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Summary: The circuitry of the human brain is formed by
neuronal networks embedded into astroglial syncytia. The as-
trocytes perform numerous functions, providing for the overall
brain homeostasis, assisting in neurogenesis, determining the
micro-architecture of the grey matter, and defending the brain
through evolutionary conserved astrogliosis programs.
Astroglial cells are engaged in neurological diseases by de-
termining the progression and outcome of neuropathological
process. Astrocytes are specifically involved in various neuro-
degenerative diseases, including Alzheimer’s disease, amyotro-

phic lateral sclerosis, Parkinson’s disease, and various forms of
dementia. Recent evidence suggest that early stages of neuro-
degenerative processes are associated with atrophy of astroglia,
which causes disruptions in synaptic connectivity, disbalance in
neurotransmitter homeostasis, and neuronal death through in-
creased excitotoxicity. At the later stages, astrocytes become
activated and contribute to the neuroinflammatory component
of neurodegeneration. Key Words: Astrocytes, neuroglia, neu-
rodegeneration, Alzheimer’s disease, dementia, Parkinson’s
disease.

GLIAL EXPLOSION FORMS THE
HUMAN BRAIN

The human brain is the most sophisticated and com-
plex system in the universe, as far as we are aware.
Indeed, nature compacted ~1.5 trillions of cells con-
nected by hundreds of trillions of contacts within the
strictly limited volume of the skull, and orchestrated
concerted development of neuronal circuits that produce
human intellect, which is unparalleled in its computa-
tional and creative power by any other device, be it
natural or artificial.

The evolution of the nervous system began with an
appearance of multicellular organisms, which required
coordination of their remote parts to achieve maximal
biological success. At the very core of neural elements
lies the excitability and intercellular signaling, both
appearing very early in the evolution. The very first
and primitive forms of life needed to perceive the
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environmental changes and preserve their internal ho-
meostasis; this function was achieved by membrane
ion channels regulating transmembrane ion move-
ments. These transmembrane ion movements formed
the basis for intercellular signaling, epitomized in the
Ca®" signaling system.' Transmembrane ion gradients
and selectively permeable plasmalemma generated un-
even distribution of charges in the very vicinity of the
plasmalemma, thus stimulating the appearance of volt-
age-dependent gating mechanisms that laid the founda-
tions for electrical excitability. The voltage-gated chan-
nels exist in virtually all living species, and we can find
several types of them in bacteria, with the Ca®"- and
K *-selective channels being the most ancient.””’ The
bacteria also evolved the first precursor of the Na* chan-
nel, the NaChBac expressed, for example, in Bacillus
halodurans.® In the eukaryotes, the excitable mole-
cules developed further; in single-cell organisms, the
waves of plasmalemmal excitation began to generate
through the spreading opening/closures of voltage-
gated channels.’ In parallel eukaryotic organisms ac-
quired intracellular organelles, intracellular channels
dwelling in the endomembranes, and exocytotic ma-
chinery formed the basis for chemical intercellular
transmission.'-'0 712
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The perception of environmental chemical signals is in
all likelihood inseparable from life existence, and the
proto-cells certainly needed to detect the most basic
chemical clues indicating changes in the immediate
neighbourhood. We do not know what the very first
chemical receptor was originally, yet we do know that
bacteria have chemosensitivity and chemotaxis. Even
more important, bacteria have developed the sensitivity
to biologically produced chemicals, which are accumu-
lating in the cytosol of the living cells and are released
when damaged. This sensitivity is strictly survivalism,
which allowed the cells to detect the danger signal pro-
duced by their dying relatives; yet this formed the basis
for future neurotransmission. The first intercellular sig-
naling molecules were ATP and glutamate, which are
highly concentrated in the cytosol of living cells."?

Therefore, the very first multicellular organisms were
in possession of several signaling systems associated
with plasmalemmal channels, plasmalemmal receptors,
and exocytotic machinery. The multicellularity brought
with it another signaling mechanism made by transcel-
lular channels (generally known as gap junctions), which
established the direct communication route in cellular
syncytia. The development of the multicellular species
induced specialization of cellular layers and appearance
of tissues; the surface layer developed into epithelial
cells. The epithelial cells were endowed with ion chan-
nels; many of these cells possessed exocytotic vesicles;
these epithelial cells were connected by gap junctions,
and, most importantly, these cells were in direct contact
with the environment. Therefore, it is not surprising that
the epithelial cells became the ancestors of the nervous
system.

The very first neural elements were diffusely scattered
throughout the outer surface of the body of Cnidaria (i.e,
jelly fishes, box gellies, sea anemones, and Hydrozoa).
These nervous elements are primarily sensory and they
are already attaining a degree of specialization. For ex-
ample, in Hydra the nervous elements are represented by
touch-sensitive and photosensitive cells, and they are
connected in a simple nervous net through neuritis inter-
woven in between the epithelial cells.'* With an in-
creased complexity of organisms the first neuronal con-
glomerates represented by sensory organs and primordial
nerve ganglia have evolved, and this increase in com-
plexity and neuronal specialization coincided with the
appearance of neuroglia, which already at this early stage
controlled development and functional activity of the
neuronal networks.'>'®

The appearance of the CNS, with its clearly distinct
central and peripheral parts was associated with further
specialization of neurons and evolutionary progression
of neuroglia. The latter became more complex, evolving
into several functionally idiosyncratic cellular popula-
tions, represented by astroglia, NG-2 glia, and myelinat-

Neurotherapeutics, Vol. 7, No. 4, 2010

ing cells, represented by oligodendrocytes and Schwann
cells. The astrocytes and NG-2 cells populate the grey
matter, whereas oligodendrocytes and Schwann cells
cover and myelinate the axons providing the latter with
insulation that greatly increased action potential conduc-
tion velocity. The microglial cells are migrants, the cells
of myeloid origin that invade the brain in the early post-
natal period and form the neural immune/defence sys-
tem. Therefore, the neuroglia assumes full responsibility
for the nervous system homeostasis and defense.

The evolution of the primate brain and the emergence
of intellect coincided with dramatic changes in neuroglia.
First, the numbers exploded, and the neuroglia became
the most numerous cell type in the human brain, out-
numbering neurons by several times.'” Second, the mor-
phology had also changed; the human protoplasmic and
fibrous astrocytes are 2 to 3 times larger as compared to
rodents.'®!'” Even more importantly, the human astro-
cytes are immensely more complex'®; each human as-
trocytes has ~10 times more primary processes than the
rodent one; the arborization is also infinitely more com-
plex and human protoplasmic astrocyte covers and inte-
grates ~2 million synapses, whereas rodent astrocytes
cover ~20,000 to 120,000 synaptic contacts. In addition,
several primate specific astrocytes (e.g. interlaminar and
polarized astrocytes) are involved in interlayer integra-
tion in the cortex.'®'?

FUNCTIONS OF ASTROGLIA

Structural function

All neural elements develop from the neuroepithelial
cells that at the very beginning of the embryogenesis
gave birth to radial glia, which served as both the source
of neural precursors and the scaffold that allowed neural
cells to reach their final destination in the grey matter.
The astrocytes, being direct descendants of the radial glia,
shape the grey matter through the process of tiling.?*~>?
Every protoplasmic astrocyte occupies it own territory,
where its processes cover neuronal membranes and syn-
aptic contacts. The astrocytes also send processes to the
neighboring blood vessels, and in this way they form a
neurovascular unit.*

Metabolic support

The neurovascular unit provides for a metabolic con-
nection between blood vessels and parenchyma of the
brain. First, astrocytes integrate the neuronal activity
with the local blood flow being responsible for the func-
tional hyperaemia, which is manifested by a rapid vaso-
dilatation after a local increase in neuronal firing. The
increased synaptic transmission induces astroglial Ca**
signaling that travel to the perivascular processes of as-
troglial cells and triggers release of vasoactive sub-
stances from the endfeet.”*2° Second, astrocytes provide
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active neurons with metabolic substrates via a glucose-
lactate shuttle. Increased neuronal activity leads to an
increase in glutamate release, which in turn activates
astroglial Na"-dependent glutamate transporters. The
latter mediate substantial Na™ influx, and thus increase in
cytosolic Na™ concentration in astrocytes. In turn, in-
creased Na™ stimulates glycolysis and lactate synthesis.
The lactate is subsequently transported to neurons
through specific transporters.>”?8

Brain homeostasis

The brain function is impossible without tight control
over the extracellular environment, which includes reg-
ulation of extracellular concentrations of ions, metabo-
lites, and neuroactive molecules. Extracellular ion ho-
meostasis is particularly important for K™ ions, because
the latter are accumulated in quantities during neuronal
activity, due to repetitive opening of neuronal K™ chan-
nels with subsequent K™ efflux. Increase in extracellular
K™ concentration in turn depolarizes neuronal mem-
branes, thus altering their excitability. In physiological
conditions, extracellular K can rise from ~5 mM to 10
to 12 mM during periods of robust neuronal activity; in
pathology, K™ can rise much higher, attaining levels of
up to 50 mM.?° Extracellular K* homeostasis is mainly
carried out by astrocytes through local K uptake (via
inward rectifier K* channels) and spatial K™ buffer-
ing.?*3% The spatial K" buffering is achieved through
redistribution of K* within glial syncytia or even within
single polarized glial cells from the areas with elevated
[K*]0 to the regions with low [K+]0. This K* uptake and
spatial buffering is coupled with astroglial water trans-
port. Increases in synaptic activity are associated with
local decreases in extracellular volume, which is reg-
ulated by water transport across astroglial membranes
and water redistribution through the glial syncytium.
Astroglial water transport is functionally linked to
activation of water channels aquaporins that are con-
centrated in perisynaptic processes and in the astro-
glial endfeet structures.?’

Astroglial cells are central elements of homeostasis of
neurotransmitters in the brain. They are particularly im-
portant for homeostasis and turnover of the main excita-
tory neurotransmitter glutamate being the main sink of
glutamate in the brain; from the bulk of glutamate re-
leased during synaptic transmission, approximately 20%
is accumulated into neurons, whereas the remaining 80%
is taken up by perisynaptic astrocytes.’>** Removal of
extracellular glutamate from the extracellular space is
vitally important for preventing its excitotoxicity. Astro-
glial glutamate transport is the function of specific glu-
tamate transporters excitatory amino-acid transporter 1
and excitatory amino-acid transporter 2, which are ex-
pressed exclusively in astrocytes.>* Glutamate transport
is driven by transmembrane gradient for Na™ transloca-

tion of every glutamate molecule, which is accompanied
by an influx of 3 Na* ions and 1 H" ion, coupled with
the efflux of 1 K" ion, making this transport electrogenic.*
Activation of glutamate transporters is associated with
substantial Na* fluxes and increase in [Na*],,>® which
serves as a signal for a glucose-lactate shuttle described
in the previous section. The excess of intracellular Na™
is removed by sodium-calcium exchanger, which is con-
veniently co-localized with glutamate transporters in
perisynaptic processes; increased [Na™]; turns the ex-
changer into the reverse mode, thus rapidly reducing
cytosolic Na™ loads.>*~3%

The glutamate accumulated by astrocytes is critically
important for the overall glutamate turnover in the brain.
Glutamate after entering astrocytes is converted into
glutamine by the glutamine synthetase.*® The nontoxic
glutamine is then transported back to the presynaptic
terminal through the extracellular space; in the neuro-
nal cytoplasm glutamine is converted back into gluta-
mate, which is accumulated by synaptic vesicles, thus
accomplishing the glutamate—glutamine shuttle.

Signaling in neuronal-glial circuits

1) Glial cells express neurotransmitter receptors.

Glial expression of neurotransmitter receptors was dis-
covered in 1984 when glutamate and GABA-induced
electrical responses were recorded from cultured astro-
cytes and oligodendrocytes.**~** Subsequent in vitro ex-
periments have demonstrated that glial cells express the
very same diverse variety of neurotransmitter receptors
and ion channels as do neurons,>™> thus raising the
question of the role for neuroglia in information process-
ing in the brain. Further experiments have found that the
expression pattern of neurotransmitter receptors in situ is
very much restricted by the immediate neurotransmitter
environment; as a consequence glial cells are properly
endowed to sense the neurotransmitters released in their
territorial domains.’®~>® The expression of neurotrans-
mitter receptors in astrocytes from different brain regions
is extremely heterogeneous; although most of astroglial
cells express receptors to purines and to gluta-
mate.>*%°~%? Importantly, astrocytes and oligodendro-
cytes possess a special type of NMDA glutamate recep-
tors, which, in contrast to neurons, are devoid of Mg2+
block®~% and therefore can be activated at characteris-
tically negative glial resting potentials (approximately
~80 to -90 mV).

2) The tripartite synapse. The synapses in the
CNS are formed by three elements: by the pre- and
postsynaptic neuronal compartments and by the astro-
glial perisynaptic processes. This structure is generally
known as a tripartite synapse.®®®” The neurotransmitters
released in the course of synaptic transmission from the
neuronal terminal are stimulating the astroglial receptors
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of both ionotropic and metabotropic varieties,>*%* thus

providing the information input to neuroglial circuitry.

3) Signaling in astroglial syncytia. In contrast to
neuronal networks, which are constructed from physi-
cally separated neuronal cells, astrocytes are integrated
into physically continuous structures known as astroglial
syncytia. This integration is achieved through the gap
junctions expressed in the peripheral portions of astro-
glial processes. The gap junctions are formed by inter-
cellular channels, the connexons.®® The latter create rel-
atively big pores, which span through the plasmalemma
of adjacent cells. The connexon pore is permeable to
molecules with molecular weight ~1 KD and it is
instrumental for long-range glial signaling. Astroglial
syncytia are anatomically localized and segregated;
for example, in somatosensory cortex these syncytia
are confined to individual barrels and do not have
inter-barrel connectivity.®?:7°

The intercellular communication route provides the
substrate for astroglial long-range signaling. Indeed, the
glial cells are electrically nonexcitable and are unable to
generate propagating action potential. Nonetheless, as-
trocytes are using the intracellular organelle, the endo-
plasmic reticulum (ER) to generate intra- and intercellu-
lar signals. The ER has many functions, which include
protein synthesis and post-translational protein modifi-
cation, as well as intracellular transport of various mol-
ecules. In addition, the ER acts as a universal dynamic
intracellular Ca®" store,”'~’> which plays the central role
in Ca®"-signal generation in both nonexcitable and ex-
citable cells.

Ca®" ions are universal and ubiquitous intracellular
second messengers that control an exceedingly wide
range of cellular reactions. The Ca®"-signaling system is
one of the most ancient, and it is operative in virtually all
living forms."’®”” The ER participates in Ca**- signal-
ing through Ca?" release and Ca®" accumulation.”®"
The ER membrane contains Ca?" pumps (the sarco[en-
do]plasmic reticulum ATP-ases (or SERCAs) that trans-
port Ca®" into the ER lumen.*® The intra-ER Ca** con-
centration is very high (range, 0.5 to 1 mM),%'*? which
creates a steep concentration gradient aimed at the cy-
tosol. Importantly, the lumen of the ER is internally
continuous and Ca®" can rapidly equilibrate within the
organelle through unopposed diffusion.** % The ER
membrane is also endowed with two classes of Ca’*
release channels (i.e, the Ca2+—gated Ca®>* channels,
generally known as ryanodine receptors, or RyRs, and
Inositol 1,4,5-trisphosphate [InsP;]-gated channels, or
InsP; receptors).**” Both channels are sensitive to cy-
tosolic Ca* (thus being able to produce Ca®"-induced
Ca”" release). In addition, the InsP; receptors are sensi-
tive to intracellular second messenger InsP5. The InsP; is
produced by phospholypase C, which in turn is linked to
plasmalemmal metabotropic receptors via G proteins.
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The InsP;-meidated Ca®" release is central for astroglial
Ca" signaling, and activation of metabotropic glial re-
ceptors triggers both local and propagating Ca®" release
from the ER.*®® Importantly, glial Ca®" signals are
capable of propagating though glial syncytia,”*~*? using
several complimentary mechanisms that include diffu-
sion of InsP; through gap junctions, or release and ex-
tracellular diffusion of gliotransmitter.”*~*° These prop-
agating glial Ca®’" waves are the most thoroughly
investigated mechanism of long-range glial signaling;
nonetheless, many other molecules (e.g., metabolic sub-
strates, ATP, or other second messengers) can also par-
ticipate in signaling within astroglial circuits.

4) The gliotransmission.  Excitation of astroglial
cells and astroglial Ca®" waves trigger the release of
gliotransmitters. These gliotransmitters include gluta-
mate, ATP, D-serine, GABA, taurine, and mediate glial-
neuronal and glial-glial signaling.”’~'% The leading mech-
anism for gliotransmitters release is exocytotic,'** %
although diffusion though large-pore plasmalemmal channels
can also be involved.'”"~'1?

5) Glia and information processing in the brain.

The ability of neuroglia to detect neurotransmitters, to
produce active responses after stimulation of various re-
ceptors to generate propagating signals and to release
gliotransmitters, naturally questioned their role in the
information processing in the brain. We already know
that astrocytes may actively modulate transmission in
neuronal networks and affect synaptic plasticity'''; we
may also assume that astroglial circuits can, together
with neurons, participate in cognition, learning, and
memory. However, this remains an assumption, and
more experimental data are required to understand the
role of glial cells in higher brain functions.

NEUROLOGICAL DISORDERS AS
GLIOPATHOLOGY: THE ROLE
OF ASTROGLIA

Diseases of the nervous system remain the most dif-
ficult to handle and to cure; the therapeutic advances in
neurology are at best modest when compared to other
branches of medicine. The reason is simple; it is the
singular complexity of the human brain and its connec-
tions, both morphological and functional.

For a long time the neurocentric view dominated the
neuropathological theories, although the pathological po-
tential of glia was already acknowledged by prominent
neuropathologists of the 19th century, such as Alzhei-
mer,''?> Frommann,''? and Nissl.!'* Nonetheless, it is
now clear that it is neuroglia, which determines the pro-
gression and outcome of most, if not all, neurological
diseases.''>!'6 Indeed, the brain homeostasis is managed
solely by the neuroglia, and the failure of neuroglia to
maintain this homeostasis is fatal for the nervous tissue.
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This is particularly manifest in the ischemic insult in
which performance of astroglia very much determines
the development of the ischemic core and its relations
with penumbra.''” In addition, the astroglia possess a
specific defensive mechanism, (i.e., the astrogliosis that
is activated in response to brain insults).''®!'? The as-
trogliosis is fundamental for limiting the areas of damage
(by scar formation through anisomorphic astrogliosis)
and for the post-insult remodeling and recovery of neural
function (by isomorphic astrogliosis).

Astroglia is involved in pathogenesis of many chronic
neurological disorders.®”'?° For example, astrocytes un-
dergo remodeling in the epileptic brain, which includes
both morphological and functional changes.'?!'** As-
trocytes are also important for pathogenesis of various
psychiatric disorders. The astrocytes may play an im-
portant role in schizophrenia, because failures in
astroglia-dependent glutamate homeostasis can result
in neurotransmission disbalance.'?*?

ASTROCYTES IN
NEURODEGENERATIVE DISEASES

The neurodegenerative disorders are arguably the
most fearsome human diseases because they destroy our
intellect and reduce human beings to the animal state.
The neurodegenerative diseases are also uniquely the
property of mankind, because as a rule they do not occur
in animals, making one wonder whether they may rep-
resent a price for the exclusive power of our brain. The
neurodegenerative processes start with disruptions in the
connectivity within the brain circuitry,'**~'?7 which af-
fect cognitive functions and underlie the early stages of
the disease. Further pathological development of the neu-
rodegenerative process results in neural cell death and
general atrophy of the brain, manifested by the disap-
pearance of higher brain functions.

The pathological potential of astroglia in neurodegen-
eration began to be explored only very recently, as for a
long time neurodegenerative diseases were associated
primarily with neuronal death. Nonetheless, it is quite
obvious now that the astroglia is invariably affected at
the early stages of neurodegenerative process, and this
determines to a large extent the progression and severity
of the disease. Several recent investigations discovered
astroglial atrophy, which appears at the very early stages
of different neurodegenerative diseases. Conceptually
atrophic changes in astrocytes may lie at the very core of
initial disruption of neural circuitry, as reduced astroglial
support affects maintenance and performance of syn-
apses. Several articles, published in this special issue
discuss the role of neuroglia in various neurodegenera-
tive processes in detail; here we shall briefly overview
evidence for astroglial atrophic changes in the most fre-
quent forms of neurodegenerative diseases.

Amyotrophic lateral sclerosis

Amyotrophic lateral sclerosis (ALS) described by
Charcot'?® and Charcot and Joffroy'?’ is manifested by
the degeneration of motor neurons from the cortex, the
brain stem, and the spinal cord. The causes and aetiology
of ALS remain generally unknown, although approxi-
mately 20% of cases are associated with dominant mu-
tations in the gene coding for Cu—Zn superoxide dis-
mutase (SOD1).!3°

Neuroglial reactions play an important role in ALS
pathology. Prominent astroglial degeneration and atro-
phy was found in the h(uman)SOD19%** transgenic
mouse; this astrodegeneration preceded both neuronal
death and the appearance of clinical symptoms.'?%'3!
Incidentally, the ALS astrocytes (expressing hSODI)
were specifically sensitive to glutamate, and contrary to
healthy astrocytes they displayed glutamate excitotoxic-
ity."?>13! Even more importantly, selective silencing of
the SOD1 mutant gene in astrocytes significantly slowed
the progression of ALS in transgenic mice.'** Late stages
of ALS are characterized by significant astrogliosis and
astroglial proliferation.'3*'3*

Parkinson’s disease

The symptoms of Parkinson’s disease (akinesia, rigid-
ity, tremor at rest, and postural abnormalities'*”) develop
because of specific degeneration and demise of dopami-
nergic neurons in substantia nigra. The role of astrocytes
in the pathogenesis of the Parkinson’s disease has not
been characterized; although astrogliosis was detected at
the late stages of the disease.'*®'?” At the same time
substantia nigra, in which Parkinson’s disease pathology
primarily develops, has a low density of astrocytes com-
pared to other brain regions and early astroglial atrophy
may have a pathological significance; astrodegeneration
can result in diminished support of domapinergic neu-
rons associated with an increase of their vulnerability.
However, this hypothesis has to be experimentally
tested.

Non-AD dementia

Profound changes in astrocytes are observed in many
types of non-AD dementia-related neurodegeneration.
For example, the early stages of frontotemporal dementia
are characterized by significant astroglial degeneration
and apoptotic death of astrocytes.'*® Importantly, the
depth of glial atrophy correlated with the severity of
dementia. However, other studies found prominent as-
trogliosis in postmortem tissues form patients with fron-
totemporal dementia.'* Similarly, prominent astroglio-
sis leads to the development of thalamic dementia, in
which neuronal loss is secondary to pathological re-
modeling of astroglia.'*® Both astrogliosis and astro-
glial atrophy were observed in immunodeficiency
virus-1 (HIV-1) associated dementia, in which astroglio-
sis in the initial phase is followed by significant astro-
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cytic death; the loss of astrocytes correlates with the
severity of cognitive impairments.'*""'** Astrocytes can
also be a target for tau pathololgy, and specific expres-
sion of tau protein in astroglial cells can trigger age-
dependent neurodegeneration.'**'** Impairment of as-
troglia is also involved in pathogenesis of Wernicke
encephalopathy, which is associated with a very substan-
tial reduction in expression of astroglial glutamate trans-
porters; this results in compromised clearance of gluta-
mate with subsequent neuronal death through
excitotoxicity.'4>-14°

Astroglia in Alzheimer’s disease
The pathological modification of astrocytes in the de-
mented brains were initially observed by Alois Alzhei-

FIG. 1. Confocal images of hippocampal preparations dually
labeled by GFAP and by anti-g amyloid monoclonal antibodies
(GFAP in green and AB in red) illustrating differential changes in
GFAP profiles in astrocytes associated with, and/or close to Ap
plagues (A, astrogliosis), as well as with vascular A deposits (B).
BV = blood vessel.
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mer,''? who had found glial cells abundantly populating
neuritic plaques. The reactive astrogliosis has been sub-
sequently confirmed to be an archetypical morphological
feature of plaque-infested Alzheimer’s disease (AD)
brains at the late stages of the disease (FIG. 1); this
astrogliosis was observed in both human tissues and in
the brains isolated from AD animal models.'*’~'*°

Morphology and numbers

Knowledge about the role of neuroglia in the progres-
sion of AD remains fragmentary, at best. Generalized
astrogliosis, manifested by cellular hypertrophy and by
an increase in expression of GFAP and astroglial S100B
protein, was routinely observed in postmortem tissues
from AD patients.'**!5'~15¢ More detailed analysis of
astrogliosis in the brains obtained from old patients (with
and without confirmed AD) have demonstrated a corre-
lation between the degree of astrogliosis and cognitive
decline; however, the same analysis failed to reveal a
direct correlation between astrogliotic changes and
senile plaques.'>” The morphological data showed re-
active astrocytes associated with some, but not with all
AP plaques; astrogliotic fields were also found in ar-
eas without AB depositions in both AD and non-AD
brains.'>” Moreover, there is no significant difference
in GFAP expression in demented versus nondemented
brains.'*®

The AB-independent astrogliosis may accompany nor-
mal brain aging, although the age-dependent changes of
astroglia are in urgent need of proper investigation. The
data describing astroglia in aged brains are scarce and
controversial. For example, in rat retinal preparations,
aging was associated with a decrease in the total number
of astrocytes and with an increase in the proportion of
cells with gliotic morphology.'>*'®° Conversely, a rather
significant (by one third) increase in the number of as-
trocytes was observed in hippocampus of female B57
mice'®"; similar age-dependent increase in astrocytes
quantity was found in the CA1 hippocampal area and in
the frontal cortex of male Sprague-Dawley rats; this was
accompanied with hypertrophic remodeling that was
more prominent in the cortex.'®® An increase (by ~20%)
in the number of astrocytes was detected in parietal
cortex and the dentate gyrus of old Wistar rats.'®*'®* No
change in the number of astroglial profiles was found in
the primary visual cortex of old rhesus monkeys'®; sim-
ilarly, the quantity of astrocytes in the human neocortex
did not change with age.'®® Significant increase in GFAP
expression and astroglial hypertrophy was detected in the
white matter of the brains of senescent monkeys, hinting
for specific age-dependent alterations in axonal connec-
tivity in the CNS.'®” Overall, not much in known regard-
ing astroglia in the aged human brain; the generally
accepted notion of an increased astrogliosis and in-
creased astroglial numbers in the senescent brain'®® has
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to be corroborated by further meticulous morphological
analysis.

Astrogliosis and astroglial degeneration in AD

Reactive astrogliosis in AD can be initiated by several
factors, which include signaling from damaged neurons/
neuroglia, as well as extracellular deposition of the
B-amyloid peptide (A3); the latter was shown to trigger
astrogliosis in vitro.'® Extracellular AB also affects
physiological status of astroglial cells. Exposure of
cultured astrocytes to B-amyloid induces spontaneous
[Ca”]i signals and [Ca”]i oscillations, which some-
what contribute to astroglial neurotoxicity.'”*!”! The ab-
normal, spontaneous Ca®>" oscillations and Ca®" waves
were also observed in vivo in astrocytes associated with
neuritic plaques.'’* Furthermore, astrocytes in AB over-
expressing transgenic mice demonstrated increased cou-
pling in neocortical regions and had elevated expression
of AMPA/kainate glutamate receptors and glutamate
transporters.173 In contrast, AB was reported to decrease
expression and capacity of glutamate-aspartate trans-
porter and glutamate transporter-1 mediated glutamate
uptake in cultured astrocytes.'’* The activated astrocytes
are intimately involved in the neuro-inflammatory com-
ponent of the AD through the release of cytokines, pro-
inflammatory factors, and nitric oxide/reactive oxygen
species neurotoxicity.'?*

At the early stages of the AD pathology in the triple-
transgenic mice (3xTg-AD), harboring the mutant genes
for amyloid precursor protein (APPg,.), presenilin
1PS1y146v> and taupso, '””), the reduction in the mor-
phological presence of astrocytes, indicative of astroglial
degeneration/atrophy, was discovered.'**"'*" In these ex-
periments, the GFAP-positive astrocytes were morpho-
logically analyzed in hippocampi of the 3xTg-AD mice
of different ages (range, 3 to 18 months). It must be noted
that GFAP labeling differs profoundly between brain
regions; in hippocampus ~80% of astrocytes are GFAP-
positive.'’® There were no significant age-dependent
changes in the density of astrocytes in both control and
AD brains. Already from 6 months of age, the astrocytes
in CAl and dentate gyrus of 3xTg-AD animals showed
atrophic signs (i.e., decrease in the volume of GFAP-
staining, decreased size of somatas, and decrease in
number of processes (FIGS. 1 and 2). These changes
became fully significant at older ages (range, 9 to 18
months)."**"'° TImportantly, the appearance of senile
plaques, which in the 3xTg-AD model occurs at 12
months of age in the CA1 region and at 18 months of age
in the dentate gyrus, triggered morphological astroglio-
sis, but only in astrocytes directly associated with Af3
deposits; the astroglial cells distant to plaques remained
atrophic.'**'>" Interestingly, that astroglial atrophy
(manifested by decreased complexity of processes) was

FIG. 2. Confocal micrographs of hippocampal astrocytes non-
associated with AB plaques in transgenic mice model (3xTg-AD)
of Alzheimer’s disease. Note the evident astrocytic atrophy in the
3xTg-AD mice (B) when compared to the control animals (A).

observed in postmortem analysis of the neocortex of
demented patients.'”’

Astroglia and -amyloid

The role of astroglia in A3 processing and metabolism
represents another controversial matter. The reactive as-
trocytes in AD were suggested to participate in the clear-
ance and degradation of 3-amyloid (for review see Ref-
erences' '8 7'%°). Indeed, activated astrocytes located in
the close vicinity to AB plaques formed in the brains of
transgenic APP mice were found to express neprilysin,
the amyloid-degrading enzyme.'®' Accumulation of AB
was observed in astrocytes from entorhinal cortex of AD
patients,'’ although it was rarely found in astrocytes
from 3xTG-AD mice.'**'*° Functional experiments also
demonstrated the ability of astrocytes to phagocyte and
degrade B-amyloid deposits in an in vitro system.
However, these experiments also demonstrated 3-amy-
loid sequestration can be done only by astrocytes isolated

Neurotherapeutics, Vol. 7, No. 4, 2010
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from healthy brains; the astroglial cells obtained from
APP transgenic mice were ineffective.'®?

At the same time, the AD conditions may affect astro-
glia, turning them into A3 producers. Production of A3
requires the endoprotease known as 3-site APP-cleaving
enzyme 1 ([BACE 1] also referred to as (3-secretase). In
the healthy brain expression of BACE 1 seems to be
exclusively confined to neurons. In conditions of AD-
like pathology or even under chronic stress, astrocytes
start to express BACE 1, thus acquiring Af3—producing
ability.'”® Astroglial BACE 1 was detected in activated
astrocytes surrounding A3 plaques in several transgenic
AD mice models, such as Tg2576'®* and double mutated
K670N-M671L APP.'®*'*> Various brain insults that
triggered astrogliosis (e.g., immunolesion of cholinergic
septohippocampal afferents or occlusion of middle cerebral
artery) also triggered astrocytic expression of BACE 1.7
Similarly, increased APP production was detected in the rat
model of chronic neocortical astrogliosis, induced by graft-
ing foetal cortical tissue in the midbrain of neonatal ani-
mals; chronically activated astrocytes were immunostained
for APP as well as for another AD-related marker apoli-
poprotein E.'5¢

The neurovascular unit in AD: role for astrocytes

Vascular impairments represent an important factor in
the pathology of AD. Numerous imaging studies of hu-
mans have found that significant reduction in blood flow
in the brains of patients with AD and AD-like status
indicated the role for vascular defects at the early stages
of the disease (see References'®’'® for comprehensive
review). Morphological analysis also found pronounced
vascular pathology in AD brains.'*°

The elementary component of brain microcirculation
is represented by a neurovascular unit, in which astro-
cytes integrate neurons, brain endothelium, pericytes,
and vascular smooth muscle cells into a functionally
independent entity.>*'%%'%% In this structure, astrocytes
assume the role of coordinating elements that establish
the link between neuronal activity and local blood flow
through several signaling cascades controlling vasocon-
striction and vasodilatation.?>?*2® Furthermore, astro-
glial endfeet, which plaster brain capillaries, regulate
formation of tight junctions (i.e., controlling the blood-
brain barrier) and have a central role in the transport of
water and electrolytes, as well as in the utilization of
glucose and providing neurons with energy sub-
strates. 831189191 1y AD. the neurovascular unit is spe-
cifically targeted because A plaques often encompass
brain capillaries (FIG. 1), thus affecting microcirculation
and vascular Af3 clearance.'®” At the same time, the
primary vascular pathology induces overproduction of
AP through yet poorly characterized mechanisms.'®®

Control of local cerebral circulation and functional
hyperemia accomplished by astrocytes is of fundamental
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importance for functional activity of neural networks.
Pathological remodeling of the neurovascular unit that
occurs in AD is likely to be associated with specific
damage to astroglia, which may occur at the early stages
of the disease and contribute to cognitive abnormalities.
Presently, the mechanisms of AD-specific astroglia dam-
age remain unknown, although atrophy of astrocytes may
be also linked to neurovascular unit dysfunction.

Metabolic remodeling of astroglia in AD

Metabolic stress represents one of the early symp-
toms of AD-like pathology. Numerous functional im-
aging studies demonstrated significant and progressive
decrease in glucose use from the very early stages of
AD in humans.'®® The AB remodels astroglial meta-
bolic phenotype in vitro by affecting glucose metab-
olism and increasing reactive oxygen species produc-
tion in cultured astrocytes. The data on actual
mechanisms of AB-dependent changes in glucose met-
abolic pathways are controversial. Several groups
have found that A decreased the astroglial use of
glucose.'”*™'° In contrast, treatment with AB signif-
icantly increased glucose use in cultured astroglial
cells by enhancing the activity of all major glucose
metabolism pathways and glycogenesis.'”® Further-
more, co-culturing neurons with astrocytes pre-treated
with AP significantly decreased neuronal survival as
compared with co-culturing with naive astrocytes.'”®
Analysis of the activity of metabolic enzymes similarly
yielded controversial results: both decrease'®”'"® and
increase'®>'%? in the activity of enzymes associated with
glucose metabolism have been reported in AD brain
preparations. These discrepancies may reflect opposite
cell-specific changes in glucose metabolism developing
at different stages of AD.'"°

Astrodegeneration and failed synaptic connectivity:
astroglia drive early cognitive decline in AD?

Cognitive deficits are the first signs of AD, which
occur well before the development of disease-specific
histopathology manifested by the appearance of senile
plaques and neurofibrillary tangles.?’°?°! This observa-
tion indicates disruptions in neural connectivity. These
disruptions occur at the early stages of the disease and
are responsible for the decline of the brain function.
Numerous studies have demonstrated that synaptic
weakness and synaptic loss are the earliest morphologi-
cal correlates of the AD."?72%° Moreover, clinical studies
confirmed a strong correlation between the degree of
dementia and the extent of synaptic loss.?%?72°* In
contrast, there is a rather poor correlation between the
level of A load and tangles expression and cognitive
function.

Mechanisms of early synaptic failure in dementia and
AD are obscure. Of course, synaptic loss may reflect
neurodegenerative process solely associated with mal-
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function of neurons; yet the central role of astrocytes in
brain homeostasis may justify alternative, astrocentric
hypothesis (FIG. 3). Indeed, astrocytes are fundamen-
tally important for synaptogenesis and synaptic mainte-
nance. Astroglial transporters control the composition of
the extra-synaptic environment and prevent local toxicity
of glutamate or local depolarizations by excessive accu-
mulation of K™ ions. The glutamate-glutamine shuttle,
expressed in astroglia, sustains neuronal glutamate lev-

els, thus maintaining glutamatergic transmission. Finally,
astrocytes provide local metabolic support, which, as-
suming excessive energy demands of synaptic compart-
ment,??>° is critically important for neurotransmission.
Therefore, we may suggest that atrophy of astroglia,
which occurs at the early stages of AD and is likely to
accompany early stages of other neurodegenerative dis-
eases, determines synaptic malfunction, synaptic loss,
and cognitive deficits.
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Therapeutic implications

At present, there is no cure for AD or other neurode-
generative diseases; existing therapy is purely symptom-
atic. Numerous attempts to target S-amyloid depositions,
although successful in reducing AB load, did not im-
prove either cognitive status or disease progression.’®’
Can the discovery of pathological relevance of astroglia
lead to a cell-specific therapy/prevention of AD? Several
strategies can be suggested.

First, the astroglia-specific molecules can be specifi-
cally targeted. The obvious candidate is GFAP, which is
increased in reactive astrocytes. Reduction of GFAP ex-
pression affects synaptic plasticity,”*®** whereas in-
crease in GFAP expression induces various forms of
encephalopathy and alters synaptic activity.'®® Concep-
tually, levels of GFAP expression can be affected by
steroid hormones'®® and even by caloric restriction.*'’
However, this strategy can be effective at the later stages
of the AD characterized by prominent astrogliosis.

Second, molecules can be designed to affect astrocyte-
specific homeostatic cascades (e.g., astroglial glutamate
uptake). The neuroprotective drug Riluzole,?'" which in-
hibits neuronal glutamate release was also reported to
enhance astroglial glutamate uptake.*'? Incidentally, the
beta-lactam antibiotics, (e.g., represented by penicillin
and ceftriaxone) increase astroglial expression of gluta-
mate transporter-1 through gene activation.”'* Both com-
pounds are considered potential drugs for the treatment
of motor neuron diseases associated with glutamate ex-
citotoxicity, resulting from astroglial deficiency.?'* Sim-
ilar strategies may be adapted to the treatment of AD by
reducing excitotoxic neuronal death and improving syn-
aptic function.

However, the most promising strategy seems to be
aimed at long-term modulation of astroglial function by
promoting endogenous cell proliferation and differentia-
tion. As astrocytes have some stem cell properties and
can (at least in principle) re-enter the cell cycle, manip-
ulation with these abilities can develop the true cell-
specific therapy, which can be used for arresting AD
progression at the very early stages.

CONCLUSIONS

Astrocytes are the central element of brain homeo-
static system, which through their multiple functions pro-
vide for maintenance and defence of neural networks.
Astroglial cells are specifically involved in various neu-
rological diseases, determining their pathogenesis and
outcome. Astrocytes are involved in all types of neuro-
degenerative processes, and display prominent remodel-
ling in the AD; early dystrophic changes in astroglia can
represent an important step in initiation and progression
of Alzheimer’s disease. Targeting of astroglia may pro-

Neurotherapeutics, Vol. 7, No. 4, 2010

vide a new principle for treatment of AD at the early
stages of the disease.
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