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Increased Modularity of Resting State Networks Supports
Improved Narrative Production in Aphasia Recovery
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Abstract

The networks that emerge in the analysis of resting state functional magnetic resonance imaging (rsfMRI) data
are believed to reflect the intrinsic organization of the brain. One key property of such complex biological net-
works is modularity, a measure of community structure. This topological characteristic changes in neurological
disease and recovery. Nineteen subjects with language disorders after stroke (aphasia) underwent neuroimaging
and behavioral assessment at multiple time points before (baseline) and after an imitation-based therapy. Language
was assessed with a narrative production task. Group independent component analysis was performed on the
rsfMRI data to identify resting state networks (RSNs). For each participant and each rsfMRI acquisition, we con-
structed a graph comprising all RSNs. We assigned nodal community based on a region’s RSN membership, cal-
culated the modularity score, and then correlated changes in modularity and therapeutic gains on the narrative
task. We repeated this comparison controlling for pretherapy performance and using a community structure
not based on RSN membership. Increased RSN modularity was positively correlated with improvement on
the narrative task immediately post-therapy. This finding remained significant when controlling for pretherapy
performance. There were no significant findings for network modularity and behavior when nodal community
was assigned without consideration of RSN membership. We interpret these findings as support for the adaptive
role of network segregation in behavioral improvement in aphasia therapy. This has important clinical implica-
tions for the targeting of noninvasive brain stimulation in poststroke remediation and suggests potential for fur-
ther insight into the processes underlying such changes through computational modeling.

Keywords: aphasia; functional neuroimaging; graph theory; network analysis; rehabilitation; resting state;
speech-language pathology; stroke

Introduction

Graph theoretic approaches provide simplified met-
rics to characterize complex networks. By defining re-

gions as nodes and the (functional or structural) connections
between them as edges, the brain can be modeled as a graph
and analyzed through the pairwise relationships among its com-
ponent parts (Rubinov and Sporns, 2010). As measured by rest-
ing state functional magnetic resonance imaging (rsfMRI), our
brains demonstrate the same types of topological properties
found in other complex networks across various systems (Bull-
more and Sporns, 2009).

Modularity is one key organizational principle found in social
and biological systems (Girvan and Newman, 2002), including
the human brain. To characterize the modularity of a network,
individual nodes are first assigned to discrete communities by
various methods. The modularity value of the network quan-

tifies how many of the edges connected to a given node are
also connected to another node within the same community,
compared to if those edges had been distributed randomly
(Newman and Girvan, 2004). Thus, modularity is essentially
an index of how cleanly a network can be subdivided with a
given partition, with higher values indicating more distinct
subnetworks or a greater level of segregation.

Figure 1 shows two different graphs that share many net-
work characteristics. Each has 34 nodes. They share a sim-
ilar number of edges connecting those nodes (Fig. 1A = 81,
B = 78). They also share a similar degree distribution, with
each node having, on average, just fewer than five connections
to other nodes (Fig. 1A = 4.76, B = 4.59). Each graph has been
separated into five communities, indicated by node color, as
this was determined to be the optimal number of communities
for maximizing modularity for each of these networks individ-
ually. However, the communities in Figure 1A overlap and
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share many edges among them, whereas the communities
in Figure 1B are more discrete, and their modularity scores
reflect this difference (0.27 and 0.41, respectively). This
major difference in their organization is not surprising as
the graph in Figure 1A is a random construction, whereas
the graph in Figure 1B represents data from a social net-
work (Zachary, 1977).

As modularity is a basic characteristic of complex net-
works under normal circumstances, it might be expected
that a disruption to that network would result in a decrease
in its modularity. In the brain, deprivation of blood flow re-
sults in changes in both cognitive function and functional
connectivity and modularity as assessed by rsfMRI. For pa-
tients with unilateral carotid stenosis, modularity is nega-
tively correlated with performance on neuropsychological
tasks, including the Mini-Mental Status Examination and
measures of reading and memory (Chang et al., 2016), and
positively correlated with better postoperative cognitive out-
comes (Soman et al., 2016). Focal lesions are also found to
reduce measures of modularity (Gratton et al., 2012).

In healthy adults, higher modularity is associated with better
working memory performance, a finding thought to reflect effi-
cient organization and transmission of information throughout
the brain (Stevens et al., 2012). It may, therefore, be unsurpris-
ing that measures of modularity are decreased in patients with
Alzheimer disease (AD). This is also true for cognitively intact
individuals demonstrating pre-clinical biomarker pathology
suggestive of AD (Brier et al., 2014) compared to controls with-
out such pathology. However, even in healthy aging, brain
changes are associated with alteration in its modular organiza-
tion. Whole brain modularity declines with aging across the life
span (Onoda and Yamaguchi, 2013), including when examin-
ing the modularity of intrinsic resting state networks (RSNs) ex-
clusively (Song et al., 2014).

In a recent investigation of changes in dynamic functional
network connectivity in patients with aphasia, we investigated
the amount of time spent by each participant in one of the
small number of states determined by clustering the dynamic
network correlations (E.S. Duncan and S.L. Small, submitted).
We found that the amount of time spent in one of these states—
a state characterized by minimal correlations among RSNs—
was associated with improvement in narrative production. We
interpreted these findings as evidence for an association between
greater functional segregation and better performance, as previ-
ously demonstrated in healthy aging (Chan et al., 2014) and Par-
kinson’s disease (Tinaz et al., 2016). They are also consistent
with the finding that diffuse patterns of activation are replaced
by more focal, and presumably efficient, organization as behav-

ior improves, as has been found in motor learning (Milton et al.,
2007), as well as poststroke motor (Ward et al., 2003) and lan-
guage (Abel et al., 2015) rehabilitation.

In the present study, we examine the hypothesis that assigning
community structure based on membership in well-established
RSNs will result in changes in modularity that are positively
correlated with behavioral changes in narrative production,
as found in dynamic functional connectivity. Such findings
would support the notion that successful therapy leads to in-
creased network segregation and would provide insight into
the mechanism underlying behavioral improvement follow-
ing treatment. It would also lead to discovery of possible tar-
gets for focal intervention.

Materials and Methods

Participants

Nineteen native English speakers with chronic aphasia sec-
ondary to ischemic stroke participated in a larger study of in-
tensive, imitation-based aphasia therapy (Duncan et al., 2016;
Lee et al., 2010). Fourteen subjects were selected from that
superset based on participation in three baseline rsfMRI
scans before the initiation of therapy. Two additional subjects
were excluded due to excessive motion during scanning (see
rsfMRI Preprocessing section for details). The remaining
group included in this analysis consisted of 12 individuals (3
female; 25%) ages 31–70 years (mean = 52.08; SD = 11.75)
who had sustained a single stroke 7–124 months before enroll-
ment (mean = 40.33; SD 42.55).

The study was approved by the Institutional Review
Boards of the University of Chicago and the University of
California, Irvine. Consent was obtained according to the
Declaration of Helsinki.

Behavioral measures

A full description of the Cinderella task and associated be-
havioral results were reported previously (E.S. Duncan and
S.L. Small, under review). Participants were recorded telling
a narrative (Cinderella) (Saffran et al., 1989) four times over
an 18-week span (weeks�6, 0, 6, 12) during which the middle
6 weeks (weeks 0–6) consisted of the Intensive Mouth Imita-
tion and Talking for Aphasia Therapeutic Effect (IMITATE)
therapy. The recorded narratives were scored for number of
correct information units (CIUs) produced. Words were
counted as CIUs if they were novel, intelligible, and appropri-
ate to the context. Figure 2 depicts the study design. One sub-
ject (10) missed the fourth behavioral evaluation.

FIG. 1. Visual depiction of
two graphs. (A, B) share simi-
lar network properties, includ-
ing number of nodes, edges,
communities, and average de-
gree, yet the modularity of (B)
(0.41) is much higher com-
pared with (A) (0.27). (A) is a
random network; (B) depicts
data from a social organization
(Zachary, 1977). Color images
available online at www
.liebertpub.com/brain

RESTING STATE NETWORK MODULARITY AND APHASIA RECOVERY 525



Neuroimaging measures

Acquisition. MRI was acquired at three baseline time points
before 6 weeks of therapy (weeks �6, �3, 0) and at up to three
time points following the end of treatment (weeks 6, 9, 12). Fig-
ure 2 depicts the study design. Images were acquired on a 3T
Siemens Trio MRI scanner (Siemens Medical Solutions USA,
Inc., Malvern, PA) at the Northwestern University. High resolu-
tion structural images were acquired using a T1-MPRAGE se-
quence with TR = 2300 msec, TE = 3.36 msec, TI = 900 msec,
flip angle = 9�, and 1 mm isotropic voxel size. rsfMRI images
were acquired using an EPI sequence with TR = 1500 msec,
TE = 20 msec, flip angle = 71�, FOV = 220 · 220 mm2, matrix
size = 64 · 64, 29 axial slices with 4 mm thickness (1 mm
gap), and inplane voxel size of 3.75 · 3.75 mm. During 5 min
of scanning, 200 volumes were acquired.

rsfMRI preprocessing. rsfMRI preprocessing consisted
of discarding the first four volumes, slice timing correction,
despiking, and registration performed using Analysis of
Functional NeuroImages (AFNI) (Cox, 1996) and FMRIB
Software Library (FSL) (Smith et al., 2004). The AFNI func-
tion 3dDeconvolve was used to regress out signals of no in-
terest (from white matter, ventricles, and lesion), as well as
motion and polynomial (linear and quadratic) trends. If a vol-
ume had >3 mm displacement from the volume to which it
was being registered, both that volume and the following
one were censored and not included in the regression. A
scan needed to have ‡55% of volumes uncensored (108) to
be included in the analysis. These cleaned time series were
then band-pass filtered (0.01–0.1 Hz) to identify the low fre-
quency fluctuations of interest. As some participants missed
or had excessive motion during one or two scanning sessions,
a total of 76 scans were included in this analysis (rather than
12 subjects · 7 scans = 84).

Anatomical preprocessing. Lesion masks drawn on the
high-resolution structural scans were used to perform a Vir-
tual Brain Transplant (Solodkin et al., 2010) to facilitate re-
construction of each participant’s cortical surface with
FreeSurfer (Fischl, 2012), brain parcellation into 463 regions
(Hagmann et al., 2008), and the creation of a common tem-
plate. Each participant’s preprocessed and band-pass filtered
rsfMRI was registered to the common template to permit
group analysis.

Independent component analysis. Spatial independent
component analysis (ICA) was performed using the Group

ICA of fMRI Toolbox (GIFT) (Calhoun, 2004). In a prepro-
cessing step before ICA, the time series underwent mean
centering followed by whitening and dimension reduction
using subject-specific principal component analysis to ex-
tract the first 20 eigenvectors (low-order Gaussian features).
Group ICA using the Infomax algorithm then identified 20
independent higher-order non-Gaussian features of the re-
duced data. ICA was repeated 10 times with random initia-
tion and bootstrapping to ensure the stability of the
identified components (ICASSO) (Himberg et al., 2004).

Graph construction. Eight of the 20 identified compo-
nents were selected as components of interest (E.S. Duncan
and S.L. Small, submitted) that did not overlap with regions
of known vascular, motion, and susceptibility artifacts and
that were consistent with RSNs previously identified in the
literature (Damoiseaux et al., 2006; Lee et al., 2012). We
took the inverse of the transformation that registered individ-
ual scans to the group template and applied it to these eight
RSNs to bring them from standard space into the native space
in which the rsfMRI data were acquired. We then took the
intersection of anatomical regions for each of the RSNs for
all participants, using the parcellation scheme applied during
preprocessing of the anatomical volume (Hagmann et al.,
2008). Each RSN included between 24 and 40 regions, for
a total of 230 regions among the eight RSNs. After identify-
ing the peak voxel for each region included in any one of the
eight RSNs for each scan, we mean centered the time se-
ries and constructed a joint covariance matrix for all time se-
ries in all 230 regions. We induced sparsity in these matrices
using the graphical lasso (Friedman et al., 2008) as imple-
mented in R (Friedman et al., 2014), and we used the result-
ing inverse covariance matrix to construct a graph for each
scan using NetworkX (Hagberg et al., 2004). In these graphs,
each region is a node, and the edges are weighted by the
strengths of the functional connectivity (covariance).

Modularity. Processing of the functional connectivity
graphs included first removing all negative edges and then binar-
izing the remaining positive edges. We assigned each node of
these resulting graphs to a module based on its membership in
one of the original eight RSNs and then computed a modularity
value (Q) for each scan through use of the NetworkX commu-
nity modularity function (Hagberg et al., 2008) based on a well-
established metric (Newman and Girvan, 2004).

To control for graphs simply changing in modularity with-
out any consideration of RSNs, nodes were also assigned to
modules based on a separate partition determined through

FIG. 2. Study design. Total study duration was 18 weeks. Six week baseline preceded a 6 week course of therapy, which
was followed by a 6 week maintenance interval. Numbers indicate weeks at which behavioral assessment was performed.
Magnetic resonance images indicate time points at which neuroimaging was acquired. Color images available online at
www.liebertpub.com/brain
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application of a community detection algorithm using the
Louvain method (Blondel et al., 2008), with a separate mod-
ularity score calculated.

Correlation of modularity and behavior

Differences in modularity (Q) were correlated with differ-
ences in number of CIUs produced before and after therapy.
Pretherapy modularity was calculated as the average Q of the
three baseline scans (weeks �6, �3, 0). Post-therapy modu-
larity was calculated as the average Q for the scans (from 1 to
3 total) acquired after therapy (weeks 6, 9, 12). The prether-
apy CIU score was defined as the average number of CIUs
for the two pretherapy assessments. The post-therapy CIU
score was averaged across the two post-therapy testing ses-
sions (week 6, 12). Four comparisons were made for the
changes that occurred in behavior and functional RSN mod-
ularity as follows: post-therapy versus pretherapy, week 6
versus pretherapy, week 12 versus pretherapy, and week 12
versus week 6. These correlations were corrected for the
three independent comparisons (a = 0.05/3).

Significant comparisons were repeated twice: (1) using
partial correlations controlling for pretherapy CIU produc-
tion and (2) using a separate community assignment partition
(see Modularity section) to control for changes in modularity
unrelated to RSNs.

A repeated measure analysis of variance (ANOVA) was
used to compare baseline Q values to ensure that RSN mod-
ularity did not significantly differ among pretherapy scans.

Results

There was a positive correlation between change in CIUs
and change in RSN modularity comparing pre- and post-
therapy measures (r = +0.687; p = 0.014) and comparing
week 6 measures to baseline (r = +0.760; p = 0.011). Figure 3
shows these relationships. Neither the correlation of week 12
with baseline (r = +0.549; p = 0.100) nor week 12 with week
6 (r = +0.237; p = 0.572) was significant. Reduced power due
to missed scans (leaving 8 or 10 subjects) may have played a
role in the failure of these comparisons to reach significance.

Controlling for pretherapy CIU production, the pre- versus
post-therapy partial correlation (r = +0.758; p = 0.007) and the
week 6 partial correlation (r = +0.676; p = 0.046) remained sig-
nificant at a = 0.05. There were no significant results for the
control comparisons, in which nodes were assigned to commu-
nities based on an independent algorithm, rather than RSN
membership (jrj< 0.484; p > 0.110).

An ANOVA comparing baseline modularity indicated no
significant differences among the three pretherapy sessions
( p = 0.273).

Discussion

The present study provides confirmatory evidence for the
hypothesis that individuals demonstrating behavioral im-
provement in narrative production following imitation-
based aphasia therapy demonstrate increased segregation
among functional networks. We interpret this to mean that
increased functional segregation supports a better ability to
communicate a narrative. The present finding of improved
behavioral performance and increased network modularity
when a node’s community is assigned based on RSN associ-
ation also supports the notion of an adaptive role for in-
creased segregation.

Decreased modularity is associated with functional defi-
cits in a variety of disorders, including AD and carotid steno-
sis (Brier et al., 2014; Chang et al., 2016). However, it should
be noted that higher modularity is also associated with de-
creased performance in some studies. Increased modularity
is found in patients with multiple sclerosis (Muthuraman
et al., 2016), for whom it is negatively correlated with work-
ing memory (Gamboa et al., 2014). In Parkinson’s disease,
results have been mixed (Baggio et al., 2014; Ma et al.,
2016). These findings may indicate that, as with essentially
all biological properties, there is an inverse U-shaped curve
associated with the modularity of functional brain connectiv-
ity. If the modular organization of the brain is either too weak
or too strong, the behavior of the organism is maladaptive.

However, for the present findings, it is believed that there
is explanatory power associated with the observed changes in
brain connectivity. Studies of healthy controls indicate that
modularity decreases when task-based fMRI is compared
to rsfMRI (Diet al., 2013), as well as when task demands in-
crease (Vatansever et al., 2015). Given that individuals with
aphasia demonstrate deficits in cognitive domains outside
language (Murray, 2012), the observed recovery in narrative
production may be associated not only with language-
specific improvement but also with cognitive benefit, result-
ing in better behavioral performance, as well as decreasing
required effort. In addition, connectivity changes in the lan-
guage system secondary to stroke can ripple throughout other
brain subnetworks not directly related to language (Warren
et al., 2009), causing connectivity changes both within and
between modules.

FIG. 3. Correlations between changes in
CIU production and RSN modularity. Sig-
nificant positive correlations for post- com-
pared to pretherapy measures (left) and for
immediate post-therapy (week 6) compared
to pretherapy. CIU, correct information
units; RSN, resting state network. Color
images available online at www.liebertpub
.com/brain
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While graph theoretical analyses are generally underutil-
ized in the study of aphasia and other sequelae of stroke, a
few prior studies use such methods to illuminate behavioral
changes occurring following brain injury and therapy. In
aphasia, local increases in network connectivity are found
in bilateral angular gyrus and left pars triangularis, part of
Broca’s area, in individuals demonstrating benefit from a
word finding treatment (Sandberg et al., 2015). Aphasia se-
verity is associated with disruption of regions serving as con-
nector hubs in the language network and a global reduction
in the rich club coefficient (Gleichgerrcht et al., 2015), a
measure of the tendency for highly connected nodes to be
highly interconnected with each other. Patients with the se-
mantic variant of primary progressive aphasia demonstrate
lower global efficiency, or more remote functional connec-
tions, compared to controls (Agosta et al., 2014), as do
those with post-stroke motor deficits (Falcon et al., 2015).
These findings suggest, similar to those of the present inves-
tigation, that the ability to effectively manage and transmit
information throughout the brain is compromised following
stroke, that these changes underlie behavioral impairment,
and that the restoration of these properties may facilitate
functional gains.

Conclusion

The restoration of normal network topology in the brain is
a challenge that remains despite these collected findings of
disturbance. Targeted stimulation or inhibition of nodes
and modules demonstrating deviant patterns of connectivity,
with the aim of reinstating network balance, can currently be
explored transcranially through magnetic or direct current
stimulation. Future insight into the neural mechanisms
through which these changes occur may come from ‘‘build
to understand’’ approaches, such as modeling with The Vir-
tual Brain (Falcon et al., 2015; Jirsa et al., 2010). Better un-
derstanding of the biological underpinnings of network
disruption and reorganization will stimulate more informed
and effective interventions that, in turn, will promote greater
recovery.
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