity. It was originally characterized by its
ability to bind pathogens such as bacteria and initiate
phagocytosis.117 It has been described on activated mac-
rophages and microglia,118–120 and binds to one or more
ill-defined ligands on eukaryotic cells including neurons
and astrocytes.121–123 More recent work suggests that
one such ligand might be HSP60,122 a mitochondrial
stress protein that can move to the cell surface under
appropriate conditions.124 Stimulation of HSP60 stimu-
lates phagocytic activity of TREM2 expressing micro-
glia, but not of TREM2 deficient microglia.122 When
bound to a ligand, TREM2 engages its adapter protein,
DAP12, which then recruits and activates the tyrosine
kinase Syk,120,125,126 leading to downstream signaling
through pathways including phosphatidylinositol 3-ki-
nase (PI3K), phospholipase C�1, and p44–p42 extracel-
lular signal regulated kinase (ERK), but not through
classical inflammatory pathways such as nuclear factor
�B (NF-�B) and the p38 stress-activated protein ki-
nase.127,128

TREM2 has been shown to mediate phagocytosis of
apoptotic neurons.121 TREM2 binding activates micro-
glia to phagocytose injured cells without stimulating a
typical inflammatory response or the release of reactive
oxygen species. Conversely, loss of TREM2 impairs
phagocytosis and promotes inflammation.119 Blockade
of TREM2 using a monoclonal antibody in experimental
autoimmune encephalomyelitis led to exacerbation of
immune responses with increased demyelination and
worsened neurological function.129 Although it has not
yet been reported in brain ischemia models, these find-
ings suggest that TREM2 may similarly regulate micro-
glial phagocytosis and inflammatory responses in post-
ischemic brain.

Zinc
Zinc is involved in the pathogenesis of several diseases

affecting the CNS.130 In mammalian brain, zinc is con-
centrated in the presynaptic vesicles of a subset of glu-
tamatergic axon terminals.131 These axon terminals are
distributed throughout the forebrain, and are particularly
dense in hippocampus and in cerebral cortex.132,133 Ve-
sicular zinc is released into the extracellular space in a
calcium-dependent manner during normal neuronal ac-
tivity,134,135 and is massively released, along with pro-
tein-bound zinc, in many pathological conditions.130,136

Treatment with zinc chelators has been shown to reduce
neuronal death in animal models of cerebral ischemia,
trauma, hypoglycemia, and neurodegenerative disor-
ders.137–142 These effects may be due in part to suppres-
sion of zinc-mediated microglial activation. Zinc has
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been shown to induce activation of microglia in culture
and in brain, and injection of the zinc chelator CaEDTA
prevents ischemia-induced microglial activation.22 The
mechanism of this effect appears linked to the more
general effect of oxidant stress on microglial and mac-
rophage activation.21 Zinc has been shown to upregulate
NADPH oxidase in these cells, and the effect of zinc on
microglial activation is blocked in the absence of
NADPH oxidase activity.22 The effect of zinc is also
blocked by inhibiting activation of poly(ADP-ribose)
polymerase 1 (PARP-1) or translocation of NF-�B trans-
location, thus linking the zinc effect to established path-
ways of microglial activation.22

SIGNAL TRANSDUCTION EVENTS LINKING
STIMULI TO MICROGLIAL ACTIVATION

Microglia responses to activating stimuli are modu-
lated by the type, intensity, duration, and combination
of stimuli present.11 These factors are integrated
through several signal transduction pathways to influ-
ence changes in gene expression. Interventions that block
these signal transduction pathways are among the most
effective agents available for suppressing microglial ac-
tivation. Microglial activation is undoubtedly also influ-
enced by one or more processes other than altered gene
expression, but much less is presently known about these
pathways in the setting of brain ischemia.

Mitogen-activated protein kinase (MAPK) cascade
Mitogen-activated protein kinases play an important

role in transducing stress-related signals through a cas-
cade of intracellular kinase phosphorylation and tran-
scription factor activation.143,144 Three interlinked sig-
naling pathways are activated by cerebral ischemia: the
stress-activated protein kinases/c-Jun N-terminal kinases
(SAPK/JNK), the p38 MAPKs, and the extracellular sig-
nal-regulated kinases (ERKs).144–146 All three of these
pathways have been described in activated immune cells,
including microglia. p38 MAPK promotes the stabiliza-
tion and enhanced translation of mRNAs encoding proin-
flammatory proteins.147 Activated (phosphorylated) p38
has been demonstrated in microglia in animal models of
brain ischemia,146,148,149 and pharmacological inhibition
of p38 with the compound SD-282 decreased the number
of activated microglia in ischemic brain.150 The MAPK/
ERK signaling pathway may also regulate inflammation
through its effects on PARP-1 activation, which (as de-
tailed later in this review) is an important modulator of
proinflammatory gene expression.151 Pharmacological
inhibition of both the p38152,153 and the MAPK/ERK154

signaling pathways improves outcomes in a mouse
model of ischemia–reperfusion, but the extent to which
these effects are due to reduced inflammation has not
been established.

NF-�B and AP-1
NF-�B is a dimeric transcription factor consisting of

subunits of the Rel family.155 The most common form of
NF-�B is a heterodimer composed of Rel A (p65) and
p50. NF-�B is normally located in the cytoplasm bound
to its endogenous inhibitor protein, known as I�B. Phos-
phorylation of I�B by I�B kinase (IKK) leads to I�B
phosphorylation, ubiquitination, and degradation. This
liberates NF-�B and allows it to translocate to the nu-
cleus, where it binds to specific domains (the �B do-
mains) of gene promoter regions. Many genes involved
in inflammation contain functional �B domains, includ-
ing TNF-�, intercellular adhesion molecule-1 (ICAM-1),
cyclooxygenase-2 (COX-2), iNOS, and IL-6.155 NF-�B
also drives microglial morphological activation.22 Mice
deficient in the NF-�B p50 subunit have reduced brain
injury after experimental stroke.156 Similar observations
were made using deletion of the I�B kinase.157 In global
ischemia, neuronal damage was significantly attenuated
by introducing NF-�B decoy oligodeoxynucleotides into
rat brain neurons through the carotid artery.158 Others,
however, have observed deleterious effects of NF-�B
inhibition: constitutive activation of I�B kinase to pro-
mote nuclear translocation of NF-�B increased infarct
size,157 and rats given diethyldithiocarbamate, an NF-�B
inhibitor, also had larger infarct size, compared with
controls.159 The reasons for these discrepancies are not
clear, but may stem from the fact that NF-�B has pro-
survival effects in neurons and other cell types.160 Nev-
ertheless, microglial NF-�B activation in brain ischemia
appears to be largely neurotoxic.
AP-1 is another transcription factor known to promote

microglial activation. AP-1 is a heterodimer comprised
of c-Fos and c-Jun family proteins, which form dimers
consisting of various subunits depending on the circum-
stances. These dimers bind to specific DNA regions, the
AP-1 domains, which regulate the expression of a num-
ber of target genes (collectively referred to as late re-
sponse genes).161 Like NF-�B, the activation of AP-1 in
microglia drives a proinflammatory response and the
release of several cytotoxic agents.162–164

PPAR�
The peroxisome proliferator activated receptor �

(PPAR�) is a ligand-activated transcription factor that
forms heterodimers with retinoid X receptor in the cy-
tosol, translocates to the nucleus, and binds to PPAR
response domains in promoter regions of target genes.
Target gene transcription may be either induced or sup-
pressed by PPAR� binding, depending on whether it is
bound to an activating ligand.165 The primary endoge-
nous ligand for PPAR� is 15-deoxy-prostaglandin J2
(15d-PGJ2), and several synthetic ligands such as thia-
zolidinedione have now been generated.
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PPAR� expression in healthy brain is most prominent
in glial cells,166 but occurs also in neurons.167,168 PPAR�
expression in primary microglia cells is downregulated
upon microglial activation, but introduction of the natu-
ral ligand, 15d-PGJ2, restores PPAR� expression and
PPAR� DNA binding.169 Treatment with either natural
or synthetic PPAR� ligands suppresses iNOS and MHC
class II expression, inhibits COX-2 activity, and sup-
presses synthesis of PGE2, NO, TNF�, IL-1�, and IL-6
by cultured microglia.169–172 The anti-inflammatory ef-
fect of 15d-PGJ2 is mediated at least in part through
suppression of STAT expression and a resultant increase
in I�B expression, leading to decreased nuclear translo-
cation of NF-�B and thus decreased NF-�B transcription
activity.169,173 Moreover, at high concentrations 15d-
PGJ2 induces apoptosis in activated microglia.172

Cerebral ischemia increases PPAR� expression in neu-
rons and microglia, but at the same time DNA binding of
PPAR� is reduced.174 DNA binding is restored by
PPAR� ligands,170,174,175 and these agents have been
shown to reduce ischemic injury in rodent stroke mod-
els.176 Treatment with PPAR� ligands reduces microglia
and macrophage activation and migration to the peri-
infarct regions,177,178 attenuates the expression of
ICAM-1, MMP-9, IL-1�, COX-2, TNF�, and iNOS, and
suppresses production of reactive oxygen species.177,179

Nurr1 and progranulin
Nurr1 is considered an orphan nuclear receptor. Nurr1

exerts anti-inflammatory effects by docking to NF-�B-
p65 on target inflammatory gene promoters in a signal-
dependent manner. Subsequently, Nurr1 recruits the
CoREST corepressor complex, resulting in clearance of
NF-�B p65 and transcriptional repression.180 Reduced
Nurr1 expression results in exaggerated inflammatory
responses in microglia.180

Progranulin is similarly expressed by macrophages
and by microglia in brain. Macrophages from progranu-
lin-deficient mice release less IL-10 and more inflamma-
tory cytokines when exposed to bacterial lipopolysaccha-
ride. Progranulin-deficient macrophages and microglia
are cytotoxic to hippocampal cells in vitro, and progranu-
lin-deficient hippocampal slices are hypersusceptible to
deprivation of oxygen and glucose.181 The role of Nurr1
and progranulin in postischemic inflammation has not
been reported.

Glucocorticoids
Glucocorticoids are endogenous immunosuppressants

and are also widely used as pharmacological agents.
Glucocorticoids bind to a cytoplasmic receptor that then
alters gene expression in at least two ways. One way is
by binding directly to DNA and acting as a transcription
factor, promoting expression of proteins such as protein
inhibitor of NF-�B. A second way is by binding to and
interfering with actions of other transcription factors,

such as NF-�B and AP-1.182 Glucocorticoids can sup-
press ischemia-induced microglial activation in vivo183

and prevent microglia from inducing T-cell proliferation
and Th1 responses.184 However, this anti-inflammatory
effect has not been shown to consistently reduce brain
injury in experimental studies, and in some studies it
worsened injury.185 These discrepancies may be due to
other effects of glucocorticoids, such as potentiation of
excitotoxicity and impaired glucose transport into neu-
rons.186,187 There have been 22 clinical studies of glu-
cocorticoid use in brain ischemia. A Cochrane review of
seven of these trials that met prespecified criteria indi-
cated that there was insufficient evidence to support their
use.188

Other factors that influence proinflammatory gene
transcription
Several agents with neuroprotectant effects have been

associated with NF-�B blockade as a mechanism of ac-
tion. These include HSP-70, pyruvate, sirtuins, PARP
inhibitors, and minocycline.

Heat shock protein 70. A member of the stress-
induced protein family, heat shock protein-70 (HSP-70)
was originally identified as a chaperonin involved in the
refolding of denatured proteins.189 Several studies have
shown a protective role of HSP-70 in brain injury mod-
els, and it was subsequently shown that HSP-70 also
suppresses ischemia-induced microglial activation and
has anti-inflammatory effects in brain ischemia.190 This
effect extends beyond ischemia, in that HSP-70 overex-
pression also inhibits bacterial lipopolysaccharide-in-
duced cytokine production.191

HSP-70 is induced in a variety of CNS cells including
microglia following experimental stroke.192 Using cocul-
tures of astrocytes and microglia, HSP-70 transgenic mi-
croglia cultured with wild-type astrocytes experienced
less injury to oxygen glucose deprivation (OGD) than
did wild-type microglia cultured with wild-type astro-
cytes.193 In a transgenic mouse model of HSP-70 over-
expression, protection from experimental stroke was
associated with decreased microglial activation.193

Protein binding studies suggest that this is due to
HSP-70 binding to the NF-�B complex and blocking
I�B phosphorylation.193

This anti-inflammatory may be due to the ability of
HSP-70 to inhibit NF-�B activation. HSP-70 can interact
with IKK, thereby preventing I�B phosphorylation and
activation.193,194 Glial cells exposed to heat shock or
transfected with HSP-70 showed less nuclear NF�B
translocation and less iNOS expression (NF�B-regulated
protein) when treated with bacterial lipopolysaccha-
ride.195 Similarly, in brain inflammation elicited by bac-
terial lipopolysaccharide and cytokine injection, prior
heat stress led to less microglial activation and less
NF�B activity.196
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Pyruvate. A final metabolite in glycolysis, pyruvate
has recently been shown to have salutary effects in brain
ischemia.197–200 The mechanism of this protective effect
is unclear, but it has been correlated with reduction in
microglial activation and suppression of proinflamma-
tory cytokines following focal cerebral ischemia. At the
in vitro level, ethyl pyruvate (a prodrug form of pyruvate
with improved brain penetrance) was found to inhibit
NF-�B activation in both cultured microglia and
RAW 264.7 cells through a modification of the p65
subunit.201–203 Ethyl pyruvate also reduced mortality and
reduced circulating levels of HMGB1 in a model of
lethal sepsis.202 Further, pyruvate was also shown to
inhibit microglial NF-�B activation in rats given bacte-
rial lipopolysaccharide, which causes transient micro-
glial activation independent of any cell death.200 Thus,
pyruvate may directly inhibit microglial activation.

Sirtuins. The sirtuins belong to the class III his-
tone deacetylase family and include seven members,
SIRT1–7. Sirtuins require NAD� as a cofactor to
deacetylate lysine residues on histones and other sub-
strates, including NF-�B. SIRT1 deacetylation of the
p65 NF-�B subunit inhibits NF-�B transcription com-
plex formation.204 Microglia overexpressing SIRT1 have
reduced NF-�B activity and exhibit reduced neurotoxic-
ity upon amyloid-� stimulation.205 Conversely, SIRT1
inhibition or depletion in macrophage cultures has
been shown to increase MMP-9 expression and TNF�
secretion via promotion of NF-�B transcriptional
activity.206,207

Cerebral ischemia results in altered SIRT1 protein and
activity levels in brain.208 Sirtuin activity is reduced
within the first 6 hours after ischemic injury, but is then
is increased at 12 and 24 hours. Resveratrol, a potent
SIRT1 activator, has neuroprotective effects in cerebral
ischemia,209–211 but whether this effect is mediated
through actions on microglia remains to be established.

PARP inhibitors. Poly(ADP-ribose) polymerase-1
(PARP-1) is an abundant nuclear enzyme involved in
both DNA repair and transcriptional regulation.212

PARP-1 activation can be detected in activated microglia,
and PARP-1 depletion or inhibition prevents microglial
morphological transformation, proliferation, migration to
injury site, release of cytokines, reactive oxygen species,
and MMP-9.22,213,214 PARP-1 interacts with NF-�B, AP-1,
and other proinflammatory transcription factors.215–217

PARP-1 enzymatic activity is required for NF-�B–me-
diated gene transcription and for many of the inflamma-
tory responses in microglia.22,214,218,219

Several PARP inhibitors are now commercially avail-
able. Most of these do not discriminate well between
PARP-1 and several of the other PARP species, but
studies using PARP-1�/� cells indicate a major, though
perhaps not exclusive role for the PARP-1 isoform in
microglial activation.213,214,220 In microglia–neuron co-

cultures, both PARP inhibition and PARP-1 genetic de-
ficiency prevent the neurotoxicity resulting from TNF�-
induced microglial MMP-9 release.214 PARP-1 also
induces nuclear to cytosol translocation of HMGB1 from
dying cells.89 Neuronal HMGB1 release has shown to
promote inflammation and increase ischemic injury.88

Immunohistochemical studies of brain infarcts in hu-
man brain show PARP activation in microglia up to 3
weeks after an ischemic insult.221 Several studies using
animal models have shown a reduction in poststroke
microglial activation by acute administration of PARP
inhibitors,222,223 but this anti-inflammatory effect is dif-
ficult to interpret, given that acute administration of
PARP inhibitors also has a neuroprotective effect224–226

that could independently reduce the subsequent inflam-
matory response. Nonetheless, PARP-1 inhibition begun
2 days after ischemia to selectively target the inflamma-
tory response also reduced microglial activation and im-
proved long-term outcomes,227 suggesting a direct effect
on poststroke inflammation in vivo.
Of note, minocycline is an extremely potent PARP-1

inhibitor,51 and the anti-inflammatory effects of minocy-
cline may be attributable to this effect on PARP-1. Mi-
nocycline was shown to suppress microglial activation
and improve neuronal survival after brain isch-
emia.228,229 Minocycline and other PARP-1 inhibitors
are entering clinical trials for treatment of stroke and
other conditions.230–232

CONCLUSIONS

Brain inflammation develops over a time period of
hours to days after ischemia onset, a time window con-
ducive to therapeutic intervention. Effective agents are
now available for blocking both the microglial receptor
activation and microglia effector responses that drive the
inflammatory response after stroke. Agents are also
available for targeting the signal transduction mecha-
nisms linking these events. Studies have already shown
some of these agents to have beneficial effects on stroke
outcome in animal models. In most of these studies,
however, treatment was initiated at very short time points
after ischemia, and this prevents any mechanistic distinc-
tion between agents that directly suppress microglial ac-
tivation and those that suppress microglial activation
only as a result of reduced cell injury. A more focused
evaluation of the efficacy of these agents as anti-inflam-
matory drugs will require a delayed onset of treatment, in
order to permit this mechanistic distinction and to more
closely model treatment in the clinical stroke setting. An
additional consideration is that the majority of the animal
studies cited in this review used stroke models involving
reperfusion after relatively short periods of ischemia.
This stands in contrast to clinical stroke, in which reper-
fusion is more commonly delayed by many hours or
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days, and therefore conclusions based on animal models
with short periods of ischemia may not accurately guide
human therapeutics. Last, it will be important to remain
cognizant of the potential beneficial effects of inflamma-
tion on stroke outcome. A primary challenge in this field
will be finding ways to suppress microglial activation
without negatively impacting these beneficial effects.
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